作為一位兢兢業(yè)業(yè)的人民教師,常常要寫(xiě)一份優(yōu)秀的教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫(xiě)?那么下面我就給大家講一講教案怎么寫(xiě)才比較好,我們一起來(lái)看一看吧。
高二數(shù)學(xué)教案人教版篇一
理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計(jì)雙曲線的形狀特征。
二、預(yù)習(xí)內(nèi)容
1、雙曲線的幾何性質(zhì)及初步運(yùn)用。
類比橢圓的幾何性質(zhì)。
2。雙曲線的漸近線方程的導(dǎo)出和論證。
觀察以原點(diǎn)為中心,2a、2b長(zhǎng)為鄰邊的'矩形的兩條對(duì)角線,再論證這兩條對(duì)角線即為雙曲線的漸近線。
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
課內(nèi)探究
1、橢圓與雙曲線的幾何性質(zhì)異同點(diǎn)分析
2、描述雙曲線的漸進(jìn)線的作用及特征
3、描述雙曲線的離心率的作用及特征
4、例、練習(xí)嘗試訓(xùn)練:
例1。求雙曲線9y2—16x2=144的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。
解:
解:
5、雙曲線的第二定義
1)。定義(由學(xué)生歸納給出)
2)。說(shuō)明
(七)小結(jié)(由學(xué)生課后完成)
將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。
作業(yè):
1。已知雙曲線方程如下,求它們的兩個(gè)焦點(diǎn)、離心率e和漸近線方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2。求雙曲線的標(biāo)準(zhǔn)方程:
(1)實(shí)軸的長(zhǎng)是10,虛軸長(zhǎng)是8,焦點(diǎn)在x軸上;
(2)焦距是10,虛軸長(zhǎng)是8,焦點(diǎn)在y軸上;
曲線的方程。
點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。
高二數(shù)學(xué)教案人教版篇二
2、2、3直線的參數(shù)方程
學(xué)習(xí)目標(biāo)
1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2.初步掌握運(yùn)用參數(shù)方程解決問(wèn)題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)過(guò)程
復(fù)習(xí):
1、若由共線,則存在實(shí)數(shù),使得,
2、設(shè)為方向上的,則=︱︱;
3、經(jīng)過(guò)點(diǎn),傾斜角為的直線的普通方程為。
探究新知(預(yù)習(xí)教材p35~p39,找出疑惑之處)
1、選擇怎樣的參數(shù),才能使直線上任一點(diǎn)m的坐標(biāo)與點(diǎn)的坐標(biāo)和傾斜角聯(lián)系起來(lái)呢?由于傾斜角可以與方向聯(lián)系,與可以用距離或線段數(shù)量的大小聯(lián)系,這種方向有向線段數(shù)量大小啟發(fā)我們想到利用向量工具建立直線的參數(shù)方程。
如圖,在直線上任取一點(diǎn),則=,
而直線
的單位方向
向量
=(,)
因?yàn)?,所以存在?shí)數(shù),使得=,即有,因此,經(jīng)過(guò)點(diǎn)
,傾斜角為的直線的參數(shù)方程為:
2.方程中參數(shù)的幾何意義是什么?
應(yīng)用示例
例1.已知直線與拋物線交于a、b兩點(diǎn),求線段ab的長(zhǎng)和點(diǎn)到a,b兩點(diǎn)的距離之積。(教材p36例1)
解:
例2.經(jīng)過(guò)點(diǎn)作直線,交橢圓于兩點(diǎn),如果點(diǎn)恰好為線段的中點(diǎn),求直線的方程.(教材p37例2)
解:
反饋練習(xí)
1.直線上兩點(diǎn)a,b對(duì)應(yīng)的參數(shù)值為,則=()
a、0b、
c、4d、2
2.設(shè)直線經(jīng)過(guò)點(diǎn),傾斜角為,
(1)求直線的參數(shù)方程;
(2)求直線和直線的交點(diǎn)到點(diǎn)的距離;
(3)求直線和圓的兩個(gè)交點(diǎn)到點(diǎn)的距離的和與積。
本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2.初步掌握運(yùn)用參數(shù)方程解決問(wèn)題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)評(píng)價(jià)
一、自我評(píng)價(jià)
你完成本節(jié)導(dǎo)學(xué)案的情況為()
a.很好b.較好c.一般d.較差
課后作業(yè)
1.已知過(guò)點(diǎn),斜率為的直線和拋物線相交于兩點(diǎn),設(shè)線段的`中點(diǎn)為,求點(diǎn)的坐標(biāo)。
2.經(jīng)過(guò)點(diǎn)作直線交雙曲線于兩點(diǎn),如果點(diǎn)為線段的中點(diǎn),求直線的方程
3.過(guò)拋物線的焦點(diǎn)作傾斜角為的弦ab,求弦ab的長(zhǎng)及弦的中點(diǎn)m到焦點(diǎn)f的距離。
高二數(shù)學(xué)教案人教版篇三
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩脁x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用xx解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
教學(xué)重點(diǎn)
1、對(duì)圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線xx解題
開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
例題:
(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在
(2)已知?jiǎng)狱c(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的'學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過(guò)適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
高二數(shù)學(xué)教案人教版篇四
