亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        最新高中數(shù)學(xué)不等式教案(6篇)

        字號:

            作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么問題來了,教案應(yīng)該怎么寫?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對大家能夠有所幫助。
            高中數(shù)學(xué)不等式教案篇一
            1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
            2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問題的解決)的過程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂趣。
            3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實(shí)際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
            1、基本不等式成立時(shí)的三個(gè)限制條件(簡稱一正、二定、三相等);
            2、利用基本不等式求解實(shí)際問題中的最大值和最小值。
            一、創(chuàng)設(shè)情景,提出問題;
            設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
            上圖是在北京召開的第24屆國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國人民熱情好客。
            [問]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
            本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式
            在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
            三、理解升華:
            1、文字語言敘述:
            兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
            2、聯(lián)想數(shù)列的知識理解基本不等式
            已知a,b是正數(shù),a是a,b的等差中項(xiàng),g是a,b的正的等比中項(xiàng),a與g有無確定的大小關(guān)系?
            兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
            3、符號語言敘述:
            4、探究基本不等式證明方法:
            [問]如何證明基本不等式?
            (意圖在于引領(lǐng)學(xué)生從感性認(rèn)識基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)
            方法一:作差比較或由
            展開證明。
            方法二:分析法(完成課本填空)
            設(shè)計(jì)依據(jù):課本是學(xué)生了解世界的窗口和工具,所以,課本必須成為學(xué)生賴以學(xué)會(huì)學(xué)習(xí)的文本.在教學(xué)中要讓學(xué)生學(xué)會(huì)認(rèn)真看書、用心思考,養(yǎng)成講講議議、
            動(dòng)手動(dòng)筆、仔細(xì)觀察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書”。
            點(diǎn)評:證明方法叫做分析法,實(shí)際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法.
            5、探究基本不等式的幾何意義:
            借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生
            幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
            四、探究歸納
            下列命題中正確的是
            結(jié)論:
            若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;
            若兩正數(shù)的和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。
            簡記為:“一正、二定、三相等”。
            五、領(lǐng)悟練習(xí):
            公式應(yīng)用之二:(最優(yōu)化問題)
            設(shè)計(jì)意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
            (1)在學(xué)農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護(hù)茶葉的健康生長,學(xué)校決定用籬笆圍起來,問這個(gè)矩形的長、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?
            (2)現(xiàn)在學(xué)校倉庫有一段長為36m的籬笆,要圍成一個(gè)矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大。最大面積是多少?
            六、反思總結(jié),整合新知:
            通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問題需要
            請教?
            設(shè)計(jì)意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識技能,提高認(rèn)知水平.
            老師根據(jù)情況完善如下:
            兩種思想:數(shù)形結(jié)合思想、歸納類比思想。
            三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”
            高中數(shù)學(xué)不等式教案篇二
            本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題,此時(shí)基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
            教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。通過本節(jié)學(xué)習(xí)體會(huì)數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的樂趣。
            依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
            1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
            2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問題的解決)的過程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂趣。
            3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實(shí)際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
            重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程及應(yīng)用。
            難點(diǎn):1、基本不等式成立時(shí)的三個(gè)限制條件(簡稱一正、二定、三相等);
            2、利用基本不等式求解實(shí)際問題中的最大值和最小值。
            本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
            多媒體課件、板書
            教學(xué)過程設(shè)計(jì)以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
            具體過程安排如下:
            創(chuàng)設(shè)情景,提出問題;
            設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
            上圖是在北京召開的第24屆國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國人民熱情好客。
            [問]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
            本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
            二、抽象歸納:
            一般地,對于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號成立。
            [問]你能給出它的證明嗎?
            學(xué)生在黑板上板書。
            特別地,當(dāng)a>0,b>0時(shí),在不等式中,以、分別代替a、b,得到什么?
            設(shè)計(jì)依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
            答案:。
            【歸納總結(jié)】
            如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號成立。
            我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。
            三、理解升華:
            1、文字語言敘述:
            兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
            2、聯(lián)想數(shù)列的知識理解基本不等式
            已知a,b是正數(shù),a是a,b的等差中項(xiàng),g是a,b的正的等比中項(xiàng),a與g有無確定的大小關(guān)系?
            兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
            3、符號語言敘述:
            若,則有,當(dāng)且僅當(dāng)a=b時(shí),。
            [問]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
            “當(dāng)且僅當(dāng)a=b時(shí),等號成立”的含義是:
            高中數(shù)學(xué)不等式教案篇三
            【知識與技能】
            掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
            【過程與方法】
            在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
            【情感、態(tài)度與價(jià)值觀】
            感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
            【重點(diǎn)】一元二次不等式的解法。
            【難點(diǎn)】一元二次不等式的解法的探究過程。
            (一)導(dǎo)入新課
            回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
            提問:如何求解?引出課題。
            (二)講解新知
            結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。
            高中數(shù)學(xué)不等式教案篇四
            各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
            下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評價(jià)六方面進(jìn)行說課。
            (一)教材的地位和作用
            “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
            (二)教學(xué)內(nèi)容
            本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。
            根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
            知識目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
            能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
            情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
            一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
            要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
            (一)學(xué)法指導(dǎo)
            教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
            (二)教法分析
            本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
            建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
            本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
            五、課堂設(shè)計(jì)
            本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。
            (一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系
            本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
            為此,我設(shè)計(jì)了以下幾個(gè)問題:
            1、請同學(xué)們解以下方程和不等式:
            ①2x-7=0;②2x-70;③2x-70
            學(xué)生回答,我板書。
            2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。
            3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。
            4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:
            ①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
            交點(diǎn)的橫坐標(biāo)。
            ②2x-70的解集正是函數(shù)y=2x-7的圖象
            在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。
            ③2x-70的解集正是函數(shù)y=2x-7的圖象
            在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。
            三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。
            (二)比舊悟新,引出“三個(gè)二次”的關(guān)系
            為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。
            看函數(shù)y=x2-x-6的圖象并說出:
            ①方程x2-x-6=0的解是
            x=-2或x=3 ;
            ②不等式x2-x-60的解集是
            {x|x-2,或x3};
            ③不等式x2-x-60的解集是
            {x|-23}。
            此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。
            學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
            (三)歸納提煉,得出“三個(gè)二次”的關(guān)系
            1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。
            2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)
            (四)應(yīng)用新知,熟練掌握一元二次不等式的解集
            借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:
            例1、解不等式2x2-3x-20
            解:因?yàn)棣?,方程2x2-3x-2=0的解是
            x1= ,x2=2
            所以,不等式的解集是
            { x| x ,或x2}
            例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。
            下面我們接著學(xué)習(xí)課本例2。
            例2 解不等式-3x2+6x2
            課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。
            通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
            例3 解不等式4x2-4x+10
            例4 解不等式-x2+2x-30
            分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。
            4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。
            (五)總結(jié)
            解一元二次不等式的“四部曲”:
            (1)把二次項(xiàng)的系數(shù)化為正數(shù)
            (2)計(jì)算判別式δ
            (3)解對應(yīng)的一元二次方程
            (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算δ→三求根→四寫解集
            (六)作業(yè)布置
            為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。
            (1)必做題:習(xí)題1.5的1、3題
            (2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為p,ax2+bx+c0的解集為m,ax2+bx+c0的解集為n,那么p∪m∪n=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是r,求實(shí)數(shù)k的取值范圍。
            (七)板書設(shè)計(jì)
            一元二次不等式解法(1)
            本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。
            高中數(shù)學(xué)不等式教案篇五
            線段的垂直平分線
            1、使學(xué)生理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會(huì)用這兩個(gè)定理解決有關(guān)幾何問題。
            2、了解線段垂直平分線的軌跡問題。
            3、結(jié)合教學(xué)內(nèi)容培養(yǎng)學(xué)生的動(dòng)作思維、形象思維和抽象思維能力。
            線段的垂直平分線性質(zhì)定理及逆定理的引入證明及運(yùn)用。
            線段的垂直平分線性質(zhì)定理及逆定理的關(guān)系。
            1、垂直平分線上所有的點(diǎn)和線段兩端點(diǎn)的距離相等。
            2、到線段兩端點(diǎn)的距離相等的所有點(diǎn)都在這條線段的垂直平分線上。
            :投影儀及投影膠片。
            一、提問
            1、角平分線的性質(zhì)定理及逆定理是什么?
            2、怎樣做一條線段的垂直平分線?
