亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        平方差公式說(shuō)課稿(專業(yè)14篇)

        字號(hào):

            3.通過(guò)總結(jié)可以回顧過(guò)去,展望未來(lái)寫總結(jié)時(shí)要注重語(yǔ)言的簡(jiǎn)潔明了,讓讀者一目了然。這些優(yōu)秀的作品是我們的學(xué)習(xí)榜樣,值得我們深入研究。
            平方差公式說(shuō)課稿篇一
            一、學(xué)習(xí)目標(biāo):
            2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算.
            二、重點(diǎn)難點(diǎn)。
            難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.
            三、合作學(xué)習(xí)。
            你能用簡(jiǎn)便方法計(jì)算下列各題嗎?
            12001×19992998×1002。
            導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.
            1x+1x-12m+2m-2。
            32x+12x-14x+5yx-5y。
            結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差.
            即:a+ba-b=a2-b2。
            四、精講精練。
            平方差公式說(shuō)課稿篇二
            《平方差公式》這一節(jié)重點(diǎn)和難點(diǎn)就在于結(jié)構(gòu)的不變性和字母的可變性。因此我的教學(xué)設(shè)計(jì)思想是從讓每一位學(xué)生理解和掌握公式結(jié)構(gòu)的不變性和字母的可變性從而達(dá)到熟練運(yùn)用的目的。只是在具體的教學(xué)手段和措施及側(cè)重點(diǎn)上有所區(qū)別。雖然如此,我個(gè)人認(rèn)為基本目標(biāo)已經(jīng)達(dá)到,也取得了初步成效,尤其是對(duì)易錯(cuò)點(diǎn)的側(cè)重讓學(xué)生記憶深刻效果更明顯。
            具體來(lái)說(shuō),成功之處我們都基本實(shí)現(xiàn)了教學(xué)目標(biāo),突出了教學(xué)重難點(diǎn),教學(xué)過(guò)程環(huán)環(huán)相扣,題目設(shè)計(jì)逐層深入,及時(shí)反饋學(xué)習(xí)效果,精講多練。基本實(shí)現(xiàn)了預(yù)想的效果。我自認(rèn)為該課成功之處主要體現(xiàn)在:
            1、課前準(zhǔn)備充分,教學(xué)設(shè)計(jì)合理充實(shí),有很強(qiáng)的實(shí)用性和創(chuàng)造性。
            2、導(dǎo)入新穎,從小故事出發(fā),激發(fā)學(xué)生興趣,給學(xué)生留下懸念,同時(shí)對(duì)平方差公式有了初步的感性認(rèn)識(shí),從而揭示課題。然后再通過(guò)一系列的探索和練習(xí)以及公式的幾何解釋,使學(xué)生對(duì)新知識(shí)的理解由感性認(rèn)識(shí)到理性認(rèn)識(shí)的過(guò)渡。
            3、選題合理、有針對(duì)性和層次性。在鞏固練習(xí)中通過(guò)像(x+y)(x-y)這種簡(jiǎn)單的套公式題型逐漸轉(zhuǎn)換到涉及帶負(fù)號(hào)的變式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)這樣的題型,通過(guò)各類變式和判斷及找錯(cuò)的題型問(wèn)題的暴露,及時(shí)處理。使得學(xué)生逐步加深對(duì)公式結(jié)構(gòu)的理解和記憶。然后轉(zhuǎn)回到課前給學(xué)生留下的疑問(wèn),最后實(shí)現(xiàn)創(chuàng)新,用簡(jiǎn)便方法計(jì)算像2002×1998.使得整個(gè)課堂容量大,充實(shí)。
            進(jìn)的例題練習(xí)讓學(xué)生逐步理解公式中字母的可變性。最后達(dá)到對(duì)公式的全面和深刻的理解和掌握,使公式的運(yùn)用得到升華。
            5、本節(jié)課的重點(diǎn)和難點(diǎn)就是在于結(jié)構(gòu)的不變性和字母的可變性。我就側(cè)重運(yùn)用公式時(shí)的易錯(cuò)點(diǎn)。不僅在訓(xùn)練期間多次強(qiáng)調(diào)的方式提醒學(xué)生易錯(cuò)點(diǎn),相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同相的平方減去相反項(xiàng)的平方,平方時(shí)底是單項(xiàng)式但系數(shù)不是1或底數(shù)是多項(xiàng)式時(shí)不要忘記打上括號(hào),而且在最后的小結(jié)中給學(xué)生總結(jié)更是讓學(xué)生影響深刻。
            6、對(duì)公式進(jìn)行幾何意義的解釋,我通過(guò)直觀演示操作,將學(xué)生不易理解的問(wèn)題,使它變得直觀,從而顯得簡(jiǎn)單。