本節(jié)內(nèi)容為人教版高一數(shù)學(xué)必修3模塊第一章算法初步第1.1.2節(jié)第一課時(shí),
主要包括程序框圖的圖形符號(hào)、算法的程序框圖表示、算法的的邏輯結(jié)構(gòu)等三部分內(nèi)容。
算法就是解決問(wèn)題的步驟,算法也是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算機(jī)科學(xué)的基礎(chǔ),利用計(jì)算機(jī)解決問(wèn)需要算法,在日常生活中做任何事情也都有算法,當(dāng)然我們更關(guān)心的是計(jì)算機(jī)的算法,計(jì)算機(jī)可以解決多類信息處理問(wèn)題,直接寫(xiě)出解決該問(wèn)題的程序是困難的,因此,我們要首先研究解決問(wèn)題的算法,再把算法轉(zhuǎn)化為程序,所以算法設(shè)計(jì)是使用計(jì)算機(jī)解決具體問(wèn)題的一個(gè)極為重要的環(huán)節(jié)。
通過(guò)對(duì)解決具體問(wèn)題的過(guò)程與步驟的分析,體會(huì)算法的思想,了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。進(jìn)一步體會(huì)算法的另一種表達(dá)方式。
本章節(jié)的重點(diǎn)是體會(huì)算法的思想,通過(guò)模仿、操作、探索,通過(guò)設(shè)計(jì)程序框圖解決實(shí)際生活問(wèn)題的過(guò)程。通過(guò)解決具體問(wèn)題,理解三種基本邏輯結(jié)構(gòu)中順序和條件結(jié)構(gòu),經(jīng)歷將具體問(wèn)題用程序框圖來(lái)表示,在實(shí)際問(wèn)題中能設(shè)計(jì)相關(guān)程序框圖解決實(shí)際問(wèn)題。
關(guān)于本節(jié)內(nèi)容,相對(duì)學(xué)生來(lái)說(shuō),全是新知識(shí),因它涉及到計(jì)算機(jī)科學(xué)相關(guān)內(nèi)容,也是數(shù)學(xué)及其應(yīng)用的重要組成部分。大部分學(xué)生并沒(méi)有學(xué)習(xí)過(guò)程序框圖的設(shè)計(jì),在編寫(xiě)程序方面基本上都是“零起點(diǎn)”,而且認(rèn)為程序框圖設(shè)計(jì)是一件困難的事情,因此本課的舉例和任務(wù)都適當(dāng)降低難度,讓學(xué)生能在實(shí)踐中體會(huì)成功的喜悅,領(lǐng)略程序設(shè)計(jì)之算法程序框圖表示的樂(lè)趣。另一方面要充分利用課外資料和實(shí)例,設(shè)置問(wèn)題情景,激發(fā)學(xué)生的學(xué)習(xí)興趣,通過(guò)建構(gòu)模型,化抽象為具體,教師在整個(gè)學(xué)習(xí)過(guò)程中進(jìn)行指導(dǎo)、啟發(fā)、補(bǔ)充與完善。
(一)知識(shí)與技能
2、理解并掌握算法的三種基本邏輯結(jié)構(gòu),培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
3、培養(yǎng)學(xué)生在實(shí)際現(xiàn)實(shí)生活中,能正確運(yùn)用相關(guān)邏輯結(jié)構(gòu)分析、解決實(shí)際問(wèn)題;
(二)過(guò)程與方法
2、在具體問(wèn)題的解決過(guò)程中理解程序流程圖的三種基本邏輯結(jié)構(gòu)之順序結(jié)構(gòu)、條件結(jié)構(gòu),尋找解決實(shí)際問(wèn)題的規(guī)律與方法。
(三)情感態(tài)度與價(jià)值觀
1:通過(guò)本節(jié)的學(xué)習(xí),使學(xué)生對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)計(jì)算機(jī)是人類征服自然的一種有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。
2:培養(yǎng)學(xué)生迎難而上,戰(zhàn)勝困難的大無(wú)畏精神,克服畏難情緒,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣、塑造認(rèn)真、細(xì)致的做事態(tài)度。
教學(xué)重點(diǎn):程序框圖的圖形符號(hào)、算法的基本邏輯結(jié)構(gòu)及應(yīng)用
教學(xué)難點(diǎn):算法的條件結(jié)構(gòu)在實(shí)際生活中的運(yùn)用
3、競(jìng)爭(zhēng)機(jī)制策略:據(jù)本章節(jié)中部分內(nèi)容,合理設(shè)置分組競(jìng)爭(zhēng),小組賽形式激發(fā)學(xué)生高漲的.學(xué)習(xí)熱情,不僅引導(dǎo)學(xué)生將所學(xué)知識(shí)應(yīng)用于解決實(shí)際問(wèn)題,且培養(yǎng)學(xué)生團(tuán)隊(duì)合作探究精神。
任務(wù)驅(qū)動(dòng)法、啟發(fā)引導(dǎo)式、小組合作探究學(xué)習(xí)法、模仿建構(gòu)學(xué)習(xí)法
多媒體課件、生活中具體實(shí)例、同步學(xué)案
課時(shí)1
教學(xué)程序教師組織與引導(dǎo)學(xué)生活動(dòng)設(shè)計(jì)意圖
發(fā)放“任務(wù)”紙質(zhì)
1、把任務(wù)學(xué)案發(fā)給學(xué)生
2、查閱、收集有關(guān)實(shí)際生活中實(shí)例,用于本節(jié)教學(xué)
1、預(yù)習(xí)
2、查閱相關(guān)資料學(xué)生是學(xué)習(xí)主體,自主合作、探究式學(xué)習(xí)
回顧舊知,引入新課
改進(jìn):生活中的問(wèn)題,描述解決步驟(1)算法的描述:要交換兩杯不同液體的方法、步驟;(自然語(yǔ)言描述法,復(fù)習(xí))
穿插經(jīng)典算法在教學(xué)中,激趣導(dǎo)學(xué)
1:雞兔同籠、2:誰(shuí)在說(shuō)謊
(2)你還知道有什么渠道能使算法描述得更直觀、高效、準(zhǔn)確嗎?引導(dǎo)學(xué)生看書(shū)自學(xué)
學(xué)生思考、回答,
學(xué)生看書(shū)自學(xué)本節(jié)程序框圖相關(guān)知識(shí):程序框圖圖形符號(hào)
激發(fā)學(xué)生對(duì)本節(jié)課內(nèi)容的關(guān)注
探究不同程序框圖符號(hào)表示的不同含義,初步探討程序框圖的畫(huà)法
重點(diǎn)部分強(qiáng)記據(jù)教材設(shè)疑,并逐一提出下列問(wèn)題:
(1)程序框圖共有哪些圖形符號(hào)?