            二、新課
            1、請同學(xué)們在課堂練習(xí)本上做線段ab的垂直平分線ef(請一名同學(xué)在黑板上做)。
            2、在ef上任取一點(diǎn)p,連結(jié)pa、pb量出pa=?,pb=?引導(dǎo)學(xué)生觀察這兩個(gè)值有什么關(guān)系?
            通過學(xué)生的觀察、分析得出結(jié)果pa=pb,再取一點(diǎn)p'試一試仍然有p'a=p'b,引導(dǎo)學(xué)生猜想ef上的所有點(diǎn)和點(diǎn)a、點(diǎn)b的距離都相等,再請同學(xué)把這一結(jié)論敘述成命題(用幻燈展示)。
            定理:線段的垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的距離相等。
            這個(gè)命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
            已知:如圖,直線ef⊥ab,垂足為c,且ac=cb,點(diǎn)p在ef上
            求證:pa=pb
            如何證明pa=pb學(xué)生分析得出只要證rtδpca≌rtδpcb
            證明:∵pc⊥ab(已知)
            ∴∠pca=∠pcb(垂直的定義)
            在δpca和δpcb中
            ∴δpca≌δpcb(sas)
            即:pa=pb(全等三角形的對應(yīng)邊相等)。
            反過來,如果pa=pb,p1a=p1b,點(diǎn)p,p1在什么線上?
            過p,p1做直線ef交ab于c,可證明δpa p1≌pb p1(sss)
            ∴ef是等腰三角型δpab的頂角平分線
            ∴ef是ab的垂直平分線(等腰三角形三線合一性質(zhì))
            ∴p,p1在ab的垂直平分線上,于是得出上述定理的逆定理(啟發(fā)學(xué)生敘述)(用幻燈展示)。
            逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
            根據(jù)上述定理和逆定理可以知道:直線mn可以看作和兩點(diǎn)a、b的距離相等的所有點(diǎn)的集合。
            線段的垂直平分線可以看作是和線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
            三、舉例(用幻燈展示)
            例:已知,如圖δabc中,邊ab,bc的垂直平分線相交于點(diǎn)p,求證:pa=pb=pc。
            證明:∵點(diǎn)p在線段ab的垂直平分線上
            ∴pa=pb
            同理pb=pc
            ∴pa=pb=pc
            由例題pa=pc知點(diǎn)p在ac的垂直平分線上,所以三角形三邊的垂直平分線交于一點(diǎn)p,這點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
            四、小結(jié)
            正確的運(yùn)用這兩個(gè)定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強(qiáng)證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點(diǎn)在線段的垂直平分線上。
            五、練習(xí)與作業(yè)
            練習(xí):第87頁1、2
            作業(yè):第95頁2、3、4
            線段的垂直平分線的性質(zhì)定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計(jì)算、作圖中都有重要應(yīng)用。我講授這節(jié)課是線段垂直平分線的第一節(jié)課,主要完成定理的引出、證明和初步的運(yùn)用。
            在設(shè)計(jì)教案時(shí),我結(jié)合教材內(nèi)容,對如何導(dǎo)入新課,引出定理以及證明進(jìn)行了探索。在導(dǎo)入新課這一環(huán)節(jié)上我先讓學(xué)生做一條線段ab的垂直平分線ef,在ef上取一點(diǎn)p,讓學(xué)生量出pa、pb的長度,引導(dǎo)學(xué)生觀察、討論每個(gè)人量得的這兩個(gè)長度之間有什么關(guān)系:得到什么結(jié)論?學(xué)生回答:pa=pb。然后再讓學(xué)生取一點(diǎn)試一試,這兩個(gè)長度也相等,由此引導(dǎo)學(xué)生猜想到線段垂直平分線的性質(zhì)定理。在這一過程中讓學(xué)生主動(dòng)積極的參與到教學(xué)中來,使學(xué)生通過作圖、觀察、量一量再得出結(jié)論。從而把知識的形成過程轉(zhuǎn)化為學(xué)生親自參與、發(fā)現(xiàn)、探索的過程。在教學(xué)時(shí),引導(dǎo)學(xué)生分析性質(zhì)定理的題設(shè)與結(jié)論,畫圖寫出已知、求證,通過分析由學(xué)生得出證明性質(zhì)定理的方法,這個(gè)過程既是探索過程也是調(diào)動(dòng)學(xué)生動(dòng)腦思考的過程,只有學(xué)生動(dòng)腦思考了,才能真正理解線段垂直平分線的性質(zhì)定理,以及證明方法。