            3、課堂效率有待提高。
            改進(jìn)方向:1、繼續(xù)加強(qiáng)平時(shí)的“生本”理念的灌輸和學(xué)生討論、發(fā)言的培訓(xùn)和鼓勵(lì)。
            2、教學(xué)設(shè)計(jì)時(shí)更全面、深入地考慮學(xué)生的問(wèn)題也就是備課備學(xué)生。
            3、加強(qiáng)對(duì)學(xué)生發(fā)現(xiàn)問(wèn)題、總結(jié)規(guī)律、提出疑問(wèn)等課堂效果體現(xiàn)的關(guān)鍵環(huán)節(jié)。
            的培訓(xùn)。
            4、課堂教學(xué)注重多措施了解學(xué)生學(xué)習(xí)效果的反饋。俗話說(shuō):“金無(wú)足赤,人無(wú)完人”。一節(jié)課上得再好,還是有些問(wèn)題沒(méi)有考慮到,以上四本人的自我剖析,有的地方做的不是很完美,敬請(qǐng)各位同仁批評(píng)指正,本人一定笑納,并表示感謝。
            平方差公式說(shuō)課稿篇三
            本周上午我聽了史老師一節(jié)關(guān)于《運(yùn)用平方差公式進(jìn)行因式分解》的公開課,史老師以自己扎實(shí)的數(shù)學(xué)基本功,細(xì)致嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)解題思路,靈活輕松的師生互動(dòng),為我們獻(xiàn)上了一節(jié)優(yōu)質(zhì)的數(shù)學(xué)課。
            史老師針對(duì)本章內(nèi)容所要用上了前面的知識(shí)做了細(xì)致的復(fù)習(xí)。實(shí)現(xiàn)了本章節(jié)知識(shí)點(diǎn)的聯(lián)系與復(fù)習(xí)回顧,對(duì)接下去的`學(xué)習(xí)做了很好的鋪墊。
            史老師通過(guò)求長(zhǎng)方形的面積來(lái)引導(dǎo)學(xué)生探索、總結(jié)出運(yùn)用平方差公式進(jìn)行因式分解的法則,利用數(shù)形結(jié)合,讓學(xué)生對(duì)這個(gè)法則的理解更深入,同時(shí)突破了難點(diǎn),體現(xiàn)了以教師為主導(dǎo)、學(xué)生自主探究、討論、合作交流的新課改理念。
            史老師通過(guò)練習(xí),讓學(xué)生觀察步驟,并做出總結(jié)。使學(xué)生加深了對(duì)知識(shí)的理解,學(xué)會(huì)觀察,發(fā)現(xiàn),總結(jié)知識(shí)。最后史老師還給學(xué)生編了個(gè)解題的順口溜,既方便讓學(xué)生記憶,又能鞏固知識(shí)。
            (1)整節(jié)課老師講得多,學(xué)生個(gè)別回答較少。
            (2)學(xué)生的討論與合作學(xué)習(xí)還需加強(qiáng),討論問(wèn)題還不夠深入,應(yīng)讓學(xué)生從合作學(xué)習(xí)中有所提高,從與它人的交流中碰撞出思維的火花。
            (3)還需加強(qiáng)的對(duì)知識(shí)點(diǎn)的認(rèn)識(shí),比如為什么要學(xué)升降冪,是為了結(jié)果的有序,數(shù)學(xué)的結(jié)果需要簡(jiǎn)潔有序。這樣讓學(xué)生很清楚,有目的的學(xué)習(xí)效果總是比較好的。
            平方差公式說(shuō)課稿篇四
            本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過(guò)預(yù)設(shè)的問(wèn)題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問(wèn)題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。
            讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過(guò)質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過(guò)例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
            本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
            (一)知識(shí)與技能。
            2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
            (二)過(guò)程與方法。
            1.經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
            2.通過(guò)乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。
            3.通過(guò)活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
            4.通過(guò)活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