改進(jìn):同學(xué)們,你們所常見(jiàn)的圖形有哪些??學(xué)生回答
現(xiàn)在,從這些常用圖形中,我們選出幾中種來(lái)用于表示“算法”中的含義
(2)不同符號(hào)所表示的什么含義?
(3)具體應(yīng)用,實(shí)例列舉,老師在黑板上“補(bǔ)”畫(huà)“長(zhǎng)方形面積”流程圖
(4)要求學(xué)生結(jié)合上述老師所講實(shí)例,模仿“補(bǔ)充”畫(huà)出,改進(jìn):
a:圓的面積、周長(zhǎng)的流程圖(老師完成)
b:正方形面積、周長(zhǎng)的流程圖(師生共同完成)
c:三角形面積、周長(zhǎng)的流程圖(學(xué)生自己完成)
d:求學(xué)生語(yǔ)、數(shù)、英三科成績(jī)平均分的程序框圖(學(xué)生自己完成)
(5)例3.已知三角形三邊長(zhǎng),求三角形面積的程序框圖(老師提示公式,學(xué)生自己理解)
(6)判別整數(shù)n是否為質(zhì)數(shù)后面學(xué)
老師引導(dǎo)學(xué)生說(shuō)出程序框圖特征并作簡(jiǎn)要?dú)w納學(xué)生看書(shū)掌握
學(xué)生聯(lián)系實(shí)際,回答
看書(shū)自學(xué),回答
看書(shū)自學(xué),回答
聽(tīng)講,學(xué)習(xí)
學(xué)生根據(jù)圖形特點(diǎn),找記憶方法
討論、交流、模仿、經(jīng)歷
學(xué)生思考、討論并畫(huà)圖
反復(fù)練習(xí),鞏固、加強(qiáng)記憶
學(xué)生自己設(shè)計(jì)
對(duì)照課本,檢查正誤
學(xué)生總結(jié)歸納程序框圖特點(diǎn)
學(xué)生仿做
學(xué)生仿做
學(xué)生理解
或
s=p*r^2培養(yǎng)自學(xué)能力
明確每種圖形符號(hào)的不同含義及不同應(yīng)用
培養(yǎng)學(xué)生模仿學(xué)習(xí)與制作流程圖的能力
培養(yǎng)學(xué)生善于總結(jié)歸納的習(xí)慣
重點(diǎn)突破
框圖符號(hào)
重、難點(diǎn)攻克條件結(jié)構(gòu)
總結(jié)過(guò)渡并提出問(wèn)題:
改進(jìn):聯(lián)系實(shí)際生活,結(jié)合課本,自主探究:算法的邏輯結(jié)構(gòu)應(yīng)有幾種
(1)如何用框圖符號(hào)來(lái)表示算法?
(2)算法有幾種基本邏輯結(jié)構(gòu)?
(3)你會(huì)用框圖符號(hào)表示算法的順序結(jié)構(gòu)了嗎?(前面剛講,總結(jié)歸納)
(4)你會(huì)用框圖符號(hào)表示條件結(jié)構(gòu)嗎?
老師列舉并畫(huà)實(shí)例流程圖:
引導(dǎo)學(xué)生帶著問(wèn)題邊看書(shū)邊在練習(xí)本將幾種結(jié)構(gòu)畫(huà)出來(lái),加強(qiáng)看書(shū)效果
例4:老師啟發(fā)學(xué)生,師生共同完成三數(shù)為邊是否組成三角形程序框圖
補(bǔ)充:1:求絕對(duì)值的程序框圖:
2:y=
引導(dǎo)學(xué)生思考設(shè)計(jì)分段函數(shù)的流程圖,運(yùn)用條件結(jié)構(gòu)
教師引導(dǎo)學(xué)生列舉生活中實(shí)例
學(xué)生看書(shū)
同桌間自主探究、理解掌握
討論回答問(wèn)題
學(xué)生思考、模仿、探究著畫(huà)流程圖,和課本對(duì)照判正誤
學(xué)生模仿、思考、討論與交流
設(shè)計(jì)相應(yīng)流程圖
同學(xué)上臺(tái)展示自己的流程圖,其它學(xué)同指正其正誤
學(xué)生對(duì)比條件與順序結(jié)構(gòu)的框圖,總結(jié)歸納條件結(jié)構(gòu)的框圖的繪制任務(wù)驅(qū)動(dòng),
創(chuàng)設(shè)學(xué)習(xí)情景
層層深入
引領(lǐng)學(xué)生縱向?qū)W習(xí)
模仿,思考,對(duì)照,學(xué)生有所思有所悟,
體驗(yàn)學(xué)習(xí)成功的快樂(lè)
突出學(xué)生學(xué)習(xí)的主體
培養(yǎng)學(xué)生的邏輯思維能力
教師對(duì)學(xué)生的講解進(jìn)行補(bǔ)充和完善,小結(jié)本節(jié)內(nèi)容。學(xué)生交流生活中實(shí)例及框圖解決辦法。
課堂小結(jié)引導(dǎo)學(xué)生總結(jié)本節(jié)課的知識(shí)要點(diǎn)
并談?wù)劚竟?jié)課的收獲與提高及改進(jìn)學(xué)生回顧總結(jié)本節(jié)所學(xué)梳理本節(jié)課的知識(shí)主干
布置課后作業(yè)作業(yè):p20習(xí)題1.1
a組1,3課后完成鞏固、反饋學(xué)習(xí)效果
參閱經(jīng)典算法:穿插在教學(xué)中,激趣導(dǎo)學(xué)
2:誰(shuí)在說(shuō)謊
*運(yùn)行結(jié)果
zhangsantoldalie(張三說(shuō)假話)
lisitoldatruch.(李四說(shuō)真話)
wangwutoldalie.(王五說(shuō)假話)
九、板書(shū)設(shè)計(jì)
1.1.2程序框圖及算法的基本邏輯結(jié)構(gòu)
一、程序框圖
1:程序框圖又名_______
二:算法的基本邏輯結(jié)構(gòu)
2:請(qǐng)你表示出條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的框圖形式:
3:請(qǐng)仿照寫(xiě)出求長(zhǎng)方形的面積的框圖,類似正方形面積框圖、圓面積、三角形面積等程序框圖(順序結(jié)構(gòu))
4:設(shè)計(jì)給定三角形任意三邊長(zhǎng)a,b,c,試表示出三角形面積相應(yīng)程序框圖
(對(duì)照p9例3,檢查正誤)
三:算法的條件框圖
1:試畫(huà)條件結(jié)構(gòu)框圖的2種形式
2:例4會(huì)了嗎?試試看
3:試設(shè)計(jì)求絕對(duì)值的程序框圖
小結(jié)作業(yè):p20,習(xí)題:1.1a組1,3兩題
改進(jìn)效果:經(jīng)過(guò)斟酌改進(jìn)實(shí)踐后的算法,方式更適宜中學(xué)生個(gè)性特點(diǎn),更易被中學(xué)生接受,效果更好。
高二數(shù)學(xué)教案人教版篇五
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
體會(huì)直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開(kāi)始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開(kāi)幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫(huà)布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫(huà)布所在的位置。
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫(huà)一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的'坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
變式訓(xùn)練
2、在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過(guò)點(diǎn)p的橢圓方程