在此基礎(chǔ)上再提出如果有兩點(diǎn)到線段的兩端點(diǎn)的距離相等,這樣的點(diǎn)應(yīng)在什么樣的直線上?由條件得出這樣的點(diǎn)在線段的垂直平分線上,從而引出性質(zhì)定理的逆定理,由上述兩個(gè)定理使學(xué)生再進(jìn)一步知道線段的垂直平分線可以看作是到線段兩端點(diǎn)距離的所有點(diǎn)的集合。這樣可以幫助學(xué)生認(rèn)識理論來源于實(shí)踐又服務(wù)于實(shí)踐的道理,也能提高他們學(xué)習(xí)的積極性,加深對所學(xué)知識的理解。在講解例題時(shí)引導(dǎo)學(xué)生用所學(xué)的線段垂直平分線的性質(zhì)定理以及逆定理來證,避免用三角形全等來證。最后總結(jié)點(diǎn)p是三角形三邊垂直平分線的交點(diǎn),這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等。為了使學(xué)生當(dāng)堂掌握兩個(gè)定理的靈活運(yùn)用,讓學(xué)生做87頁的兩個(gè)練習(xí),以達(dá)到鞏固知識的目的。
            高中數(shù)學(xué)不等式教案篇六
            (一)知識與技能
            1.了解從實(shí)際情境中抽象出二元一次不等式(組)模型的過程
            2.掌握簡單的二元線性規(guī)劃問題的解法
            3.了解數(shù)學(xué)建模的整個(gè)過程
            (二)過程與方法
            1.通過對實(shí)際問題的探索,培養(yǎng)學(xué)生用數(shù)學(xué)眼光去觀察生活、并且能提出問題、分析問題、解決問題的能力.
            2.增強(qiáng)學(xué)生的協(xié)作能力.
            (三) 情感、態(tài)度與價(jià)值觀
            1.通過學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)模型的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,深刻體會(huì)數(shù)學(xué)是有用的.
            2.通過實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生愛護(hù)環(huán)境的責(zé)任心.
            重點(diǎn):從具體生活情境中提煉出簡單的二元線性規(guī)劃問題,并且用數(shù)學(xué)方法解決問題.
            難點(diǎn):從具體生活情境中提煉出約束條件和目標(biāo)函數(shù).
            本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以二元一次不等式(組)模型的發(fā)現(xiàn)為基本探究內(nèi)容,以周圍世界和生活實(shí)際為對象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問題的機(jī)會(huì),讓學(xué)生通過個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應(yīng)用于對實(shí)際問題的深入探討.讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新.設(shè)計(jì)思路如下:
            創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
            引入
            (1)如圖,小明與小聰玩蹺蹺板,大家都不用力時(shí),蹺蹺板左低右高.小明的身體質(zhì)量為 p(kg),小聰?shù)纳眢w質(zhì)量為q(kg),書包的質(zhì)量為2kg,怎樣表示p 、q之間的關(guān)系?
            (2)上圖是公路上對汽車的限速標(biāo)志,表示汽車在該路段行使的速度不得超過40km /h.若用v (km /h)表示車的速度,那么v與40之間的數(shù)量關(guān)系用怎樣的式子表示?
            (3)據(jù)科學(xué)家測定,太陽表面的溫度不低于6000 ℃.設(shè)太陽表面的溫度為t (℃),怎樣表示t 與6000之間的關(guān)系?
            歸納:數(shù)學(xué)作用之一,我們可以用數(shù)學(xué)語言描述客觀世界的某些現(xiàn)象
            當(dāng)然,數(shù)學(xué)作用不僅于此,我們還可以通過數(shù)學(xué)解決現(xiàn)實(shí)生活中的問題.
            (一)情景設(shè)置
            我校環(huán)境優(yōu)美,毗鄰江水,校園內(nèi)四季常青,但是遠(yuǎn)眺圍墻外,有一座小山,那是一座垃圾山.楊府山垃圾場有他的.歷史作用和意義,現(xiàn)在已經(jīng)完成了它的歷史使命,而且現(xiàn)在有了負(fù)面影響,市委市政府打算對其進(jìn)行改造.經(jīng)過專家論證,有如下方案可行:發(fā)電、制磚
            (二)處理方案討論
            現(xiàn)同時(shí)用兩種措施對垃圾山進(jìn)行改造處理,如果你是項(xiàng)目經(jīng)理,給你500萬采購發(fā)電設(shè)備以及制磚設(shè)備,你該如何去實(shí)施?