            5.通過(guò)活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,然后解決問(wèn)題,體會(huì)在解決問(wèn)題的過(guò)程中與他人合作的重要性。
            (三)情感與態(tài)度。
            1.通過(guò)探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。
            平方差公式說(shuō)課稿篇五
            王老師上課時(shí)通過(guò)學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進(jìn)行因式分解,這樣得出平方差公式后,并且把乘法公式進(jìn)行對(duì)比,通過(guò)例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用平方差公式.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來(lái)加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學(xué)生探索,促進(jìn)學(xué)生主動(dòng)發(fā)展的教學(xué)方法貫穿于這節(jié)課的始終。
            從學(xué)生的練習(xí)情況來(lái)看,許多同學(xué)都掌握了這節(jié)課的知識(shí),整個(gè)課堂中,以學(xué)生練為主,王老師能敢于創(chuàng)新、敢于探索,整節(jié)課的學(xué)習(xí),教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者、指導(dǎo)者和合作者,而學(xué)生始終都是一個(gè)發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學(xué)習(xí)主體作用。這樣大大提高了這節(jié)課的效率。
            教師講課語(yǔ)言簡(jiǎn)捷、清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。做到以點(diǎn)撥為主的教學(xué)。對(duì)于公式的牲能嚴(yán)格要求學(xué)生理解,并能讓學(xué)生自己舉例符合公式形狀的例子,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。效果是比較顯著的。
            平方差公式說(shuō)課稿篇六
            3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
            重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。
            以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
            (一)創(chuàng)設(shè)問(wèn)題情境,引入新課。
            1、你會(huì)做嗎?
            (1)(x+1)(x—1)=_____=()()。
            (3)(3x+2)(3x—2)=_____=()()。
            2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
            交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
            (合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。
            我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)。
            (三)嘗試探究。
            (四)鞏固練習(xí)。
            (l)(x+a)(x—a)。
            (2)(m+n)(m—n)(3)(a+3b)(a—3b)。
            (4)(1—5y)(l+5y)(5)998×1002。
            (6)395×405。
            2、直接寫出答案:
            (l)(—a+b)(a+b)。
            (2)(a—b)(b+a)。
            (3)(—a—b)(—a+b)。
            (4)(a—b)(—a—b)(5)999×1001。
            (6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)。
            (五)小結(jié)。
            2.運(yùn)用公式要注意什么?
            (1)要符合公式特征才能運(yùn)用平方差公式;
            (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。
            (學(xué)生回答,教師總結(jié))。
            (六)作業(yè)。
            p106習(xí)題1—5題。
            教學(xué)反思。
