教案具有指導(dǎo)性和規(guī)范性,可以幫助教師實(shí)施有效的教學(xué)。教案的內(nèi)容要有層次性和邏輯性,使學(xué)生能夠有系統(tǒng)地掌握知識。以下是一些優(yōu)秀教師編寫的教案分享給大家,供大家參考。
高一數(shù)學(xué)必修教案全冊篇一
教學(xué)目標(biāo)。
理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用.
教學(xué)重難點(diǎn)。
1.教學(xué)重點(diǎn):兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用;。
2.教學(xué)難點(diǎn):兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.
教學(xué)過程。
高一數(shù)學(xué)必修教案全冊篇二
(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;
(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、
用坐標(biāo)法解決幾何問題的步驟:
第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、
重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、
問 題設(shè)計(jì)意圖師生活動(dòng)
生:回顧,說出自己的看法、
2、解決直線與圓的位置關(guān)系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設(shè)計(jì)意圖師生活動(dòng)
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學(xué)例4,并完成練習(xí)題1、2、
生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、
8、小結(jié):
(1)利用“坐標(biāo)法”解決問對知識進(jìn)行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
生:閱讀教科書的例3,并完成第
問 題設(shè)計(jì)意圖師生活動(dòng)
題的需要準(zhǔn)備什么工作?
(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?
(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?
高一數(shù)學(xué)必修教案全冊篇三
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修教案全冊篇四
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點(diǎn)。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
高一數(shù)學(xué)必修教案全冊篇五
課型
新課
教學(xué)目標(biāo)
1.了解中心投影和平行投影的概念;
3.簡單組合體與其三視圖之間的相互轉(zhuǎn)化.
教學(xué)過程
教學(xué)內(nèi)容
備注
一、
自主學(xué)習(xí)
1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個(gè)幾何問題,我們需要學(xué)習(xí)這方面的知識.
二、
質(zhì)疑提問
下圖中的手影游戲,你玩過嗎?
光是直線傳播的,一個(gè)不透明物體在光的照射下,在物體后面的屏幕上會留下這個(gè)物體的影子,這種現(xiàn)象叫做投影.其中的光線叫做投影線,留下物體影子的屏幕叫做投影面.
一、中心投影與平行投影
思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
投影的分類:
把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形.從多個(gè)角度進(jìn)行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖.
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的.投影圖.
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖.
幾何體的正視圖、側(cè)視圖和俯視圖,統(tǒng)稱為幾何體的三視圖.
三、
問題探究
思考2:如圖,設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?
思考3:圓柱、圓錐、圓臺的三視圖分別是什么?
思考5:球的三視圖是什么?下列三視圖表示一個(gè)什么幾何體?
例1:如圖是一個(gè)倒置的四棱柱的兩種擺放,試分別畫出其三視圖,并比較它們的異同.
四、
課堂檢測
五、
小結(jié)評價(jià)
1.空間幾何體的三視圖:正視圖、側(cè)視圖、俯視圖;
3.三視圖的應(yīng)用及與原實(shí)物圖的相互轉(zhuǎn)化.
高一數(shù)學(xué)必修教案全冊篇六
1.閱讀課本練習(xí)止。
2.回答問題:
(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3.完成練習(xí)。
4.小結(jié)。
二、方法指導(dǎo)。
1.在學(xué)習(xí)對數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時(shí)應(yīng)該把兩個(gè)函數(shù)進(jìn)行類比,通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。
一、提問題。
1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。
二、變題目。
1.試求下列函數(shù)的反函數(shù):
(1);(2);(3);(4)。
2.求下列函數(shù)的定義域:。
(1);(2);(3)。
3.已知?jiǎng)t=;的定義域?yàn)椤?BR> 1.對數(shù)函數(shù)的有關(guān)概念。
(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。
(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。
(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。
2.反函數(shù)的概念。
在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù)。
3.與對數(shù)函數(shù)有關(guān)的定義域的求法:
4.舉例說明如何求反函數(shù)。
一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。
高一數(shù)學(xué)必修教案全冊篇七
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學(xué)重難點(diǎn)。
教學(xué)重點(diǎn):用向量方法解決實(shí)際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學(xué)難點(diǎn):如何將幾何等實(shí)際問題化歸為向量問題.
教學(xué)過程。
由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個(gè)具體實(shí)例,說明向量方法在平面幾何中的運(yùn)用。
思考:
運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?
運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?