            (學(xué)生自主發(fā)言)
            學(xué)生問題一、怎樣安排資金?買幾臺(tái)發(fā)電設(shè)備,幾臺(tái)制磚設(shè)備?如何決策?
            引導(dǎo):問題轉(zhuǎn)化為如何安排資金,能取得最大效益?即兩種方案生產(chǎn)產(chǎn)品的利潤(售價(jià)減去成本)
            學(xué)生問題二、如何知道這些信息?(產(chǎn)品售價(jià)、設(shè)備的單價(jià)等)
            引導(dǎo)(先提問學(xué)生):上網(wǎng)查詢、市場調(diào)查、向已建廠取經(jīng)、參觀展銷會(huì)等等.
            (三)數(shù)據(jù)的篩選
            由于教室條件限制,不能現(xiàn)場查取,所以老師幫你們收集了一些資料,希望對你們有所幫助.請分析以下信息,提取你認(rèn)為有用的數(shù)據(jù).
            信息一、
            信息二、
            焚燒垃圾重量直接關(guān)系到垃圾發(fā)電企業(yè)的經(jīng)濟(jì)效益.在bot的模式下,企業(yè)的效益這樣來保障:
            1.每處理1噸垃圾,政府補(bǔ)貼發(fā)電企業(yè)73.8元,
            2.保證以0.52元/千瓦時(shí)的價(jià)格收購全部垃圾發(fā)電量,
            3.一臺(tái)發(fā)電設(shè)備每處理1噸垃圾平均費(fèi)用為123元
            4.一臺(tái)發(fā)電設(shè)備日處理垃圾能力為225噸,
            5.1噸垃圾可發(fā)電300千瓦時(shí),其中30%為自用電
            信息三、
            發(fā)電設(shè)備:120萬/臺(tái) 制磚設(shè)備:35萬/臺(tái)
            機(jī)房總面積為7畝,每臺(tái)設(shè)備有各自平均占地,其中發(fā)電設(shè)備每臺(tái)平均占地1畝,制磚機(jī)每臺(tái)平占地1畝
            (四)建立模型
            你能從以上信息中提煉出你所需要的信息,并用數(shù)學(xué)語言表示出來嗎?
            (學(xué)生動(dòng)手)
            引導(dǎo):我們剛才處理的問題即應(yīng)用題:
            例 一工廠欲生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)一件甲產(chǎn)品利潤為60元,一臺(tái)甲設(shè)備價(jià)格為120萬,占地1畝,年生產(chǎn)能力為82125件;生產(chǎn)一件乙產(chǎn)品利潤為0.12元,一臺(tái)乙設(shè)備價(jià)格為35萬,占地1畝,年生產(chǎn)能力為15000000件.現(xiàn)有資金500萬,廠房7畝,該廠該如何添置甲乙兩種設(shè)備,使得年利潤最大?
            (五)解決模型
            該問題即我們上節(jié)課剛學(xué)過的線性規(guī)劃問題,請大家動(dòng)手解決.
            (六)反饋實(shí)際
            我們可以將我們的成果發(fā)到市長信箱,為城市建設(shè)出謀劃策,貢獻(xiàn)自己的一份力量.
            五、歸納小結(jié)
            (一)解決生活問題的步驟:
            創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
            現(xiàn)實(shí)問題:給你資金和地皮,購置設(shè)備
            方案討論:通過1.上網(wǎng)查詢 2.市場調(diào)查3.吸收已建廠經(jīng)驗(yàn)等方法收集信息.
            數(shù)據(jù)篩選及建立模型:將收集到的信息用數(shù)學(xué)語言表示出來.
            解決模型:用已學(xué)過的數(shù)學(xué)知識進(jìn)行分析、處理,得出結(jié)論.
            反饋實(shí)際:將結(jié)論應(yīng)用于實(shí)際問題當(dāng)中.
            (二)順利解決生活問題體要具備的能力
            我們要具備信息收集及處理能力、生活語言轉(zhuǎn)化成數(shù)學(xué)語言的能力以及扎實(shí)的數(shù)學(xué)解題能力.