            通過(guò)精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒(méi)有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過(guò)于注重“收”,而“放”不夠。
            平方差公式說(shuō)課稿篇七
            本周聽了滿老師的一節(jié)數(shù)學(xué)課,這節(jié)課是滿老師安排的一節(jié)乘法公式——平方差公式的新授課,這節(jié)課給我留下了深刻的影響。
            教師講課語(yǔ)言清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入,使學(xué)生既復(fù)習(xí)了多項(xiàng)式的乘法運(yùn)算,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。課堂教學(xué)中充分體現(xiàn)了以點(diǎn)撥為主的教學(xué)。對(duì)于公式的性能嚴(yán)格要求學(xué)生理解,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。一點(diǎn)建議:
            1、引入時(shí),還可以安排得生動(dòng)一點(diǎn),可以先設(shè)疑,提出問(wèn)題,讓學(xué)生探討,猜想,歸納,以激發(fā)學(xué)生更高的學(xué)習(xí)興趣,或采用多題的多項(xiàng)式乘法運(yùn)算,當(dāng)學(xué)生感到有些“煩“時(shí),讓學(xué)生猜想這類運(yùn)算能否運(yùn)用簡(jiǎn)單的結(jié)論來(lái)得出,從而使學(xué)生感到今天要學(xué)的內(nèi)容的重要性,這樣學(xué)生的學(xué)習(xí)將更主動(dòng)。
            2、剛才說(shuō)過(guò)語(yǔ)言清晰,但不夠精煉,尤其在總結(jié)公式特征時(shí),未能用簡(jiǎn)練的語(yǔ)言描述出特征,以致學(xué)生在完成例題和練習(xí)題的過(guò)程中,對(duì)在運(yùn)用公式之前需要變型的題型,出錯(cuò)率較高。其實(shí)平方差公式的特征就是有兩項(xiàng)相同,而另兩項(xiàng)恰恰是互為相反數(shù)或項(xiàng)。相同項(xiàng)在前,相反項(xiàng)在后,結(jié)果才能用相同項(xiàng)的平方減去相反項(xiàng)的平方。
            3、對(duì)于平方差公式的幾何意義,敢于讓學(xué)生大膽上黑板演示是好的,但過(guò)程繁瑣,缺乏精煉,直觀,不能讓大部分學(xué)生弄懂。這時(shí)我們老師應(yīng)該給出恰當(dāng)準(zhǔn)確的解釋。
            平方差公式說(shuō)課稿篇八
            2.經(jīng)歷探索平方差公式的過(guò)程,認(rèn)識(shí)“特殊”與“一般”的關(guān)系,了解“特殊到一般”的認(rèn)識(shí)規(guī)律和數(shù)學(xué)發(fā)現(xiàn)方法,平方差公式第一課時(shí)教學(xué)反思。
            重點(diǎn):公式的理解與正確運(yùn)用(考點(diǎn):此公式很關(guān)鍵,一定要搞清楚特征,在以后的學(xué)習(xí)中還繼續(xù)應(yīng)用)。
            難點(diǎn):公式的理解與正確運(yùn)用。
            教法:自主探究和合作交流。
            (1)(x+2)(x-2)(2)(1+2y)(1-2y)(3)(x+3y)(x-3y)。
            =x2-22=12-(2y)2=x2-(3y)2。
            學(xué)生分組討論,交流,小組長(zhǎng)回答問(wèn)題。
            師生共同總結(jié)歸納:
            即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
            (1)一組完全相同的項(xiàng);
            (2)一組互為相反數(shù)的項(xiàng)。
            2.例題。
            (1)(5+6x)(5-6x)(2)(-m+n)(-m-n)。
            3.公式應(yīng)用。
            (1)(a+2)(a-2)(2)(-x+2y)(-x-3y)。
            兩個(gè)學(xué)生板演,其余學(xué)生在練習(xí)本上自己獨(dú)立完成。
            老師巡視,輔導(dǎo)學(xué)困生。
            1.計(jì)算(1)(a+1)(a-1)(a2+1)(2)(a+b)(a-b)(a2+b2)。
            師生共同分析:此題特征,兩次利用平方差公式,教學(xué)反思《平方差公式第一課時(shí)教學(xué)反思》。
            學(xué)生在練習(xí)本上獨(dú)立完成,同桌互相檢查。
            2.(ab)(-ab)=?能用平方差公式嗎?它的a和b分別是什么?
            學(xué)生分組討論交流,獨(dú)立完成運(yùn)算。
            1、(ab+8)(ab-8)2、(5m-n)(-5m-n)。
            3、(3x+4y-z)(3x-4y+z)4、(a+b)(a-b)(a2+b2)。
            2、運(yùn)用公式要注意的.問(wèn)題:
            (2)公式中的a、b可以代表什么?
