亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        最優(yōu)數(shù)學建模論文大全(19篇)

        字號:

            每個人都需要總結(jié),因為它是我們成長的見證,也是我們前進的基石。在撰寫總結(jié)時,可以參考前人的經(jīng)驗,尋找優(yōu)秀的范文進行借鑒。通過仔細閱讀這些范文,可以了解到不同領(lǐng)域和主題的寫作特點和規(guī)律。
            數(shù)學建模論文篇一
            大學數(shù)學具有高度抽象性和概括性等特點,知識本身難度大再加上學時少、內(nèi)容多等教學現(xiàn)狀常常造成學生的學習積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數(shù)學建模思想能激發(fā)學生的學習興趣,培養(yǎng)學生應(yīng)用數(shù)學的意識,提高其解決實際問題的能力。數(shù)學建模活動為學生構(gòu)建了一個由數(shù)學知識通向?qū)嶋H問題的橋梁,是學生的數(shù)學知識和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學數(shù)學教育中應(yīng)加強數(shù)學建模教育和活動,讓學生積極主動學習建模思想,認真體驗和感知建模過程,以此啟迪創(chuàng)新意識和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
            一、數(shù)學建模的含義及特點
            數(shù)學建模即抓住問題的本質(zhì),抽取影響研究對象的主因素,將其轉(zhuǎn)化為數(shù)學問題,利用數(shù)學思維、數(shù)學邏輯進行分析,借助于數(shù)學方法及相關(guān)工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數(shù)學建模的全過程。一般來說",數(shù)學建模"包含五個階段。
            1.準備階段
            主要分析問題背景,已知條件,建模目的等問題。
            2.假設(shè)階段
            做出科學合理的假設(shè),既能簡化問題,又能抓住問題的本質(zhì)。
            3.建立階段
            從眾多影響研究對象的因素中適當?shù)厝∩幔槿≈饕蛩赜枰钥紤],建立能刻畫實際問題本質(zhì)的數(shù)學模型。
            4.求解階段
            對已建立的數(shù)學模型,運用數(shù)學方法、數(shù)學軟件及相關(guān)的工具進行求解。
            5.驗證階段
            用實際數(shù)據(jù)檢驗?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實。如果建立的模型經(jīng)得起實踐的檢驗,那么此模型就是符合實際規(guī)律的,能解決實際問題或有效預(yù)測未來的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
            二、加強數(shù)學建模教育的作用和意義
            (一)加強數(shù)學建模教育有助于激發(fā)學生學習數(shù)學的興趣,提高數(shù)學修養(yǎng)和素質(zhì)
            數(shù)學建模教育強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學問題,進而利用數(shù)學及其有關(guān)的工具解決這些問題,因此在大學數(shù)學的教學活動中融入數(shù)學建模思想,鼓勵學生參與數(shù)學建模實踐活動,不但可以使學生學以致用,做到理論聯(lián)系實際,而且還會使他們感受到數(shù)學的生機與活力,激發(fā)求知的興趣和探索的欲望,變被動學習為主動參與其效率就會大為改善。數(shù)學修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
            (二)加強數(shù)學建模教育有助于提高學生的分析解決問題能力、綜合應(yīng)用能力
            數(shù)學建模問題來源于社會生活的眾多領(lǐng)域,在建模過程中,學生首先需要閱讀相關(guān)的文獻資料,然后應(yīng)用數(shù)學思維、數(shù)學邏輯及相關(guān)知識對實際問題進行深入剖析研究并經(jīng)過一系列復(fù)雜計算,得出反映實際問題的最佳數(shù)學模型及模型最優(yōu)解。因此通過數(shù)學建模活動學生的視野將會得以拓寬,應(yīng)用意識、解決復(fù)雜問題的能力也會得到增強和提高。
            (三)加強數(shù)學建模教育有助于培養(yǎng)學生的創(chuàng)造性思維和創(chuàng)新能力
            所謂創(chuàng)造力是指"對已積累的知識和經(jīng)驗進行科學地加工和創(chuàng)造,產(chǎn)生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學建?;顒拥母鱾€環(huán)節(jié)無不充滿了創(chuàng)造性思維的挑戰(zhàn)。
            很多不同的實際問題,其數(shù)學模型可以是相同或相似的,這就要求學生在建模時觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對一個具體的建模問題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學問題,是完成建模過程的關(guān)鍵所在。同時建模題材有較大的靈活性,沒有統(tǒng)一的標準答案,因此數(shù)學建模過程是培養(yǎng)學生創(chuàng)造性思維,提高創(chuàng)新能力的過程.
            (四)加強數(shù)學建模教育有助于提高學生科技論文的撰寫能力
            數(shù)學建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來,對本科生來說是一個挑戰(zhàn)。經(jīng)歷數(shù)學建模全過程的磨練,特別是數(shù)模論文的撰寫,學生的文字語言、數(shù)學表述能力及論文的撰寫能力無疑會得到前所未有的提高。
            (五)加強數(shù)學建模教育有助于增強學生的團結(jié)合作精神并提高協(xié)調(diào)組織能力建模問題通常較復(fù)雜,涉及的知識面也很廣,因此數(shù)學建模實踐活動一般效仿正規(guī)競賽的規(guī)則,三人為一隊在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開良好的組織與管理、分工與協(xié)作.
            三、開展數(shù)學建模教育及活動的具體途徑和有效方法
            (一)開展數(shù)學建模課堂教學
            即在課堂教學中,教師以具體的案例作為主要的教學內(nèi)容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學法的關(guān)鍵在于把握兩個重要環(huán)節(jié):
            案例的選取和課堂教學的組織。
            教學案例一定要精心選取,才能達到預(yù)期的教學效果。其選取一般要遵循以下幾點。
            1.代表性:案例的選取要具有科學性,能拓寬學生的知識面,突出數(shù)學建模活動重在培養(yǎng)興趣提高能力等特點。
            2.原始性:來自媒體的信息,企事業(yè)單位的報告,現(xiàn)實生活和各學科中的問題等等,都是數(shù)學建模問題原始資料的重要來源。
            3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學生的創(chuàng)造性思維,培養(yǎng)學生的創(chuàng)新精神和提高創(chuàng)造能力。
            案例教學的課堂組織,一部分是教師講授,從實際問題出發(fā),講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設(shè)和簡化建立優(yōu)化的數(shù)學模型。還要強調(diào)如何用求解結(jié)果去解釋實際現(xiàn)象即檢驗?zāi)P汀A硪徊糠质钦n堂討論,讓學生自由發(fā)言各抒己見并提出新的模型,簡介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點評,提供一些改進的方向,讓學生自己課外獨立探索和鉆研,這樣既突出了教學重點,又給學生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學生的課堂學習興趣和積極性,使傳授知識變?yōu)閷W習知識、應(yīng)用知識,真正地達到提高素質(zhì)和培養(yǎng)能力的教學目的.