例3已知q(a,b),分別按下列條件求出p的坐標(biāo)
(1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對(duì)稱點(diǎn)
(2)p是點(diǎn)q關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
高二數(shù)學(xué)教案人教版篇六
1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點(diǎn)】
教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
【教學(xué)過(guò)程】
1.情景導(dǎo)入
教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。
在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類
(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的`概念,分類以及表示。
(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)
(2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?
(4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
高二數(shù)學(xué)教案人教版篇七
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
體會(huì)直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開(kāi)始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開(kāi)幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫(huà)布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫(huà)布所在的位置。
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫(huà)一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸 它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1 選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
變式訓(xùn)練
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過(guò)點(diǎn)p的橢圓方程
例3 已知q(a,b),分別按下列條件求出p 的坐標(biāo)
(1)p是點(diǎn)q 關(guān)于點(diǎn)m(m,n)的對(duì)稱點(diǎn)
(2)p是點(diǎn)q 關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2. 利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
六、課后作業(yè):
高二數(shù)學(xué)教案人教版篇八
【自主梳理】
1.對(duì)數(shù):
(1)一般地,如果,那么實(shí)數(shù)叫做________________,記為_(kāi)_______,其中叫做對(duì)數(shù)的_______,叫做________.
(2)以10為底的對(duì)數(shù)記為_(kāi)_______,以為底的對(duì)數(shù)記為_(kāi)______.
(3),.
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果,那么,
.
(2)對(duì)數(shù)的換底公式:.
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a10
圖象性
質(zhì)定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù)在__________上是減函數(shù)
【自我檢測(cè)】
1.的定義域?yàn)開(kāi)________.
2.化簡(jiǎn):.
3.不等式的解集為_(kāi)_______________.
4.利用對(duì)數(shù)的換底公式計(jì)算:.
5.函數(shù)的奇偶性是____________.
6.對(duì)于任意的,若函數(shù),則與的大小關(guān)系是___________________________.
【例1】填空題:
(1).
(2)比較與的大小為_(kāi)__________.
(3)如果函數(shù),那么的最大值是_____________.
(4)函數(shù)的奇偶性是___________.
【例2】求函數(shù)的定義域和值域.
【例3】已知函數(shù)滿足.
(1)求的解析式;
(2)判斷的奇偶性;
(3)解不等式.
課堂小結(jié)
1..略
2.函數(shù)的定義域?yàn)開(kāi)______________.
3.函數(shù)的值域是_____________.
4.若,則的取值范圍是_____________.
5.設(shè)則的大小關(guān)系是_____________.
6.設(shè)函數(shù),若,則的取值范圍為_(kāi)________________.
7.當(dāng)時(shí),不等式恒成立,則的取值范圍為_(kāi)_____________.
8.函數(shù)在區(qū)間上的值域?yàn)?,則的最小值為_(kāi)___________.
9.已知.
(1)求的定義域;
(2)判斷的奇偶性并予以證明;
(3)求使的的.取值范圍.
10.對(duì)于函數(shù),回答下列問(wèn)題:
(1)若的定義域?yàn)椋髮?shí)數(shù)的取值范圍;
(2)若的值域?yàn)?,求?shí)數(shù)的取值范圍;
(3)若函數(shù)在內(nèi)有意義,求實(shí)數(shù)的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
【自主梳理】
1.對(duì)數(shù)
(1)以為底的的對(duì)數(shù),,底數(shù),真數(shù).
(2),.
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1),,.
(2).
3.對(duì)數(shù)函數(shù)
,.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a10
圖象性質(zhì)定義域:(0,+)
值域:r
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù)在(0,+)上是減函數(shù)
1.2.3.
4.5.奇函數(shù)6..
【例1】填空題:
(1)3.
(2).
(3)0.
(4)奇函數(shù).
【例2】解:由得.所以函數(shù)的定義域是(0,1).
因?yàn)?,所以,?dāng)時(shí),,函數(shù)的值域?yàn)?當(dāng)時(shí),,函數(shù)的值域?yàn)?
【例3】解:(1),所以.
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以為奇函數(shù).