            一、檢測(cè)導(dǎo)入。
            二、例題展示。
            三、拓展延伸。
            四、達(dá)標(biāo)堂測(cè)。
            五、歸納小結(jié)。
            即兩數(shù)和與兩數(shù)差的積,等于它們的平方差。
            六、布置作業(yè)。
            p21:習(xí)題1.91、2。
            平方差公式說(shuō)課稿篇九
            (4)(+3z)(—3z)=_____。
            (1)(x+1)(1+x),
            (2)(2x+)(—2x),
            (3)(a—b)(—a+b),
            (4)(—a—b)(—a+b)。
            幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
            平方差公式說(shuō)課稿篇十
            我參與了學(xué)校組織的“同課異構(gòu)”活動(dòng),授課內(nèi)容是《乘法公式——平方差公式(一課時(shí))》。
            上學(xué)期末我恰好在任縣二中參加了一次關(guān)于教材研究的會(huì)議,當(dāng)時(shí)河南一位從教三十多年且參與教材編寫的專家指出:關(guān)于概念、公式、法則的教學(xué)一般有六個(gè)環(huán)節(jié):引入;形成;明確表述;辨析;鞏固應(yīng)用;歸納提升。新課標(biāo)也要求我們?cè)诮虒W(xué)中不只是傳授學(xué)生基本的知識(shí)技能,還要以培養(yǎng)學(xué)生的數(shù)學(xué)能力及合作探究的意識(shí)為目標(biāo)。為此,我在設(shè)計(jì)本節(jié)課的教學(xué)環(huán)節(jié)時(shí)充分考慮學(xué)生的認(rèn)知規(guī)律,并以培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),了解運(yùn)用數(shù)學(xué)思想方法,增強(qiáng)學(xué)生的合作探究意識(shí)為宗旨。
            我的教學(xué)流程是按照“引入——猜想——證明——辨析——應(yīng)用——?dú)w納——檢測(cè)”的順序進(jìn)行的,非常符合學(xué)生的認(rèn)知規(guī)律。我覺(jué)得本節(jié)課比較好的方面有以下幾點(diǎn):
            1.在利用圖形面積證明平方差公式時(shí),我沒(méi)有采用教材上直接給出剪接方法再證明的過(guò)程,只給出了原圖讓學(xué)生們自己去探究不同的方法。事實(shí)證明,學(xué)生們不只拼出了書上的方法,還從對(duì)角線剪開拼出了梯形,平行四邊形和長(zhǎng)方形三種方法,思維一下就開闊了。這里我并沒(méi)有為了證明而證明,也沒(méi)有怕浪費(fèi)時(shí)間匆匆而過(guò),而是給學(xué)生留下了充足的思考和討論時(shí)間,真正激發(fā)了學(xué)生的思維。
            2.通過(guò)設(shè)置一個(gè)“找朋友”的小游戲來(lái)辨析公式,調(diào)動(dòng)了學(xué)生的積極性,活躍了課堂氣氛,因此,游戲過(guò)后學(xué)生對(duì)公式的結(jié)構(gòu)特征也有了更深刻的了解。
            3.共享收獲環(huán)節(jié),我采用的是制作微課的方式,形式比較新穎,從認(rèn)識(shí)公式到知道公式的特征,再到感悟數(shù)形結(jié)合的數(shù)學(xué)思想,最后是感受到數(shù)學(xué)運(yùn)算的一種簡(jiǎn)捷美,將本節(jié)課升華到了一個(gè)新的高度。
            當(dāng)然,本節(jié)課也有一些遺憾和不足之處。比如,由于緊張,在授課過(guò)程中遺漏了兩點(diǎn),通過(guò)播放幻燈片才慌忙補(bǔ)充上;在處理學(xué)生練習(xí)時(shí),為了抓緊時(shí)間完成進(jìn)度沒(méi)有把學(xué)生的出錯(cuò)點(diǎn)講透講細(xì);游戲環(huán)節(jié)參與學(xué)生有些少,應(yīng)讓更多的同學(xué)動(dòng)起來(lái);當(dāng)堂檢測(cè)的題目應(yīng)該設(shè)置上分值和檢測(cè)時(shí)間,讓學(xué)生限時(shí)完成,然后可以根據(jù)學(xué)生得分了解本節(jié)課的學(xué)習(xí)效果,以便下節(jié)課再有針對(duì)性的進(jìn)行講解和練習(xí)查漏補(bǔ)缺。
            通過(guò)這次“同課異構(gòu)”活動(dòng),我感覺(jué)自己在教學(xué)環(huán)節(jié)設(shè)計(jì)、課件制作和使用、導(dǎo)學(xué)案的規(guī)范書寫等各方面都有了提高,通過(guò)各位領(lǐng)導(dǎo)和老師的點(diǎn)評(píng),我也有了更多的收獲,相信可以為我今后的教學(xué)所用。
            平方差公式說(shuō)課稿篇十一
            (4)(+3z)(-3z)=_____.