“三步曲”:
(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修教案全冊篇八
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。
高一數(shù)學(xué)必修教案全冊篇九
了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
(2)等差數(shù)列、等比數(shù)列。
理解等差數(shù)列、等比數(shù)列的概念。
掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式。
能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
高一數(shù)學(xué)必修教案全冊篇十
1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
高一數(shù)學(xué)必修教案全冊篇十一
掌握用向量方法建立兩角差的余弦公式。通過簡單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
1.教學(xué)重點(diǎn):通過探索得到兩角差的余弦公式;
2.教學(xué)難點(diǎn):探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運(yùn)用已學(xué)知識和方法的能力問題,等等。
1.學(xué)法:啟發(fā)式教學(xué)。
2.教學(xué)用具:多媒體。
(一)導(dǎo)入:我們在初中時(shí)就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
(二)探討過程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點(diǎn)為,等于角與單位圓交點(diǎn)的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。
展示多媒體動(dòng)畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識兩角差余弦公式的結(jié)構(gòu)。
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個(gè)向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計(jì)算公式得到探索結(jié)果?
展示多媒體課件。
比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。
思考:再利用兩角差的余弦公式得出。
(三)例題講解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、構(gòu)造成兩個(gè)特殊角的和、差。
點(diǎn)評:把一個(gè)具體角構(gòu)造成兩個(gè)角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運(yùn)用。
例2、已知,是第三象限角,求的值。
解:因?yàn)?,由此得?BR> 又因?yàn)槭堑谌笙藿?,所以?BR> 所以。
點(diǎn)評:注意角、的象限,也就是符號問題。
(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運(yùn)用。
高一數(shù)學(xué)必修教案全冊篇十二
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
高一數(shù)學(xué)必修教案全冊篇十三
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修教案全冊篇十四
一、除了高等植物成熟的篩管細(xì)胞和哺乳動(dòng)物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。
二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。
三、細(xì)胞核的結(jié)構(gòu)。
2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。
4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。
四、細(xì)胞分裂時(shí),細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時(shí),染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時(shí))是同樣的物質(zhì)在細(xì)胞不同時(shí)期的兩種存在狀態(tài)。
五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。
高一數(shù)學(xué)必修教案全冊篇十五
三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。
細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。
四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。
實(shí)驗(yàn):用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍(lán)綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護(hù)作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。
五、分泌蛋白的合成和運(yùn)輸。
有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。
(合成肽鏈)(加工成蛋白質(zhì))(進(jìn)一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。
分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?
答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?
核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。
六、生物膜系統(tǒng)。
1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運(yùn)輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點(diǎn),是許多生化反應(yīng)的場所;把各種細(xì)胞器分隔開,保證生命活動(dòng)高效、有序進(jìn)行。
3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。
經(jīng)過囊泡與高爾基體膜間接相連。
高一數(shù)學(xué)必修教案全冊篇十六
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較輕易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一數(shù)學(xué)必修教案全冊篇十七
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修教案全冊篇十八
細(xì)胞膜、細(xì)胞壁、細(xì)胞核、細(xì)胞質(zhì)均不是細(xì)胞器。
一、細(xì)胞器之間分工。
1.線粒體:細(xì)胞進(jìn)行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動(dòng)植物細(xì)胞體內(nèi)。
2.葉綠體:進(jìn)行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細(xì)胞。
3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動(dòng)植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。
4.高爾基體:對來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進(jìn)行加工、分類和包裝,單層膜,動(dòng)植物都有,植物細(xì)胞中參與了細(xì)胞壁的形成。
5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機(jī)器。
包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細(xì)胞器,吞噬并殺死侵入細(xì)胞的病毒或病菌,單層膜。
溶酶體吞噬過程體現(xiàn)生物膜的流動(dòng)性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細(xì)胞中,內(nèi)有細(xì)胞液,含糖類、無機(jī)鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細(xì)胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細(xì)胞保持堅(jiān)挺。與植物細(xì)胞的滲透吸水有關(guān)。
8.中心體:動(dòng)物和某些低等植物的細(xì)胞,由兩個(gè)相互垂直排列的中心粒及周圍物質(zhì)組成,與細(xì)胞的有絲分裂有關(guān),無膜。一個(gè)中心體有兩個(gè)中心粒組成。
二、分類比較:
1.雙層膜:葉綠體、線粒體(細(xì)胞核膜)。
單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細(xì)胞膜、類囊體薄膜)。
無膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動(dòng)物特有(低等植物):中心體。
3.含核酸的細(xì)胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細(xì)胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細(xì)胞質(zhì)基質(zhì))。
7.能自主復(fù)制的細(xì)胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關(guān)的細(xì)胞器:核糖體、線粒體、高爾基體(形成細(xì)胞壁)、中心體。
9.發(fā)生堿基互補(bǔ)配對:線粒體、葉綠體、核糖體。
10.與主動(dòng)運(yùn)輸有關(guān):核糖體、線粒體。
高一數(shù)學(xué)必修教案全冊篇十九
>教學(xué)目標(biāo)
落實(shí)情況.