(3),所以當(dāng)時(shí),解得
當(dāng)時(shí),解得.
高二數(shù)學(xué)教案人教版篇一
理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計(jì)雙曲線的形狀特征。
二、預(yù)習(xí)內(nèi)容
1、雙曲線的幾何性質(zhì)及初步運(yùn)用。
類比橢圓的幾何性質(zhì)。
2。雙曲線的漸近線方程的導(dǎo)出和論證。
觀察以原點(diǎn)為中心,2a、2b長(zhǎng)為鄰邊的'矩形的兩條對(duì)角線,再論證這兩條對(duì)角線即為雙曲線的漸近線。
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
課內(nèi)探究
1、橢圓與雙曲線的幾何性質(zhì)異同點(diǎn)分析
2、描述雙曲線的漸進(jìn)線的作用及特征
3、描述雙曲線的離心率的作用及特征
4、例、練習(xí)嘗試訓(xùn)練:
例1。求雙曲線9y2—16x2=144的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。
解:
解:
5、雙曲線的第二定義
1)。定義(由學(xué)生歸納給出)
2)。說(shuō)明
(七)小結(jié)(由學(xué)生課后完成)
將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。
作業(yè):
1。已知雙曲線方程如下,求它們的兩個(gè)焦點(diǎn)、離心率e和漸近線方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2。求雙曲線的標(biāo)準(zhǔn)方程:
(1)實(shí)軸的長(zhǎng)是10,虛軸長(zhǎng)是8,焦點(diǎn)在x軸上;
(2)焦距是10,虛軸長(zhǎng)是8,焦點(diǎn)在y軸上;
曲線的方程。
點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。
高二數(shù)學(xué)教案人教版篇二
2、2、3直線的參數(shù)方程
學(xué)習(xí)目標(biāo)
1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2.初步掌握運(yùn)用參數(shù)方程解決問(wèn)題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)過(guò)程
復(fù)習(xí):
1、若由共線,則存在實(shí)數(shù),使得,
2、設(shè)為方向上的,則=︱︱;
3、經(jīng)過(guò)點(diǎn),傾斜角為的直線的普通方程為。
探究新知(預(yù)習(xí)教材p35~p39,找出疑惑之處)
1、選擇怎樣的參數(shù),才能使直線上任一點(diǎn)m的坐標(biāo)與點(diǎn)的坐標(biāo)和傾斜角聯(lián)系起來(lái)呢?由于傾斜角可以與方向聯(lián)系,與可以用距離或線段數(shù)量的大小聯(lián)系,這種方向有向線段數(shù)量大小啟發(fā)我們想到利用向量工具建立直線的參數(shù)方程。
如圖,在直線上任取一點(diǎn),則=,
而直線
的單位方向
向量
=(,)
因?yàn)?,所以存在?shí)數(shù),使得=,即有,因此,經(jīng)過(guò)點(diǎn)
,傾斜角為的直線的參數(shù)方程為:
2.方程中參數(shù)的幾何意義是什么?
應(yīng)用示例
例1.已知直線與拋物線交于a、b兩點(diǎn),求線段ab的長(zhǎng)和點(diǎn)到a,b兩點(diǎn)的距離之積。(教材p36例1)
解:
例2.經(jīng)過(guò)點(diǎn)作直線,交橢圓于兩點(diǎn),如果點(diǎn)恰好為線段的中點(diǎn),求直線的方程.(教材p37例2)
解:
反饋練習(xí)
1.直線上兩點(diǎn)a,b對(duì)應(yīng)的參數(shù)值為,則=()
a、0b、
c、4d、2
2.設(shè)直線經(jīng)過(guò)點(diǎn),傾斜角為,
(1)求直線的參數(shù)方程;
(2)求直線和直線的交點(diǎn)到點(diǎn)的距離;
(3)求直線和圓的兩個(gè)交點(diǎn)到點(diǎn)的距離的和與積。
本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2.初步掌握運(yùn)用參數(shù)方程解決問(wèn)題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)評(píng)價(jià)
一、自我評(píng)價(jià)
你完成本節(jié)導(dǎo)學(xué)案的情況為()
a.很好b.較好c.一般d.較差
課后作業(yè)
1.已知過(guò)點(diǎn),斜率為的直線和拋物線相交于兩點(diǎn),設(shè)線段的`中點(diǎn)為,求點(diǎn)的坐標(biāo)。
2.經(jīng)過(guò)點(diǎn)作直線交雙曲線于兩點(diǎn),如果點(diǎn)為線段的中點(diǎn),求直線的方程
3.過(guò)拋物線的焦點(diǎn)作傾斜角為的弦ab,求弦ab的長(zhǎng)及弦的中點(diǎn)m到焦點(diǎn)f的距離。
高二數(shù)學(xué)教案人教版篇三
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩脁x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用xx解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
教學(xué)重點(diǎn)
1、對(duì)圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線xx解題
開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
例題:
(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在
(2)已知?jiǎng)狱c(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的'學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過(guò)適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
高二數(shù)學(xué)教案人教版篇四
本節(jié)內(nèi)容為人教版高一數(shù)學(xué)必修3模塊第一章算法初步第1.1.2節(jié)第一課時(shí),