            (1)(x+1)(1+x),。
            (2)(2x+)(-2x),。
            (3)(a-b)(-a+b),。
            (4)(-a-b)(-a+b)。
            幫助學(xué)生理解公式的特征,掌握公式的特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過(guò)程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
            平方差公式說(shuō)課稿篇十二
            導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過(guò)搶答初步感知平方差公式,接下來(lái),采用小組合作學(xué)習(xí)的方式,利用“四問(wèn)”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過(guò)程,得出(a+b)(a-b)=a2-b2.經(jīng)過(guò)不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。
            把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過(guò)交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過(guò)練習(xí)來(lái)達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過(guò)做題學(xué)生歸納出平方差公式的運(yùn)用技巧。
            以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰(shuí)出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問(wèn)題的一個(gè)學(xué)習(xí)過(guò)程,使學(xué)生獲得思維之趣,參與之樂(lè),成功之悅。
            本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來(lái)進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問(wèn)題,然后通過(guò)生生互動(dòng)、師生互動(dòng)解決問(wèn)題,實(shí)現(xiàn)問(wèn)題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。
            1、節(jié)奏的把握上。
            這一節(jié)我覺(jué)得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問(wèn)題上,花了不少時(shí)間,節(jié)奏把握的不是很好。
            2、充分發(fā)揮學(xué)生的主體地位上。
            這節(jié)課上,我覺(jué)得學(xué)生的積極性不很高,回答問(wèn)題沒(méi)有激情,說(shuō)明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。
            平方差公式說(shuō)課稿篇十三
            進(jìn)一步使學(xué)生理解掌握平方差公式,并通過(guò)小結(jié)使學(xué)生理解公式數(shù)學(xué)表達(dá)式與文字表達(dá)式在應(yīng)用上的差異.
            教學(xué)重點(diǎn)和難點(diǎn):公式的應(yīng)用及推廣.
            1.(1)用較簡(jiǎn)單的代數(shù)式表示下圖紙片的面積.
            (2)沿直線裁一刀,將不規(guī)則的右圖重新拼接成一個(gè)矩形,并用代數(shù)式表示出你新拼圖形的面積.
            講評(píng)要點(diǎn):
            沿hd、gd裁開均可,但一定要讓學(xué)生在裁開之前知道。
            hd=bc=gd=fe=a-b,
            這樣裁開后才能重新拼成一個(gè)矩形.希望推出公式:
            a2-b2=(a+b)(a-b)。
            2.(1)敘述平方差公式的數(shù)學(xué)表達(dá)式及文字表達(dá)式;。
            (2)試比較公式的兩種表達(dá)式在應(yīng)用上的差異.
            說(shuō)明:平方差公式的數(shù)學(xué)表達(dá)式在使用上有三個(gè)優(yōu)點(diǎn).(1)公式具體,易于理解;(2)公式的特征也表現(xiàn)得突出,易于初學(xué)的人“套用”;(3)形式簡(jiǎn)潔.但數(shù)學(xué)表達(dá)式中的a與b有概括性及抽象性,這樣也就造成對(duì)具體問(wèn)題存在一個(gè)判定a、b的`問(wèn)題,否則容易對(duì)公式產(chǎn)生各種主觀上的誤解.
            依照公式的文字表達(dá)式可寫出下面兩個(gè)正確的式子:
            經(jīng)對(duì)比,可以讓人們體會(huì)到公式的文字表達(dá)式抽象、準(zhǔn)確、概括.因而也就“欠”明確(如結(jié)果不知是誰(shuí)與誰(shuí)的平方差).故在使用平方差公式時(shí),要全面理解公式的實(shí)質(zhì),靈活運(yùn)用公式的兩種表達(dá)式,比如用文字公式判斷一個(gè)題目能否使用平方差公式,用數(shù)學(xué)公式確定公式中的a與b,這樣才能使自己的計(jì)算即準(zhǔn)確又靈活.