            (二)開展數(shù)模競賽的專題培訓指導工作
            建立數(shù)學建模競賽指導團隊,分專題實行教師負責制。每位教師根據(jù)自己的專長,負責講授某一方面的數(shù)學建模知識與技巧,并選取相應(yīng)地建模案例進行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計回歸模型及數(shù)學軟件的使用等。學生根據(jù)自己的薄弱點,選擇適合的專題培訓班進行學習,以彌補自己的不足。這種針對性的數(shù)模教學,會極大地提高教學效率。
            (三)建立數(shù)學建模網(wǎng)絡(luò)課程
            以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學實驗,教學錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國內(nèi)外數(shù)模競賽介紹,校內(nèi)競賽,專家點評,獲獎心得交流;同時提供數(shù)模學習資源下載如講義,背景材料,歷年國內(nèi)外競賽題,優(yōu)秀論文等。以此為學生提供良好的自主學習網(wǎng)絡(luò)平臺,實現(xiàn)課堂教學與網(wǎng)絡(luò)教學的有機結(jié)合,達到有效地提高學生數(shù)學建模綜合應(yīng)用能力的目的。
            (四)開展校內(nèi)數(shù)學建模競賽活動
            完全模擬全國大學生數(shù)模競賽的形式規(guī)則:定時公布賽題,三人一組,只能隊內(nèi)討論,按時提交論文,之后指導教師、參賽同學集中討論,進一步完善。筆者負責數(shù)學建模競賽培訓近20年,多年的實踐證明,每進行一次這樣的訓練,學生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓練之后,學生的建模水平更是突飛猛進,效果甚佳。
            如20xx年我指導的隊榮獲全國高教社杯大學生數(shù)學建模競賽的最高獎---高教社杯獎,這是此賽設(shè)置的唯一一個名額,也是當年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學生數(shù)學建模競賽,43隊獲獎,獲獎比例達75%,創(chuàng)歷年之最。
            (五)鼓勵學生積極參加全國大學生數(shù)學建模競賽、國際數(shù)學建模競賽
            全國大學生數(shù)學建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學科競賽,國際大學生數(shù)學建模競賽是世界上影響范圍最大的高水平大學生學術(shù)賽事。參加數(shù)學建模大賽可以激勵學生學習數(shù)學的積極性,提高運用數(shù)學及相關(guān)工具分析問題解決問題的綜合能力,開拓知識面,培養(yǎng)創(chuàng)造精神及合作意識。
            四、結(jié)束語
            數(shù)學建模本身是一個創(chuàng)造性的思維過程,它是對數(shù)學知識的綜合應(yīng)用,具有較強的創(chuàng)新性,而高校數(shù)學教學改革的目的之一是要著力培養(yǎng)學生的創(chuàng)造性思維,提高學生的創(chuàng)新能力。因此應(yīng)將數(shù)學建模思想融入教學活動中,通過不斷的數(shù)學建模教育和實踐培養(yǎng)學生的創(chuàng)新能力和應(yīng)用能力從而提高學生的基本素質(zhì)以適應(yīng)社會發(fā)展的要求。
            數(shù)學建模論文篇二
            3.3增強選擇數(shù)學模型的能力。
            選擇數(shù)學模型是數(shù)學能力的反映。數(shù)學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學能力的強弱。建立數(shù)學模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學模型列表:
            函數(shù)建模類型實際問題
            一次函數(shù)成本、利潤、銷售收入等
            二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等
            冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細胞分裂、生物繁殖等
            三角函數(shù)測量、交流量、力學問題等
            3.4加強數(shù)學運算能力。
            數(shù)學應(yīng)用題一般運算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
            利用數(shù)學建模解數(shù)學應(yīng)用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質(zhì),進行素質(zhì)教育的一條有效途徑。同時數(shù)學建模的`應(yīng)用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
            數(shù)學建模論文篇三
            計算數(shù)學建模是用數(shù)學的思考方式,采用數(shù)學的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學手段。數(shù)學建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學建模可以說和我們的生活息息相關(guān),尤其是如今科技發(fā)達的今天。數(shù)學建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達到無所不及的程度,隨著數(shù)學建模在大學教學中的廣泛使用,使數(shù)學建模不止成為一種學科,更重要的是指導新生代更好的利用現(xiàn)代科學技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
            1.1數(shù)學建模引進大學數(shù)學教學的必要。教學過程,是教師根據(jù)社會發(fā)展要求和當代學生身心發(fā)展的特點,借助教學條件,指導學生通過認識教學內(nèi)容從而認識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學活動的展開過程。以往高工專的數(shù)學教學存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學教學過程不是單純的傳授數(shù)學學科知識,而是通過數(shù)學教學過程引導學生認識科學,理解科學,從而指導實踐,促進學生的德智體美勞全面的進步和發(fā)展。因此數(shù)學建模成為一門學科,被各大高等院校廣泛引用和推廣,其實數(shù)學建模不止應(yīng)用在大學數(shù)學教學中,其他一切教學過程多可引進數(shù)學建模。1.2數(shù)學建模在大學數(shù)學教學中的運用。大學數(shù)學教師通過這個數(shù)學建模過程來引導學生解決問題和指導實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導,這是大學數(shù)學教學中數(shù)學建模所需要達到的效果和要求。不再停留在理論學習,而是通過理論指導實踐,從而為科學的進步和人才綜合水平的提高提供可能。