主要包括程序框圖的圖形符號(hào)、算法的程序框圖表示、算法的的邏輯結(jié)構(gòu)等三部分內(nèi)容。
算法就是解決問(wèn)題的步驟,算法也是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算機(jī)科學(xué)的基礎(chǔ),利用計(jì)算機(jī)解決問(wèn)需要算法,在日常生活中做任何事情也都有算法,當(dāng)然我們更關(guān)心的是計(jì)算機(jī)的算法,計(jì)算機(jī)可以解決多類信息處理問(wèn)題,直接寫(xiě)出解決該問(wèn)題的程序是困難的,因此,我們要首先研究解決問(wèn)題的算法,再把算法轉(zhuǎn)化為程序,所以算法設(shè)計(jì)是使用計(jì)算機(jī)解決具體問(wèn)題的一個(gè)極為重要的環(huán)節(jié)。
通過(guò)對(duì)解決具體問(wèn)題的過(guò)程與步驟的分析,體會(huì)算法的思想,了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。進(jìn)一步體會(huì)算法的另一種表達(dá)方式。
本章節(jié)的重點(diǎn)是體會(huì)算法的思想,通過(guò)模仿、操作、探索,通過(guò)設(shè)計(jì)程序框圖解決實(shí)際生活問(wèn)題的過(guò)程。通過(guò)解決具體問(wèn)題,理解三種基本邏輯結(jié)構(gòu)中順序和條件結(jié)構(gòu),經(jīng)歷將具體問(wèn)題用程序框圖來(lái)表示,在實(shí)際問(wèn)題中能設(shè)計(jì)相關(guān)程序框圖解決實(shí)際問(wèn)題。
關(guān)于本節(jié)內(nèi)容,相對(duì)學(xué)生來(lái)說(shuō),全是新知識(shí),因它涉及到計(jì)算機(jī)科學(xué)相關(guān)內(nèi)容,也是數(shù)學(xué)及其應(yīng)用的重要組成部分。大部分學(xué)生并沒(méi)有學(xué)習(xí)過(guò)程序框圖的設(shè)計(jì),在編寫(xiě)程序方面基本上都是“零起點(diǎn)”,而且認(rèn)為程序框圖設(shè)計(jì)是一件困難的事情,因此本課的舉例和任務(wù)都適當(dāng)降低難度,讓學(xué)生能在實(shí)踐中體會(huì)成功的喜悅,領(lǐng)略程序設(shè)計(jì)之算法程序框圖表示的樂(lè)趣。另一方面要充分利用課外資料和實(shí)例,設(shè)置問(wèn)題情景,激發(fā)學(xué)生的學(xué)習(xí)興趣,通過(guò)建構(gòu)模型,化抽象為具體,教師在整個(gè)學(xué)習(xí)過(guò)程中進(jìn)行指導(dǎo)、啟發(fā)、補(bǔ)充與完善。
(一)知識(shí)與技能
2、理解并掌握算法的三種基本邏輯結(jié)構(gòu),培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
3、培養(yǎng)學(xué)生在實(shí)際現(xiàn)實(shí)生活中,能正確運(yùn)用相關(guān)邏輯結(jié)構(gòu)分析、解決實(shí)際問(wèn)題;
(二)過(guò)程與方法
2、在具體問(wèn)題的解決過(guò)程中理解程序流程圖的三種基本邏輯結(jié)構(gòu)之順序結(jié)構(gòu)、條件結(jié)構(gòu),尋找解決實(shí)際問(wèn)題的規(guī)律與方法。
(三)情感態(tài)度與價(jià)值觀
1:通過(guò)本節(jié)的學(xué)習(xí),使學(xué)生對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)計(jì)算機(jī)是人類征服自然的一種有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。
2:培養(yǎng)學(xué)生迎難而上,戰(zhàn)勝困難的大無(wú)畏精神,克服畏難情緒,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣、塑造認(rèn)真、細(xì)致的做事態(tài)度。
教學(xué)重點(diǎn):程序框圖的圖形符號(hào)、算法的基本邏輯結(jié)構(gòu)及應(yīng)用
教學(xué)難點(diǎn):算法的條件結(jié)構(gòu)在實(shí)際生活中的運(yùn)用
3、競(jìng)爭(zhēng)機(jī)制策略:據(jù)本章節(jié)中部分內(nèi)容,合理設(shè)置分組競(jìng)爭(zhēng),小組賽形式激發(fā)學(xué)生高漲的.學(xué)習(xí)熱情,不僅引導(dǎo)學(xué)生將所學(xué)知識(shí)應(yīng)用于解決實(shí)際問(wèn)題,且培養(yǎng)學(xué)生團(tuán)隊(duì)合作探究精神。
任務(wù)驅(qū)動(dòng)法、啟發(fā)引導(dǎo)式、小組合作探究學(xué)習(xí)法、模仿建構(gòu)學(xué)習(xí)法
多媒體課件、生活中具體實(shí)例、同步學(xué)案
課時(shí)1
教學(xué)程序教師組織與引導(dǎo)學(xué)生活動(dòng)設(shè)計(jì)意圖
發(fā)放“任務(wù)”紙質(zhì)
1、把任務(wù)學(xué)案發(fā)給學(xué)生
2、查閱、收集有關(guān)實(shí)際生活中實(shí)例,用于本節(jié)教學(xué)
1、預(yù)習(xí)
2、查閱相關(guān)資料學(xué)生是學(xué)習(xí)主體,自主合作、探究式學(xué)習(xí)
回顧舊知,引入新課
改進(jìn):生活中的問(wèn)題,描述解決步驟(1)算法的描述:要交換兩杯不同液體的方法、步驟;(自然語(yǔ)言描述法,復(fù)習(xí))
穿插經(jīng)典算法在教學(xué)中,激趣導(dǎo)學(xué)
1:雞兔同籠、2:誰(shuí)在說(shuō)謊
(2)你還知道有什么渠道能使算法描述得更直觀、高效、準(zhǔn)確嗎?引導(dǎo)學(xué)生看書(shū)自學(xué)
學(xué)生思考、回答,
學(xué)生看書(shū)自學(xué)本節(jié)程序框圖相關(guān)知識(shí):程序框圖圖形符號(hào)
激發(fā)學(xué)生對(duì)本節(jié)課內(nèi)容的關(guān)注
探究不同程序框圖符號(hào)表示的不同含義,初步探討程序框圖的畫(huà)法
重點(diǎn)部分強(qiáng)記據(jù)教材設(shè)疑,并逐一提出下列問(wèn)題:
(1)程序框圖共有哪些圖形符號(hào)?