解?絕對值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計(jì)說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.
高一數(shù)學(xué)必修教案全冊篇一
教學(xué)目標(biāo)。
理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用.
教學(xué)重難點(diǎn)。
1.教學(xué)重點(diǎn):兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用;。
2.教學(xué)難點(diǎn):兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.
教學(xué)過程。
高一數(shù)學(xué)必修教案全冊篇二
(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;
(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、
用坐標(biāo)法解決幾何問題的步驟:
第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、
重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、
問 題設(shè)計(jì)意圖師生活動(dòng)
生:回顧,說出自己的看法、
2、解決直線與圓的位置關(guān)系,你將采用什么方法?
生:回顧、思考、討論、交流,得到解決問題的方法、
問 題設(shè)計(jì)意圖師生活動(dòng)
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
生:自 學(xué)例4,并完成練習(xí)題1、2、
生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、
8、小結(jié):
(1)利用“坐標(biāo)法”解決問對知識進(jìn)行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
生:閱讀教科書的例3,并完成第
問 題設(shè)計(jì)意圖師生活動(dòng)
題的需要準(zhǔn)備什么工作?
(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?
(3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?
高一數(shù)學(xué)必修教案全冊篇三
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修教案全冊篇四
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點(diǎn)。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
高一數(shù)學(xué)必修教案全冊篇五
課型
新課
教學(xué)目標(biāo)
1.了解中心投影和平行投影的概念;
3.簡單組合體與其三視圖之間的相互轉(zhuǎn)化.
教學(xué)過程
教學(xué)內(nèi)容
備注
一、
自主學(xué)習(xí)
1.照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個(gè)幾何問題,我們需要學(xué)習(xí)這方面的知識.
二、
質(zhì)疑提問
下圖中的手影游戲,你玩過嗎?
光是直線傳播的,一個(gè)不透明物體在光的照射下,在物體后面的屏幕上會留下這個(gè)物體的影子,這種現(xiàn)象叫做投影.其中的光線叫做投影線,留下物體影子的屏幕叫做投影面.
一、中心投影與平行投影
思考2:用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
投影的分類:
把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形.從多個(gè)角度進(jìn)行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖.
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的.投影圖.
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖.
幾何體的正視圖、側(cè)視圖和俯視圖,統(tǒng)稱為幾何體的三視圖.
三、
問題探究
思考2:如圖,設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?
思考3:圓柱、圓錐、圓臺的三視圖分別是什么?
思考5:球的三視圖是什么?下列三視圖表示一個(gè)什么幾何體?
例1:如圖是一個(gè)倒置的四棱柱的兩種擺放,試分別畫出其三視圖,并比較它們的異同.
四、
課堂檢測
五、
小結(jié)評價(jià)
1.空間幾何體的三視圖:正視圖、側(cè)視圖、俯視圖;
3.三視圖的應(yīng)用及與原實(shí)物圖的相互轉(zhuǎn)化.
高一數(shù)學(xué)必修教案全冊篇六
1.閱讀課本練習(xí)止。
2.回答問題:
(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3.完成練習(xí)。
4.小結(jié)。
二、方法指導(dǎo)。
1.在學(xué)習(xí)對數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開,同學(xué)們在學(xué)習(xí)時(shí)應(yīng)該把兩個(gè)函數(shù)進(jìn)行類比,通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)。
一、提問題。
1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。
二、變題目。
1.試求下列函數(shù)的反函數(shù):
(1);(2);(3);(4)。
2.求下列函數(shù)的定義域:。
(1);(2);(3)。
3.已知?jiǎng)t=;的定義域?yàn)椤?BR> 1.對數(shù)函數(shù)的有關(guān)概念。
(1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。
(2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。
(3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。
2.反函數(shù)的概念。
在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù)。
3.與對數(shù)函數(shù)有關(guān)的定義域的求法:
4.舉例說明如何求反函數(shù)。
一、課外作業(yè):習(xí)題3-5a組1,2,3,b組1,
二、課外思考:
1.求定義域:
2.求使函數(shù)的函數(shù)值恒為負(fù)值的的取值范圍。
高一數(shù)學(xué)必修教案全冊篇七
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學(xué)重難點(diǎn)。
教學(xué)重點(diǎn):用向量方法解決實(shí)際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學(xué)難點(diǎn):如何將幾何等實(shí)際問題化歸為向量問題.