            2.1數(shù)學建模對數(shù)學學科和其他學科學生的巨大影響力學習數(shù)學建模,能夠使一個單獨的數(shù)學家變成經(jīng)濟學家,物理學家還有金融學家,甚至是藝術(shù)家,只要正握數(shù)學建模就能指導學生通過掌握數(shù)學建模的思維和方法向其他領(lǐng)域?qū)W習和進步。數(shù)學建模成為連接數(shù)學和其他領(lǐng)域的紐帶,是當今數(shù)學科學在其他領(lǐng)導應(yīng)用的橋梁,是數(shù)學技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學建模在學生中越來越受到關(guān)注和歡迎,越來越多的學生開始學習數(shù)學建模,尤其是數(shù)學界和工程界的學生,這成為當今學生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
            2.2數(shù)學建模對學生綜合能力的提高數(shù)學建模是大學數(shù)學教師運用數(shù)學科學去分析和解決實際問題,在數(shù)學建模學習的過程中,大學生的數(shù)學能力得到提高,其分析問題、解決問題的能力得到提高,這對大學生畢業(yè)走向社會具有著重大意義。通過數(shù)學建模的學習和應(yīng)用,激發(fā)大學生學習數(shù)學和應(yīng)用數(shù)學的能力,運用數(shù)學的思維和方法,利用現(xiàn)代計算機科學,來解決數(shù)學及其他領(lǐng)域的問題。
            數(shù)學建模引入大學數(shù)學教學,這是時代的進步,是時代對當代大學教師提出的新要求,尤其是大學數(shù)學教師,其不再停留在以往的單純的數(shù)學知識講授方向,而是將數(shù)學科學作為基礎(chǔ),引導當代大學生發(fā)散思維,發(fā)揮主觀能動性,從而學習數(shù)學科學,并運用數(shù)學科學解決現(xiàn)實問題。在這個過程中大學教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學數(shù)學教師不止完成數(shù)學教學,更重要的是培養(yǎng)了高科技的人才,這對大學數(shù)學教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學的氛圍中,大學數(shù)學教師及其他學科的教師得到了鼓舞,得到了進步,得到了認可。數(shù)學建模越來越重要,關(guān)于數(shù)學建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學數(shù)學教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學建模比賽,大學數(shù)學教師投入更多的時間和經(jīng)歷在學生教育和數(shù)學建模中,他們成為真正的臺前和幕后的指揮者。
            隨著現(xiàn)代大學學科的豐富,尤其是計算機科學的廣泛應(yīng)用,大學數(shù)學教學的跨時代發(fā)展,數(shù)學建模成為各個高校數(shù)學教學的重點內(nèi)容,數(shù)學建模教學吸納數(shù)學家,計算機學家等多個學科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數(shù)學建模教學是當今大學數(shù)學教學的主旋律,是數(shù)學科學和其他科學進步發(fā)展的方向和原動力。
            [1]李進華.教育教學改革與教育創(chuàng)新探索.安徽:安徽大學出版社,20xx.8.
            [2]于駿.現(xiàn)代數(shù)學思想方法.山東:石油大學出版社,1997.
            數(shù)學建模論文篇四
            摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從初中數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。
            關(guān)鍵詞:數(shù)學;建模;運用
            數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)?fù)雜的數(shù)學問題利用簡單的方式找到解決方案,是提高初中數(shù)學課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學是初中學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段??梢哉f,初中數(shù)學的學習是學生學習數(shù)學的關(guān)鍵,對今后的學習起到極大的影響。因此,對于初中數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓初中數(shù)學教學質(zhì)量也得到大幅度的提升。初中數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的.將數(shù)學建模運用在初中數(shù)學教學過程中,是每個初中數(shù)學教師都值得思考的問題。
            一、培養(yǎng)學生數(shù)學建模意識
            數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是初中數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。
            二、提高學生想象力,用數(shù)學建模簡化問題
            對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)初中生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
            三、選擇合適的題目作為建模案例
            在數(shù)學建模過程中,教師也要時刻牢記題目應(yīng)該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復(fù)練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到初中數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。
            四、引導學生主動進行數(shù)學建模
            在教師經(jīng)過反復(fù)的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于初中數(shù)學教師來說,值得不斷的探討研究,并應(yīng)用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。
            數(shù)學建模論文篇五
            問題教學法是一種新的教學模式,與傳統(tǒng)教學有很大的區(qū)別。在傳統(tǒng)的教學中,教師考慮最多的是“教什么、怎樣教”的問題,很少顧及學生“學什么、怎樣學”,限制了學生學習的主動性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國神經(jīng)病學教授howardbarrows于1969年創(chuàng)立了基于問題和項目的學習(problembasedlearning)理念教學法。[2]這種方法不像傳統(tǒng)教學模式那樣先學習理論知識再解決問題,而是讓學生圍繞問題尋求解決方案。它強調(diào)讓學生置身于復(fù)雜的、有意義的問題情境中,并讓學生成為該問題情境的主體,自己去分析問題,學習解決該問題所需的知識,進而通過合作解決問題。此外,教師在該過程中也可以通過提問的方式,不斷地激發(fā)學生去思考、探索,培養(yǎng)學生自主學習的能力。與傳統(tǒng)的教學模式相比,問題教學模式更注重對學生自學能力、創(chuàng)新能力、發(fā)現(xiàn)問題和解決問題能力的培養(yǎng)。問題教學模式剛開始主要被應(yīng)用于醫(yī)學、市場營銷、實驗教學、畢業(yè)論文的寫作等領(lǐng)域。[3]近年來,一些學者開始探索將這種教學模式引入到“數(shù)學建?!闭n程的教學中。黃河科技學院從20xx級信息與計算科學專業(yè)的學生開始,在“數(shù)學建?!苯虒W活動引入問題教學模式,已經(jīng)取得了初步的成效。