改進(jìn):同學(xué)們,你們所常見(jiàn)的圖形有哪些??學(xué)生回答
現(xiàn)在,從這些常用圖形中,我們選出幾中種來(lái)用于表示“算法”中的含義
(2)不同符號(hào)所表示的什么含義?
(3)具體應(yīng)用,實(shí)例列舉,老師在黑板上“補(bǔ)”畫(huà)“長(zhǎng)方形面積”流程圖
(4)要求學(xué)生結(jié)合上述老師所講實(shí)例,模仿“補(bǔ)充”畫(huà)出,改進(jìn):
a:圓的面積、周長(zhǎng)的流程圖(老師完成)
b:正方形面積、周長(zhǎng)的流程圖(師生共同完成)
c:三角形面積、周長(zhǎng)的流程圖(學(xué)生自己完成)
d:求學(xué)生語(yǔ)、數(shù)、英三科成績(jī)平均分的程序框圖(學(xué)生自己完成)
(5)例3.已知三角形三邊長(zhǎng),求三角形面積的程序框圖(老師提示公式,學(xué)生自己理解)
(6)判別整數(shù)n是否為質(zhì)數(shù)后面學(xué)
老師引導(dǎo)學(xué)生說(shuō)出程序框圖特征并作簡(jiǎn)要?dú)w納學(xué)生看書(shū)掌握
學(xué)生聯(lián)系實(shí)際,回答
看書(shū)自學(xué),回答
看書(shū)自學(xué),回答
聽(tīng)講,學(xué)習(xí)
學(xué)生根據(jù)圖形特點(diǎn),找記憶方法
討論、交流、模仿、經(jīng)歷
學(xué)生思考、討論并畫(huà)圖
反復(fù)練習(xí),鞏固、加強(qiáng)記憶
學(xué)生自己設(shè)計(jì)
對(duì)照課本,檢查正誤
學(xué)生總結(jié)歸納程序框圖特點(diǎn)
學(xué)生仿做
學(xué)生仿做
學(xué)生理解
或
s=p*r^2培養(yǎng)自學(xué)能力
明確每種圖形符號(hào)的不同含義及不同應(yīng)用
培養(yǎng)學(xué)生模仿學(xué)習(xí)與制作流程圖的能力
培養(yǎng)學(xué)生善于總結(jié)歸納的習(xí)慣
重點(diǎn)突破
框圖符號(hào)
重、難點(diǎn)攻克條件結(jié)構(gòu)
總結(jié)過(guò)渡并提出問(wèn)題:
改進(jìn):聯(lián)系實(shí)際生活,結(jié)合課本,自主探究:算法的邏輯結(jié)構(gòu)應(yīng)有幾種
(1)如何用框圖符號(hào)來(lái)表示算法?
(2)算法有幾種基本邏輯結(jié)構(gòu)?
(3)你會(huì)用框圖符號(hào)表示算法的順序結(jié)構(gòu)了嗎?(前面剛講,總結(jié)歸納)
(4)你會(huì)用框圖符號(hào)表示條件結(jié)構(gòu)嗎?
老師列舉并畫(huà)實(shí)例流程圖:
引導(dǎo)學(xué)生帶著問(wèn)題邊看書(shū)邊在練習(xí)本將幾種結(jié)構(gòu)畫(huà)出來(lái),加強(qiáng)看書(shū)效果
例4:老師啟發(fā)學(xué)生,師生共同完成三數(shù)為邊是否組成三角形程序框圖
補(bǔ)充:1:求絕對(duì)值的程序框圖:
2:y=
引導(dǎo)學(xué)生思考設(shè)計(jì)分段函數(shù)的流程圖,運(yùn)用條件結(jié)構(gòu)
教師引導(dǎo)學(xué)生列舉生活中實(shí)例
學(xué)生看書(shū)
同桌間自主探究、理解掌握
討論回答問(wèn)題
學(xué)生思考、模仿、探究著畫(huà)流程圖,和課本對(duì)照判正誤
學(xué)生模仿、思考、討論與交流
設(shè)計(jì)相應(yīng)流程圖
同學(xué)上臺(tái)展示自己的流程圖,其它學(xué)同指正其正誤
學(xué)生對(duì)比條件與順序結(jié)構(gòu)的框圖,總結(jié)歸納條件結(jié)構(gòu)的框圖的繪制任務(wù)驅(qū)動(dòng),
創(chuàng)設(shè)學(xué)習(xí)情景
層層深入
引領(lǐng)學(xué)生縱向?qū)W習(xí)
模仿,思考,對(duì)照,學(xué)生有所思有所悟,
體驗(yàn)學(xué)習(xí)成功的快樂(lè)
突出學(xué)生學(xué)習(xí)的主體
培養(yǎng)學(xué)生的邏輯思維能力
教師對(duì)學(xué)生的講解進(jìn)行補(bǔ)充和完善,小結(jié)本節(jié)內(nèi)容。學(xué)生交流生活中實(shí)例及框圖解決辦法。
課堂小結(jié)引導(dǎo)學(xué)生總結(jié)本節(jié)課的知識(shí)要點(diǎn)
并談?wù)劚竟?jié)課的收獲與提高及改進(jìn)學(xué)生回顧總結(jié)本節(jié)所學(xué)梳理本節(jié)課的知識(shí)主干
布置課后作業(yè)作業(yè):p20習(xí)題1.1
a組1,3課后完成鞏固、反饋學(xué)習(xí)效果
參閱經(jīng)典算法:穿插在教學(xué)中,激趣導(dǎo)學(xué)
2:誰(shuí)在說(shuō)謊
*運(yùn)行結(jié)果
zhangsantoldalie(張三說(shuō)假話)
lisitoldatruch.(李四說(shuō)真話)
wangwutoldalie.(王五說(shuō)假話)
九、板書(shū)設(shè)計(jì)
1.1.2程序框圖及算法的基本邏輯結(jié)構(gòu)
一、程序框圖
1:程序框圖又名_______
二:算法的基本邏輯結(jié)構(gòu)
2:請(qǐng)你表示出條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的框圖形式:
3:請(qǐng)仿照寫(xiě)出求長(zhǎng)方形的面積的框圖,類似正方形面積框圖、圓面積、三角形面積等程序框圖(順序結(jié)構(gòu))
4:設(shè)計(jì)給定三角形任意三邊長(zhǎng)a,b,c,試表示出三角形面積相應(yīng)程序框圖
(對(duì)照p9例3,檢查正誤)
三:算法的條件框圖
1:試畫(huà)條件結(jié)構(gòu)框圖的2種形式
2:例4會(huì)了嗎?試試看
3:試設(shè)計(jì)求絕對(duì)值的程序框圖
小結(jié)作業(yè):p20,習(xí)題:1.1a組1,3兩題
改進(jìn)效果:經(jīng)過(guò)斟酌改進(jìn)實(shí)踐后的算法,方式更適宜中學(xué)生個(gè)性特點(diǎn),更易被中學(xué)生接受,效果更好。
高二數(shù)學(xué)教案人教版篇五
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
體會(huì)直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué)。
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開(kāi)始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開(kāi)幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫(huà)布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫(huà)布所在的位置。
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫(huà)一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的'坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
變式訓(xùn)練
2、在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過(guò)點(diǎn)p的橢圓方程