            3.判斷正誤:
            (1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
            (3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
            (1)102×98;(2)(y+2)(y-2)(y2+4).
            解:(1)102×98(2)(y+2)(y-2)(y2+4)。
            =(100+2)(100-2)=(y2-4)(y2+4)。
            =9996;。
            (1)103×97;(2)(x+3)(x-3)(x2+9);。
            (3)59.8×60.2;(4)(x-)(x2+)(x+).
            3.請(qǐng)每位同學(xué)自編兩道能運(yùn)用平方差公式計(jì)算的題目.
            例2填空:
            思考題:什么樣的二項(xiàng)式才能逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積?
            (某兩數(shù)平方差的二項(xiàng)式可逆用平方差公式寫成兩數(shù)和與這兩數(shù)的差的積)。
            練習(xí)。
            填空:
            1.x2-25=()();。
            2.4m2-49=(2m-7)();。
            3.a4-m4=(a2+m2)()=(a2+m2)()();。
            例3計(jì)算:
            (1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
            解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
            =[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
            =(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
            =m4-14m2+49-n2.
            1.什么是平方差公式?一般兩個(gè)二項(xiàng)式相乘的積應(yīng)是幾項(xiàng)式?
            3.怎樣判斷一個(gè)多項(xiàng)式的乘法問(wèn)題是否可以用平方差公式?
            (1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
            (3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
            (1)69×71;(2)53×47;(3)503×497;(4)40×39.
            平方差公式說(shuō)課稿篇十四
            一、教學(xué)目標(biāo):
            1、使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;
            2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí);
            3、在緊張而輕松地教學(xué)氛圍內(nèi),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
            二、重點(diǎn)、難點(diǎn):
            重點(diǎn)是掌握公式的結(jié)構(gòu)特征及正確運(yùn)用公式。難點(diǎn)是公式推導(dǎo)的理解及字母的廣泛含義。
            三、教學(xué)方法。
            以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
            四、教學(xué)過(guò)程。
            (一)創(chuàng)設(shè)問(wèn)題情境,引入新課。
            1、你會(huì)做嗎?
            (1)(x+1)(x—1)=_____=()。
            (3)(3x+2)(3x—2)=_____=()()。
            2、能否用簡(jiǎn)便方法運(yùn)算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)。
            交流上面第1題的答案,引導(dǎo)學(xué)生進(jìn)一步思考:
            (合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時(shí),積是二項(xiàng)式。這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了。而它們的積等于這兩個(gè)數(shù)的平方差。)。
            我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項(xiàng)式相乘時(shí),就可以直接運(yùn)用公式進(jìn)行計(jì)算。(在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式,并讓學(xué)生熟記。)。
            (三)嘗試探究。
            (四)鞏固練習(xí)。
            (l)(x+a)(x—a)。
            (2)(m+n)(m—n)(3)(a+3b)(a—3b)。
            (4)(1—5y)(l+5y)(5)998×1002。
            (6)395×405。
            2、直接寫出答案:
            (l)(—a+b)(a+b)。
            (2)(a—b)(b+a)。
            (3)(—a—b)(—a+b)。
            (4)(a—b)(—a—b)(5)999×1001。
            (6)×(讓學(xué)生獨(dú)立完成,互評(píng)互改。)。
            (五)小結(jié)。
            2.運(yùn)用公式要注意什么?
            (1)要符合公式特征才能運(yùn)用平方差公式;
            (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意分清a、b。
            (學(xué)生回答,教師總結(jié))。
            (六)作業(yè)。
            p106習(xí)題1—5題。
            七、板書設(shè)計(jì):
            教學(xué)反思。
            通過(guò)精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個(gè)教學(xué)流程環(huán)環(huán)相扣,層層遞進(jìn),抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時(shí),使他們的思維得到了鍛煉和發(fā)展。不足之處:時(shí)間安排不是很合理,前松后緊。課堂上沒(méi)有給更多的學(xué)生提供展示自己思考結(jié)果的機(jī)會(huì),過(guò)于注重“收”,而“放”不夠。