            1.教師提出問題
            教師在每次上課之前要精心設(shè)計適合學生自學的問題體系,目的是為了誘導學生的思維,激發(fā)學生的學習興趣,讓學生置身于特定的問題環(huán)境中,營造一種質(zhì)疑、探究、討論、和諧互動的學習氛圍。這一步驟要求教師不僅需要熟悉教學內(nèi)容,還必須更好地了解學生的實際情況,這是成功實施問題教學模式的基礎(chǔ)。
            2.積極分析問題
            問題教學法的基本特點是教學環(huán)節(jié)由一連串問題組成,并且問題與問題之間的`聯(lián)系具有鏈接性和層次性。前一個問題是后一個問題的鋪墊,后一個問題又是前一個問題的深化和拓展。在學生熟悉了相關(guān)知識的基礎(chǔ)上,根據(jù)給出的實際問題,教師引導學生進行探索。探索活動一般包括自學教材、觀察實驗、小組討論等方式。學生一方面要充分利用原有認知結(jié)構(gòu)中存儲的有關(guān)知識信息,另一方面可以利用教材、實驗或教師提供的閱讀材料,獲取解決問題的方法。在對問題討論中教師要創(chuàng)設(shè)和諧民主的教學環(huán)境,要讓學生充分發(fā)表自己的見解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。
            3.解決問題
            當所有學生都對問題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達能力強的學生,在課堂上把他們對解決問題的方法及結(jié)論的合理性進行講解。在每組講解完之后,其他學生可以對他們進行提問,而發(fā)言小組的學生要向其他同學和老師進行解釋。教師在主持和引導的同時,也可以向?qū)W生提問。這樣通過對一個又一個問題的提問,推動學生思考,將問題引向縱深層次,一步步朝著解決問題的方向發(fā)展。
            4.對問題的結(jié)果進行評價
            問題教學法不僅以問題為開端,還以問題為終結(jié)。教學的最終結(jié)果不是傳授知識來消滅問題,而是在解決已有問題的基礎(chǔ)上引發(fā)更多、更廣泛的問題。因此教師在對問題的結(jié)果進行總結(jié)時要注意引導學生反思“這個問題為什么要這樣解決”,“這個問題還可以怎樣解決”,“從解決這個問題中我學到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問題,這是問題教學中最重要、最有教益的一個方面。
            在基于問題教學的過程中,每次討論的問題都圍繞某一專題進行討論學習,下面以“公平的席位分配問題”[4]為例,說明在“數(shù)學建?!敝腥绾芜\用問題教學法。
            1.合理設(shè)計問題
            獎學金評定是學生比較關(guān)心的問題,筆者根據(jù)學生的興趣及認知水平選擇“獎學金名額分配問題”。設(shè)某校有5個系a、b、c、d、e,各系學生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個獎學金名額,問每個系分配幾個名額比較公平?[5]在給出問題后,我們將相關(guān)問題印發(fā)給學生,并讓學生課下先收集關(guān)于“公平的席位分配問題”的模型及相關(guān)求解方法并認真研讀。
            2.小組討論分析問題
            根據(jù)課下學生收集的求解方案,上課時首先以小組為單位初步討論。首先提出如果讓同學們進行分配的話,他們會使用什么方法進行分配,讓他們進行討論。學生首先會給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個問題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分。可以先把整數(shù)分配完,這時各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個名額該如何分配?大家經(jīng)過討論,會提出誰的小數(shù)部分大就把名額給誰的分配方案,于是第73個名額給b系,第74個名額給c系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會提出下面的問題,這種分配方案對誰最不公平?學生會進一步討論每個名額代表的人數(shù),a為19.17人,b為18人,c為19.02人,d為22.67人,e為19.5人,說明這種分配方案對d系最不公平,而b系最占便宜,兩個系中每個名額代表的人數(shù)相差了4.67人。那么要重點討論有沒有相對來說比較公平的席位分配方案。
            3.學生進行發(fā)言討論
            在所有小組都討論完之后,教師組織各組學生進行課堂發(fā)言和討論,讓每組選一人報告本小組討論結(jié)果。教師對各組的報告進行評價,指出在討論過程中的問題及不足之處。在這個問題中,學生根據(jù)課下收集的文獻資料會逐步提出q值分配方案,q值分配方案的改進,q值+d’hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進,最后我們提出問題,這些分配方案公平度如何?讓學生逐一討論,從而營造出一個討論主題鮮明、學習氛圍良好的課堂環(huán)境。
            4.教師對結(jié)果進行評價總結(jié)
            在這個問題中,經(jīng)過逐一討論,大部分學生認為問題已經(jīng)圓滿解決了,不會再對結(jié)果進行歸納整理,不會反思問題解決的思路。因此在最初的問題解決后,老師要引導學生進行評價總結(jié),比如:“各個方案的公平度如何”,“我們還有沒有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。
            從“公平的席位分配問題”這個案例可以看到,在教學中為學生設(shè)計一個真實的問題進行教學,學生可以通過真實問題進行學習,并且以一個真實問題的解決為主線,激發(fā)學生的學習興趣和探索精神,再通過結(jié)果反饋信息,引導學生逐步深入理解學習內(nèi)容。學生在研究問題的過程中不僅學習了課本上的知識,而且還親身體會了解決實際問題的樂趣,為學生以后自主學習提供了極大的幫助。[6]四、結(jié)語當然,在“數(shù)學建?!闭n程的教學過程中問題教學模式也存在不足之處,比如課程內(nèi)容多、課時少,問題討論時間和講授時間出現(xiàn)矛盾,對有的專題討論不夠深入,學生參與度不夠,學生發(fā)言的深度和廣度都有待于進一步提高等等。這需要教師認真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專題供學生討論,以問題為中心規(guī)劃教學內(nèi)容,讓學生圍繞問題尋求解決方案,從而提高學生學習的主動性,提高學生在教學過程中的參與程度,激發(fā)學生的求知欲。“數(shù)學建?!闭n程教學的本身就是一個不斷探索、創(chuàng)新和提高的過程,選擇正確有效的教學方法能更好培養(yǎng)學生的創(chuàng)新能力,激發(fā)學生對數(shù)學建模的興趣。
            數(shù)學建模論文篇六
            將建模的思想有效的滲透到應(yīng)用數(shù)學的教學過程中去,是我們當前開展應(yīng)用數(shù)學教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學更好的服務(wù)社會經(jīng)濟的發(fā)展,充分發(fā)揮數(shù)學工具在實際問題解決中的重要作用,是我們當前進行應(yīng)用數(shù)學研究的核心問題,而建模思想在應(yīng)用數(shù)學中的運用則能夠很好的解決這一問題。