教學(xué)過程。
由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個(gè)具體實(shí)例,說明向量方法在平面幾何中的運(yùn)用。
思考:
運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?
運(yùn)用向量方法解決平面幾何問題可以分哪幾個(gè)步驟?
“三步曲”:
(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修教案全冊篇八
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。
高一數(shù)學(xué)必修教案全冊篇九
了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
(2)等差數(shù)列、等比數(shù)列。
理解等差數(shù)列、等比數(shù)列的概念。
掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式。
能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
高一數(shù)學(xué)必修教案全冊篇十
1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
高一數(shù)學(xué)必修教案全冊篇十一
掌握用向量方法建立兩角差的余弦公式。通過簡單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
1.教學(xué)重點(diǎn):通過探索得到兩角差的余弦公式;
2.教學(xué)難點(diǎn):探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運(yùn)用已學(xué)知識和方法的能力問題,等等。
1.學(xué)法:啟發(fā)式教學(xué)。
2.教學(xué)用具:多媒體。
(一)導(dǎo)入:我們在初中時(shí)就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
(二)探討過程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點(diǎn)為,等于角與單位圓交點(diǎn)的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。
展示多媒體動(dòng)畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識兩角差余弦公式的結(jié)構(gòu)。
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個(gè)向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計(jì)算公式得到探索結(jié)果?
展示多媒體課件。
比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。
思考:再利用兩角差的余弦公式得出。
(三)例題講解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、構(gòu)造成兩個(gè)特殊角的和、差。
點(diǎn)評:把一個(gè)具體角構(gòu)造成兩個(gè)角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運(yùn)用。
例2、已知,是第三象限角,求的值。
解:因?yàn)?,由此得?BR> 又因?yàn)槭堑谌笙藿?,所以?BR> 所以。
點(diǎn)評:注意角、的象限,也就是符號問題。
(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運(yùn)用。
高一數(shù)學(xué)必修教案全冊篇十二
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式。
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題。
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
高一數(shù)學(xué)必修教案全冊篇十三
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計(jì)理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)。
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修教案全冊篇十四
一、除了高等植物成熟的篩管細(xì)胞和哺乳動(dòng)物成熟的紅細(xì)胞等極少數(shù)細(xì)胞外,真核細(xì)胞都有細(xì)胞核。植物的導(dǎo)管細(xì)胞是死細(xì)胞(主要運(yùn)輸水分、無機(jī)鹽),篩管主要運(yùn)輸有機(jī)物。
二、細(xì)胞核控制著細(xì)胞的代謝和遺傳。
三、細(xì)胞核的結(jié)構(gòu)。
2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。
4.核孔(實(shí)現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細(xì)胞需要能量和載體,細(xì)胞代謝越旺盛,核孔越多,核仁體積越大。
四、細(xì)胞分裂時(shí),細(xì)胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時(shí),染色體解螺旋,重新成為細(xì)絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時(shí))是同樣的物質(zhì)在細(xì)胞不同時(shí)期的兩種存在狀態(tài)。
五、細(xì)胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。
高一數(shù)學(xué)必修教案全冊篇十五
三、在細(xì)胞質(zhì)中,除了細(xì)胞器外,還有呈膠質(zhì)狀態(tài)的細(xì)胞質(zhì)基質(zhì)。
細(xì)胞質(zhì):包括細(xì)胞器和細(xì)胞質(zhì)基質(zhì)。
四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
光鏡能看到:細(xì)胞質(zhì),線粒體,葉綠體,液泡,細(xì)胞壁。
實(shí)驗(yàn):用高倍顯微鏡觀察葉綠體和線粒體。
健那綠染液是將活細(xì)胞中線粒體染色的專一性染料,可以使活細(xì)胞中的線粒體呈現(xiàn)藍(lán)綠色。
材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
菠菜葉稍帶葉肉的下表皮(上表皮起保護(hù)作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細(xì)胞,有葉綠體)。
五、分泌蛋白的合成和運(yùn)輸。
有些蛋白質(zhì)是在細(xì)胞內(nèi)合成后,分泌到細(xì)胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
核糖體內(nèi)質(zhì)網(wǎng)高爾基體細(xì)胞膜。
(合成肽鏈)(加工成蛋白質(zhì))(進(jìn)一步加工)(囊泡與細(xì)胞膜融合,蛋白質(zhì)釋放)。
分泌蛋白從合成至分泌到細(xì)胞外利用到的細(xì)胞器?
答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
分泌蛋白從合成至分泌到細(xì)胞外利用到的結(jié)構(gòu)?