例3已知q(a,b),分別按下列條件求出p的坐標(biāo)
(1)p是點(diǎn)q關(guān)于點(diǎn)m(m,n)的對(duì)稱點(diǎn)
(2)p是點(diǎn)q關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
高二數(shù)學(xué)教案人教版篇六
1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點(diǎn)】
教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
【教學(xué)過(guò)程】
1.情景導(dǎo)入
教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。
在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類
(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的`概念,分類以及表示。
(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)
(2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?
(4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
高二數(shù)學(xué)教案人教版篇七
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
體會(huì)直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開(kāi)始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開(kāi)幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫(huà)布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫(huà)布所在的位置。
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫(huà)一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸 它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1 選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
變式訓(xùn)練
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以m,n為焦點(diǎn)并過(guò)點(diǎn)p的橢圓方程
例3 已知q(a,b),分別按下列條件求出p 的坐標(biāo)
(1)p是點(diǎn)q 關(guān)于點(diǎn)m(m,n)的對(duì)稱點(diǎn)
(2)p是點(diǎn)q 關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2. 利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
六、課后作業(yè):
高二數(shù)學(xué)教案人教版篇八
【自主梳理】
1.對(duì)數(shù):
(1)一般地,如果,那么實(shí)數(shù)叫做________________,記為_(kāi)_______,其中叫做對(duì)數(shù)的_______,叫做________.
(2)以10為底的對(duì)數(shù)記為_(kāi)_______,以為底的對(duì)數(shù)記為_(kāi)______.
(3),.
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果,那么,
.
(2)對(duì)數(shù)的換底公式:.
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a10
圖象性
質(zhì)定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù)在__________上是減函數(shù)
【自我檢測(cè)】
1.的定義域?yàn)開(kāi)________.
2.化簡(jiǎn):.
3.不等式的解集為_(kāi)_______________.
4.利用對(duì)數(shù)的換底公式計(jì)算:.
5.函數(shù)的奇偶性是____________.
6.對(duì)于任意的,若函數(shù),則與的大小關(guān)系是___________________________.
【例1】填空題:
(1).
(2)比較與的大小為_(kāi)__________.
(3)如果函數(shù),那么的最大值是_____________.
(4)函數(shù)的奇偶性是___________.
【例2】求函數(shù)的定義域和值域.
【例3】已知函數(shù)滿足.
(1)求的解析式;
(2)判斷的奇偶性;
(3)解不等式.
課堂小結(jié)
1..略
2.函數(shù)的定義域?yàn)開(kāi)______________.
3.函數(shù)的值域是_____________.
4.若,則的取值范圍是_____________.
5.設(shè)則的大小關(guān)系是_____________.
6.設(shè)函數(shù),若,則的取值范圍為_(kāi)________________.
7.當(dāng)時(shí),不等式恒成立,則的取值范圍為_(kāi)_____________.
8.函數(shù)在區(qū)間上的值域?yàn)?,則的最小值為_(kāi)___________.
9.已知.
(1)求的定義域;
(2)判斷的奇偶性并予以證明;
(3)求使的的.取值范圍.
10.對(duì)于函數(shù),回答下列問(wèn)題:
(1)若的定義域?yàn)椋髮?shí)數(shù)的取值范圍;
(2)若的值域?yàn)?,求?shí)數(shù)的取值范圍;
(3)若函數(shù)在內(nèi)有意義,求實(shí)數(shù)的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
【自主梳理】
1.對(duì)數(shù)
(1)以為底的的對(duì)數(shù),,底數(shù),真數(shù).
(2),.
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1),,.
(2).
3.對(duì)數(shù)函數(shù)
,.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a10
圖象性質(zhì)定義域:(0,+)
值域:r
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù)在(0,+)上是減函數(shù)
1.2.3.
4.5.奇函數(shù)6..
【例1】填空題:
(1)3.
(2).
(3)0.
(4)奇函數(shù).
【例2】解:由得.所以函數(shù)的定義域是(0,1).
因?yàn)?,所以,?dāng)時(shí),,函數(shù)的值域?yàn)?當(dāng)時(shí),,函數(shù)的值域?yàn)?
【例3】解:(1),所以.
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以為奇函數(shù).
(3),所以當(dāng)時(shí),解得
當(dāng)時(shí),解得.