            數(shù)學教育至少應(yīng)該涵蓋純粹數(shù)學和應(yīng)用數(shù)學兩方面內(nèi)容,目前我國數(shù)學教育內(nèi)容以純粹數(shù)學為主,極少包括應(yīng)用數(shù)學內(nèi)容,這割裂了數(shù)學與外部世界的血肉聯(lián)系,使數(shù)學變成了多數(shù)學生眼中的抽象、枯燥、無用的思維游戲,而厭學成風。因此,大家對現(xiàn)行的數(shù)學教育不滿意,期望改革,期望找到方法激發(fā)學生的學習興趣、培養(yǎng)學生利用數(shù)學解決各種實際問題的能力。在不改變傳統(tǒng)的教學體系的前提下,有機地融入應(yīng)用數(shù)學內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實上,數(shù)學發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學教學中理應(yīng)突出數(shù)學思想的來龍去脈,揭示數(shù)學概念和公式的實際來源和應(yīng)用,恢復(fù)并暢通數(shù)學與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學科交叉發(fā)展,使得應(yīng)用數(shù)學逐漸發(fā)展成擁有眾多發(fā)展方向的學科,應(yīng)用數(shù)學所運用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學目前已經(jīng)滲透到社會經(jīng)濟發(fā)展的各個行業(yè),在這一大背景下,應(yīng)用數(shù)學的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學發(fā)展的新機遇。
            數(shù)學這一學科不僅具有概念抽象性、邏輯嚴密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計算機網(wǎng)絡(luò)在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學的廣泛運用帶來了前所未有的機遇。應(yīng)用數(shù)學在這一背景下也已經(jīng)成為當前高科技水平的一個重要內(nèi)容,應(yīng)用數(shù)學建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學的綜合水平以及思維意識,開展應(yīng)用數(shù)學建模不僅能夠有效的提升自己的學習熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。
            3.1充分重視建模的橋梁作用
            建模是實現(xiàn)數(shù)學知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當深入實際進行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認真分析對象的獨特特征及規(guī)律,構(gòu)建起反映實際問題的數(shù)學關(guān)系,運用數(shù)學理論進行問題的解決。這正是各個學科之間進行有效聯(lián)系的結(jié)合點,通過引進建模思想,不僅能夠使我們有效掌握數(shù)學理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當充分重視建模的作用。
            3.2將建模的方法以及相關(guān)理論引入到數(shù)學教學中來
            我國當前數(shù)學課程教學體系的現(xiàn)狀包括高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當前應(yīng)用數(shù)學的發(fā)展,滿足這一學科的建設(shè)以及其他學科對這一學科的需要,教師在教學中應(yīng)當將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學生進行討論并構(gòu)建數(shù)學模型。學生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調(diào)動學生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎(chǔ)的數(shù)學建模教學特色。
            3.3積極參加數(shù)學模型課等相關(guān)課程與活動
            數(shù)學應(yīng)用綜合性的實驗,要求我們掌握數(shù)學知識的綜合性運用,做法是老師先講一些數(shù)學建模的一些應(yīng)用實例,然后學生上機實踐,強調(diào)學生的動手實踐。數(shù)學實驗課應(yīng)該說是數(shù)學模型的輔助課程,主要培養(yǎng)我們的數(shù)學思維和創(chuàng)新能力,還應(yīng)當組織一些建模比賽,不斷提升數(shù)學建模的綜合水平。
            上述幾個部分的論述與分析,我們看到,在應(yīng)用數(shù)學中加強建模思想具有非常重要的意義,不僅需要在課堂學習過程中認真掌握數(shù)學理論知識,還應(yīng)當深入了解數(shù)學理論在實際生活中的可用之處,盡可能的使應(yīng)用數(shù)學與自身所學專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學的能力與水平在日常實踐過程中得到提升。就當前高等數(shù)學的現(xiàn)狀來看,加強創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
            [1]余荷香,趙益民.數(shù)學建模在高職數(shù)學教學中的應(yīng)用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).
            [2]關(guān)淮海.培養(yǎng)數(shù)學建模思想與方法高職高專數(shù)學教改之趨勢[j].職大學報,20xx(02).
            [3]李傳欣.數(shù)學建模在工程類專業(yè)數(shù)學教學中的應(yīng)用研究[j].中國科教創(chuàng)新導刊,20xx(35).
            [4]李秀林.高等數(shù)學教學中滲透數(shù)學建模的探討[j].吉林省教育學院學報(學科版),20xx(08).
            [5]吳健輝,黃志堅,汪龍虎.對數(shù)學建模思想融入高等數(shù)學教.學中的探討[j].景德鎮(zhèn)高專學報,20xx(04).
            數(shù)學建模論文篇七
            :本文從“如何培養(yǎng)學生實踐應(yīng)用能力提高就業(yè)素質(zhì)”出發(fā),通過對大專院校進行廣泛的調(diào)研,分析了目前高職院校開展數(shù)學建模的現(xiàn)狀,并總結(jié)了黑龍江交通職業(yè)技術(shù)院校開展數(shù)學建模教學與競賽活動的經(jīng)驗和做法,對指導高職院校的數(shù)學建模實踐教學工作具有重要意義。
            :數(shù)學建模競賽;教學改革;實踐教學
            中國大學生數(shù)學建模競賽是目前全國高校中規(guī)模最大、影響最廣的大學生課外科技活動,它在培養(yǎng)大學生知識的應(yīng)用能力、創(chuàng)新能力以及團隊的合作精神、頑強的意志品質(zhì)等方面都顯示了獨特的作用和優(yōu)勢。然而,大學生數(shù)學建模競賽在高職學院的開展卻起步遲緩且步履維艱,如何改變現(xiàn)狀,促進大學生數(shù)學建模競賽在高職學院持續(xù)健康發(fā)展,已經(jīng)成為教育工作者研究的重要課題。
            總體來說起步較緩慢,以黑龍江賽區(qū)為例,參加全國大學生數(shù)學建模競賽的院校和參賽隊雖然逐年增加,20xx年達到了34所參賽院校共444支參賽隊,但是高職學院參賽的少,僅占全省高職學院的1/3,有的高職學院長期徘徊在競賽之外,有的斷斷續(xù)續(xù),今年參賽明年休息。分析其原因主要有兩個:一是部分高職學院對大學生數(shù)學建模競賽十分陌生,對競賽的意義缺乏認識,沒有配套的實施辦法和有效的激勵機制;二是競賽的指導教師匱乏,能力有限,目前高職數(shù)學教師隊伍嚴重萎縮,有的學院數(shù)學教研室只剩一兩個人。