核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細(xì)胞核、囊泡、細(xì)胞膜。
六、生物膜系統(tǒng)。
1、概念:細(xì)胞膜、核膜,各種細(xì)胞器的膜共同組成的生物膜系統(tǒng)。
2、作用:使細(xì)胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運(yùn)輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點(diǎn),是許多生化反應(yīng)的場所;把各種細(xì)胞器分隔開,保證生命活動(dòng)高效、有序進(jìn)行。
3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細(xì)胞膜還和線粒體膜直接相連。
經(jīng)過囊泡與高爾基體膜間接相連。
高一數(shù)學(xué)必修教案全冊篇十六
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較輕易體會它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一數(shù)學(xué)必修教案全冊篇十七
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對應(yīng)關(guān)系,都有的一個(gè)高度h與之對應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修教案全冊篇十八
細(xì)胞膜、細(xì)胞壁、細(xì)胞核、細(xì)胞質(zhì)均不是細(xì)胞器。
一、細(xì)胞器之間分工。
1.線粒體:細(xì)胞進(jìn)行有氧呼吸的主要場所。雙層膜(內(nèi)膜向內(nèi)折疊形成脊),分布在動(dòng)植物細(xì)胞體內(nèi)。
2.葉綠體:進(jìn)行光合作用,“能量轉(zhuǎn)換站”,雙層膜,分布在植物的葉肉細(xì)胞。
3.內(nèi)質(zhì)網(wǎng):蛋白質(zhì)合成和加工,以及脂質(zhì)合成的“車間”,單層膜,動(dòng)植物都有。分為光面內(nèi)質(zhì)網(wǎng)和粗面內(nèi)質(zhì)網(wǎng)(上有核糖體附著)。
4.高爾基體:對來自內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)進(jìn)行加工、分類和包裝,單層膜,動(dòng)植物都有,植物細(xì)胞中參與了細(xì)胞壁的形成。
5.核糖體:無膜,合成蛋白質(zhì)的主要場所。生產(chǎn)蛋白質(zhì)的機(jī)器。
包括游離的核糖體(合成胞內(nèi)蛋白)和附著在內(nèi)質(zhì)網(wǎng)上的核糖體(合成分泌蛋白)。
6.溶酶體:內(nèi)含有多種水解酶,能分解衰老、損傷的細(xì)胞器,吞噬并殺死侵入細(xì)胞的病毒或病菌,單層膜。
溶酶體吞噬過程體現(xiàn)生物膜的流動(dòng)性。溶酶體起源于高爾基體。
7.液泡:主要存在與植物細(xì)胞中,內(nèi)有細(xì)胞液,含糖類、無機(jī)鹽、色素和蛋白質(zhì)等物質(zhì),可以調(diào)節(jié)植物細(xì)胞內(nèi)的環(huán)境,充盈的液泡還可以使植物細(xì)胞保持堅(jiān)挺。與植物細(xì)胞的滲透吸水有關(guān)。
8.中心體:動(dòng)物和某些低等植物的細(xì)胞,由兩個(gè)相互垂直排列的中心粒及周圍物質(zhì)組成,與細(xì)胞的有絲分裂有關(guān),無膜。一個(gè)中心體有兩個(gè)中心粒組成。
二、分類比較:
1.雙層膜:葉綠體、線粒體(細(xì)胞核膜)。
單層膜:內(nèi)質(zhì)網(wǎng)、高爾基體、液泡、溶酶體(細(xì)胞膜、類囊體薄膜)。
無膜:中心體、核糖體。
2.植物特有:葉綠體、液泡動(dòng)物特有(低等植物):中心體。
3.含核酸的細(xì)胞器:線粒體、葉綠體(dna)線粒體、葉綠體、核糖體(rna)。
4.增大膜面積的細(xì)胞器:線粒體、內(nèi)質(zhì)網(wǎng)、葉綠體。
5.含色素:葉綠體、液泡。
6.能產(chǎn)生atp的:線粒體、葉綠體(細(xì)胞質(zhì)基質(zhì))。
7.能自主復(fù)制的細(xì)胞器:線粒體、葉綠體、中心體。
8.與有絲分裂有關(guān)的細(xì)胞器:核糖體、線粒體、高爾基體(形成細(xì)胞壁)、中心體。
9.發(fā)生堿基互補(bǔ)配對:線粒體、葉綠體、核糖體。
10.與主動(dòng)運(yùn)輸有關(guān):核糖體、線粒體。
高一數(shù)學(xué)必修教案全冊篇十九
>教學(xué)目標(biāo)
落實(shí)情況.
解?絕對值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計(jì)說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點(diǎn)撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯(cuò)誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個(gè)錯(cuò)誤,以提高學(xué)生的運(yùn)算能力.