亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)

        字號(hào):


            因?yàn)楦叨_始努力,所以前面的知識(shí)肯定有一定的欠缺,這就要求自己要制定一定的計(jì)劃,更要比別人付出更多的努力,相信付出的汗水不會(huì)白白流淌的,收獲總是自己的。高二頻道為你整理了《高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)》,助你金榜題名!
            1.高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)
            1、科學(xué)記數(shù)法:把一個(gè)數(shù)字寫成的形式的`記數(shù)方法。
            2、統(tǒng)計(jì)圖:形象地表示收集到的數(shù)據(jù)的圖。
            3、扇形統(tǒng)計(jì)圖:用圓和扇形來(lái)表示總體和部分的關(guān)系,扇形大小反映部分占總體的百分比的大?。辉谏刃谓y(tǒng)計(jì)圖中,每個(gè)部分占總體的百分比等于該部分對(duì)應(yīng)的扇形圓心角與360°的比。
            4、條形統(tǒng)計(jì)圖:清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。
            5、折線統(tǒng)計(jì)圖:清楚地反映事物的變化情況。
            6、確定事件包括:肯定會(huì)發(fā)生的必然事件和一定不會(huì)發(fā)生的不可能事件。
            7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
            8、事件的概率:可用事件結(jié)果除以所以可能結(jié)果求得理論概率。
            9、有效數(shù)字:對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
            10、游戲雙方公平:雙方獲勝的可能性相同。
            11、算數(shù)平均數(shù):簡(jiǎn)稱“平均數(shù)”,最常用,受極端值得影響較大;加權(quán)平均數(shù)
            12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計(jì)算簡(jiǎn)單,受極端值得影響較小。
            13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關(guān)系不大。
            14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫了一組數(shù)據(jù)的“平均水平”。
            15、普查:為了一定目的對(duì)考察對(duì)象進(jìn)行全面調(diào)查;考察對(duì)象全體叫總體,每個(gè)考察對(duì)象叫個(gè)體。
            16、抽樣調(diào)查:從總體中抽取部分個(gè)體進(jìn)行調(diào)查;從總體中抽出的一部分個(gè)體叫樣本(有代表性)。
            17、隨機(jī)調(diào)查:按機(jī)會(huì)均等的原則進(jìn)行調(diào)查,總體中每個(gè)個(gè)體被調(diào)查的概率相同。
            18、頻數(shù):每次對(duì)象出現(xiàn)的次數(shù)。
            19、頻率:每次對(duì)象出現(xiàn)的次數(shù)與總次數(shù)的比值。
            20、級(jí)差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫數(shù)據(jù)的離散程度。
            21、方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫數(shù)據(jù)的離散程度。
            22、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根刻畫數(shù)據(jù)的離散程度。
            23、一組數(shù)據(jù)的級(jí)差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。
            24、利用樹狀圖或表格方便求出某事件發(fā)生的概率。
            25、兩個(gè)對(duì)比圖像中,坐標(biāo)軸上同一單位長(zhǎng)度表示的意義一致,縱坐標(biāo)從0開始畫。
            2.高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)
            1.數(shù)列定義:
            如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
            等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)
            前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
            以上n均屬于正整數(shù)。
            2.解釋說(shuō)明:
            從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
            在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。
            且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d
            它可以看作等差數(shù)列廣義的通項(xiàng)公式。
            3.推論XX式:
            從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
            若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
            4.基本公式:
            和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
            項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
            首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
            末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
            末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
            3.高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)
            空間直線與直線之間的位置關(guān)系
            (1)異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
            (2)異面直線性質(zhì):既不平行,又不相交.
            (3)異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
            異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直.
            (4)求異面直線所成角步驟:
            A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.
            B、證明作出的角即為所求角C、利用三角形來(lái)求角
            (5)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).
            (6)空間直線與平面之間的位置關(guān)系
            直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
            三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα
            (7)平面與平面之間的位置關(guān)系:
            平行——沒有公共點(diǎn);αβ
            相交——有一條公共直線.α∩β=b
            4.高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)
            柱、錐、臺(tái)、球的結(jié)構(gòu)特征
            (1)棱柱:
            幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
            (2)棱錐
            幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
            (3)棱臺(tái):
            幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)
            (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
            幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個(gè)矩形.
            (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
            幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面展開圖是一個(gè)扇形.
            (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
            幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開圖是一個(gè)弓形.
            (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
            幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.
            5.高二數(shù)學(xué)必修四知識(shí)點(diǎn)復(fù)習(xí)
            復(fù)數(shù)的概念:
            形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
            復(fù)數(shù)的表示:
            復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。
            復(fù)數(shù)的幾何意義:
            (1)復(fù)平面、實(shí)軸、虛軸:
            點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)
            (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對(duì)應(yīng)關(guān)系,即
            這是因?yàn)椋恳粋€(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對(duì)應(yīng)。
            這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
            復(fù)數(shù)的模:
            復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
            虛數(shù)單位i:
            (1)它的平方等于-1,即i2=-1;
            (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立
            (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。
            (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
            復(fù)數(shù)模的性質(zhì):
            復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
            對(duì)于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。