            參加數(shù)學建模競賽需要扎實的數(shù)學功底和良好的應(yīng)用意識。而高職的課程體系突出專業(yè)技能的培養(yǎng),通常只在一年級開設(shè)一個學期的“高等數(shù)學”課程,總學時一般僅有30學時,有的甚至不開數(shù)學課。教學內(nèi)容以一元微積分的基本概念和簡單算法為主。大多數(shù)參賽的高職院校,僅僅是為競賽而競賽,極少關(guān)注數(shù)學建模思想和方法在深化數(shù)學教學改革、促進課程建設(shè)等方面的作用。
            高職學生總體水平較差,但對從未接觸過的數(shù)學建模充滿好奇。然而數(shù)學建模競賽對學生的知識和能力要求都比較高,同時因高職學生二年級末就要面臨頂崗實習和就業(yè)問題,參賽學生通常只能在一年級中選拔,他們的基礎(chǔ)和能力顯然都沒有本科生扎實,因此賽前培訓的工作量非常大。
            通過數(shù)學建模競賽可以提高學生的綜合素質(zhì),是培養(yǎng)學生綜合能力的有效途徑。數(shù)學建模競賽可以培養(yǎng)團隊精神與合理表達自己思想和綜合運用知識的能力等,所有這些對提高學生的素質(zhì)都是很有幫助的,且非常符合當今提倡素質(zhì)教育精神。
            數(shù)學建模競賽不同于其它各種具有單個學科如:數(shù)學競賽,物理競賽,計算機程序設(shè)計競賽等的競賽,因為這些競賽只涉及到一門學科,甚至一門課程的知識,而數(shù)學建模競賽涉及到數(shù)學學科,計算機學科等其他許多學科的知識,僅數(shù)學學科就涉及到高等數(shù)學,線性代數(shù),概率統(tǒng)計,計算方法,運籌學,圖論,數(shù)學軟件等方面的知識。學生要想在數(shù)學建模競賽中取得好成績,除了具有以上數(shù)學知識外,還要有較好的計算機編程能力,網(wǎng)上查閱資料的能力及論文寫作能力等,此外,他們還應(yīng)有接觸各種新知識的環(huán)境和喜好。因為數(shù)學建模的競賽題遠非只是一個數(shù)學題目,而更多是一個初看起來與數(shù)學沒有聯(lián)系的實際問題,它涉及到很多知識,有些還是當前尚未解決的問題,如:飛行管理問題,dna排序問題等就是較有代表性的數(shù)學建??荚囶}目。通常數(shù)學建模題目只給出問題的描述和要達到的目的,參賽學生要做的事情是將問題用數(shù)學語言轉(zhuǎn)化成數(shù)學問題,然后在數(shù)學的背景下使用計算機或數(shù)學軟件來求解,最后再根據(jù)所得的解來解釋和檢驗所給的實際問題。與數(shù)學競賽不同的是,數(shù)學建模賽題沒有標準的正確答案,試卷的評分標準是看學生解決問題和創(chuàng)新的能力.因此要做好一個數(shù)學建模問題并不是一件容易的事情,需要學生很多的知識以及對所學各種知識的綜合運用,對學生是一個挑戰(zhàn)。
            數(shù)學建模競賽的題目由工程技術(shù)、經(jīng)濟管理、社會生活等領(lǐng)域中的實際問題簡化加工而成,沒有事先設(shè)定的標準答案,但留有充分余地供參賽者發(fā)揮其聰明才智和創(chuàng)造精神。競賽以通訊形式進行,三名大學生組成一隊,在三天時間內(nèi)可以自由地收集資料、調(diào)查研究,使用計算機、軟件和互聯(lián)網(wǎng),但不得與隊外任何人(包括指導教師在內(nèi))以任何方式討論賽題。競賽要求每個隊完成一篇用數(shù)學建模方法解決實際問題的科技論文。競賽評獎以假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性以及文字表述的清晰程度為主要標準??梢钥闯?,這項競賽從內(nèi)容到形式與傳統(tǒng)的數(shù)學競賽不同,是大學階段除畢業(yè)設(shè)計外難得的一次“真刀真槍”的訓練,相當程度上模擬了學生畢業(yè)后工作時的情況,既豐富、活躍了廣大同學的課外生活,也為優(yōu)秀學生脫穎而出創(chuàng)造了條件。
            競賽讓學生面對一個從未接觸過的實際問題,運用數(shù)學方法和計算機技術(shù)加以分析、解決,他們必須開動腦筋、拓寬思路,充分發(fā)揮創(chuàng)造力和想象力,從而培養(yǎng)了學生的創(chuàng)新意識及主動學習、獨立研究的能力。
            通過數(shù)學建模競賽可以推動高校的教育教學改革。十幾年來在競賽的推動下許多高校相繼開設(shè)了數(shù)學建模課程以及與此密切相關(guān)的數(shù)學實驗課程,出版了兩百多本相關(guān)的教材,一些教師正在進行將數(shù)學建模的思想和方法融入數(shù)學主干課程的研究和試驗。
            數(shù)學教育本質(zhì)上是一種素質(zhì)教育,要體現(xiàn)素質(zhì)教育的要求,數(shù)學的教學不能完全和外部世界隔離開來,關(guān)起門來在數(shù)學的概念、方法和理論中打圈子,處于自我封閉狀態(tài),以致學生在學了許多據(jù)說是非常重要、十分有用的數(shù)學知識以后,卻不怎么會應(yīng)用或無法應(yīng)用。開設(shè)數(shù)學建模和數(shù)學實驗課程,舉辦數(shù)學建模競賽,為數(shù)學與外部世界的聯(lián)系打開了一個通道,提高了學生學習數(shù)學的積極性和主動性,是對數(shù)學教學體系和內(nèi)容改革的一個成功的嘗試。
            數(shù)學建模教學和競賽活動中經(jīng)常用到計算機和數(shù)學軟件,普遍采取案例教學和課堂討論,豐富了數(shù)學教學的形式和方法。經(jīng)過幾年來參加數(shù)學建模競賽和教學方法和手段的改革,一方面教師的'知識面拓寬了,知識結(jié)構(gòu)改善了,利用數(shù)學工具和計算機找出解決實際問題的意識和能力提高了,另一方面,由于理論與實際的結(jié)合多,學生的動手能力增強了,學習的主動性和積極性有了很大的提高,同時也培養(yǎng)了學生的創(chuàng)新意識和解決實際問題的能力。
            近年來,我校一直有序地組織學生參加數(shù)學建模競賽,學校領(lǐng)導和教務(wù)處等有關(guān)部門非常重視和支持學生參加數(shù)學建模競賽,逐步探索完善了一套合理的激勵機制,激發(fā)指導教師的工作積極性和學生的參賽榮譽感及學習積極性。
            我校開展的數(shù)學建模競賽活動是采用第二課堂課余活動的形式進行的。由數(shù)學教研室負責每學期對學生進行集體強化培訓,以提高建模水平,培養(yǎng)學生之間的團隊協(xié)作精神。通常我們在每年四月份組織校級競賽,然后評選出五個代表隊的優(yōu)秀論文參加東三省數(shù)學建模聯(lián)賽的評獎。通過校級的比賽在全校范圍內(nèi)選拔出隊員,再進行深入的培訓,最后參加全國比賽。
            我校歷年來在大學生數(shù)學建模競賽活動中保持優(yōu)秀成績,涌現(xiàn)了一批優(yōu)秀的指導教師和學生。20xx年黑龍江交通職業(yè)職業(yè)技術(shù)學院第一次組隊參加東北三省大學生數(shù)學建模競賽,由于領(lǐng)導重視,工作扎實,平時訓練重過程、重細節(jié),競賽中隊員們表現(xiàn)出了良好的意志品質(zhì)和團隊精神,最終取得了不俗的成績:5個參賽隊中,1個隊榮獲省一等獎,另有1個隊獲省二等獎。20xx年參加東北三省數(shù)學建模聯(lián)賽,四個隊獲得二等獎;20xx年參加全國大學生數(shù)學建模競賽,一個隊獲得省級二等獎,一個隊獲得省級三等獎;20xx年參加東北三省數(shù)學建模聯(lián)賽,一個隊獲得一等獎,三個隊獲得二等獎。事實證明:通過自身的努力,高職學院可以在全國大學生數(shù)學建模競賽中取得較好成績,而高職學生也必定會在艱苦的培訓和競賽過程中得到鍛煉和提高。
            盡管目前高職學院開展大學生數(shù)學建模競賽活動仍有不少困難,但是我們有理由相信,在社會各界的關(guān)心和支持下,這一項能使高職學生、教師和學院全面受益的競賽不僅值得我們?yōu)橹?而且一定能越辦越好。
            數(shù)學建模論文篇八
            摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。
            關(guān)鍵詞:小學數(shù)學;建模;運用
            數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)?fù)雜的數(shù)學問題利用簡單的方式找到解決方案,是提高小學數(shù)學課堂效率及課堂質(zhì)量的有效手段。小學數(shù)學是小學學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段??梢哉f,小學數(shù)學的學習是學生學習數(shù)學的關(guān)鍵,對今后的學習起到極大的影響。因此,對于小學數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓小學數(shù)學教學質(zhì)量也得到大幅度的提升。小學數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學建模運用在小學數(shù)學教學過程中,是每個小學數(shù)學教師都值得思考的問題。
            一、培養(yǎng)學生數(shù)學建模意識
            數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是小學數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。
            二、提高學生想象力,用數(shù)學建模簡化問題
            對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
            三、選擇合適的題目作為建模案例
            在數(shù)學建模過程中,教師也要時刻牢記題目應(yīng)該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復(fù)練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。
            四、引導學生主動進行數(shù)學建模
            在教師經(jīng)過反復(fù)的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于小學數(shù)學教師來說,值得不斷的探討研究,并應(yīng)用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。
            數(shù)學建模論文篇九
            圖1創(chuàng)新型人才培養(yǎng)的五大機制
            2.1、建立引導機制,激發(fā)學習動力
            2.2、建立轉(zhuǎn)化機制,促進知識向能力的轉(zhuǎn)化
            2.3、建立協(xié)作機制,增強團隊意識
            高校學生在平時的學習過程中,絕大多數(shù)情況下,基本上都是獨自學習,與他人合作研究和解決問題機會很少.而在各種層次級別的數(shù)學建模競賽中,參賽學生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經(jīng)常是來自不同專業(yè),知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協(xié)調(diào),合理分工,團結(jié)協(xié)作共同完成整個比賽.為了比賽,在發(fā)生矛盾時,要學會忍耐和妥協(xié),而不能意氣用事.在整個比賽期間,求同存異,取長補短,優(yōu)勢互補,最終合作完成任務(wù).這個過程,無形中就培養(yǎng)了學生的合作意識和團隊精神,使學生親身感受到現(xiàn)代社會與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學建模競賽,培養(yǎng)創(chuàng)新型人才的團隊協(xié)作意識,建立培養(yǎng)人才的.合作交流機制,這是適應(yīng)社會和時代需要的人才培養(yǎng)過程中的重要環(huán)節(jié)之一。
            2.4、建立溝通表達機制,提高學生的語言及文字表達能力
            2.5、建立問題導向機制,培養(yǎng)學生主動式學習的自主學習能力
            3.1、促進了學生全面發(fā)展
            3.2、提高了學生的就業(yè)質(zhì)量
            數(shù)學建模論文篇十
            信息化時代,數(shù)學科學與其他學科交叉融合,使得數(shù)學技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學加強數(shù)學課程的應(yīng)用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學生應(yīng)用數(shù)學科學進行定量化、精確化思維的意識,學會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學建模課程將數(shù)學的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學生綜合應(yīng)用數(shù)學知識將現(xiàn)實問題化為數(shù)學問題,并進行求解運算的能力,激發(fā)學生對解決現(xiàn)實問題的探索欲望,強化數(shù)學課程本身的應(yīng)用功能,凸顯數(shù)學課程的教育價值,適應(yīng)大學數(shù)學課程以培養(yǎng)學生創(chuàng)新意識為宗旨的教育改革需要。
            大學傳統(tǒng)的數(shù)學主干課程,如高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學生的數(shù)學基礎(chǔ)、培養(yǎng)自學能力以及為后續(xù)課程的學習在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學模式重在突出培養(yǎng)學生嚴格的邏輯思維能力,而對數(shù)學的應(yīng)用重視不夠,這使得學生即使掌握了較為高深的數(shù)學理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學教學模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學建模的思想方法融入到數(shù)學主干課程之中,在教學過程中引導學生將數(shù)學知識內(nèi)化為學生的應(yīng)用能力,充分發(fā)揮數(shù)學建模思想在數(shù)學教學過程中的引領(lǐng)作用。數(shù)學課程教學改革要適應(yīng)這一教學模式轉(zhuǎn)型需要,深入探究融入式教學模式的理論與方式,是推進數(shù)學教育改革的重要舉措。
            2.1理清數(shù)學建模思想方法與數(shù)學主干課程的關(guān)系。數(shù)學主干課程提供了大學數(shù)學的基礎(chǔ)理論與基本原理,將數(shù)學建模的思想方法有機地融入到數(shù)學主干課程中,不但可以有效地提升數(shù)學課程的應(yīng)用功能,而且有利于深化學生對數(shù)學本原知識的理解,培養(yǎng)學生的綜合應(yīng)用能力。深入研究數(shù)學主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學習形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學建模本身所承載的思想、方法與數(shù)學主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學建模思想方法對提高學生創(chuàng)新能力和對數(shù)學教育改革的重要意義,探索開展融入式教學及創(chuàng)新數(shù)學課程教學模式的有效途徑。
            2.2探索融入式教學模式提升數(shù)學主干課程應(yīng)用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學建模的思想與方法。以學生能力訓練為主導,在培養(yǎng)深厚的數(shù)學基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學建模思想方法對學生思維方式的培養(yǎng)功能和引導作用,培養(yǎng)學生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學知識應(yīng)用于工程問題的創(chuàng)新能力。
            2.3建立數(shù)學建模思想方法融入數(shù)學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數(shù)學建模思想方法融入主干課程進行教學效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
            3.1改革課程教學內(nèi)容,滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學主干課程教學內(nèi)容,將數(shù)學看作嚴謹?shù)难堇[體系,教學過程中著力于對學生傳授大學數(shù)學的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學知識則淪為僵死的教條性數(shù)學原理,這失去了教學的活力。學生即使掌握了再高深的數(shù)學知識,仍難以學會用數(shù)學的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學數(shù)學課程教學內(nèi)容中,適當?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數(shù)學基礎(chǔ)知識的掌握,同時理解數(shù)學原理所蘊涵的思想與方法。
            這樣,在解決實際問題的時候,學生就會有意識地從數(shù)學的角度進行思考,嘗試建立相應(yīng)的數(shù)學模型并進行求解,拓展了數(shù)學知識的深度與廣度,提升了學生的數(shù)學應(yīng)用能力四、結(jié)語數(shù)學建模是數(shù)學科學在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學科學轉(zhuǎn)化成科學技術(shù)的重要途徑。在數(shù)學主干課程中融入數(shù)學建模的思想與方法,可以推動大學數(shù)學教育改革的深入發(fā)展,加深學生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學生的創(chuàng)新意識與創(chuàng)新能力。
            此外,數(shù)學建模思想方法融入教學主干課程還涉及到許多問題,比如數(shù)學建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
            數(shù)學建模論文篇十一
            :隨著經(jīng)濟的快速發(fā)展,我國的科學技術(shù)也得到了長足的進步,在計算機應(yīng)用方面,從對計算機技術(shù)尚存新鮮感到運用成熟,可以說有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當中,計算機已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學建模為例,分析了數(shù)學建模與計算機應(yīng)用之間的關(guān)系,與此同時,也探尋了計算機應(yīng)用技術(shù)在數(shù)學建模的輔助之下發(fā)揮的作用,并對數(shù)學建模進行概念定義,使得讀者能夠?qū)?shù)學建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。
            數(shù)學建模;計算機技術(shù);計算機應(yīng)用
            隨著經(jīng)濟的快速發(fā)展,我國的科學技術(shù)也有了長足的進步,而與之密不可分的數(shù)學學科也有著不可小覷的進步,與此同時,數(shù)學學科的延伸領(lǐng)域從物理等逐漸擴展到環(huán)境、人口、社會、經(jīng)濟范圍,使得其作用力逐漸增強。不僅如此,數(shù)學學科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進了多方面多層次的發(fā)展,由此可見,數(shù)學學科的重要性質(zhì)。在日常生活中,運用數(shù)學學科去解決實際問題時,首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號、公式等將潛在的信息表達出來,再運用計算機技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學建模為例,分析了數(shù)學建模與計算機應(yīng)用之間的關(guān)系,與此同時,也探尋了計算機應(yīng)用技術(shù)在數(shù)學建模的輔助之下發(fā)揮的作用,并對數(shù)學建模進行概念定義,使得讀者能夠?qū)?shù)學建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。
            從宏觀角度上來講,數(shù)學建模是更側(cè)重于實際研究方面,并不僅僅是通過數(shù)字演示來完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個領(lǐng)域當中,從任何一個相關(guān)領(lǐng)域中都能夠找到數(shù)學學科的發(fā)展軌跡,從中不難看出數(shù)學學科的實際意義與鮮明特點。數(shù)學為一門注重實際問題研究的學科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無邊際的宇宙,小到對于個體微生物或者單細胞物體,綜合性之強形成了研究范圍廣的特點。多個學科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學元素,且這些元素都是至關(guān)重要的,所以這個計算過程十分復(fù)雜,計算量與數(shù)據(jù)驗算過程也十分耗費時間,因此需要充足的存儲空間支持這一過程的運行。在數(shù)學建模的過程當中,所涉獵的數(shù)學算法并不是很簡單,而建立的模型也遵循個人習慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學建模的過程當中,就需要使用各種輔助工具來完成這一過程。由于計算機軟件具有的高速運轉(zhuǎn)空間,使得計算機技術(shù)應(yīng)用于數(shù)學學科的建模過程當中,與數(shù)學建模過程密不可分息息相關(guān)。由此可見,計算機技術(shù)的應(yīng)用水平對于數(shù)學學科的重要作用。
            2。1計算機的獨特性與數(shù)學建模的實際性特點計算機的獨特性與數(shù)學建模的實際性特點,使得二者之間有著密不可分的聯(lián)系,正是因為這種聯(lián)系使得雙方都能夠有長足的發(fā)展,在技術(shù)上是起著互相促進的作用。計算機的廣泛應(yīng)用為數(shù)學建模提供了較為便利的服務(wù),在使用過程當中,數(shù)學建模也能夠起到完成對計算機技術(shù)的促進,能夠在這一過程中形成更為便捷高速的使用方法與途徑,使得計算機技術(shù)應(yīng)用更為靈活,也可以說數(shù)學建模為計算機技術(shù)的實際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學建模對于計算機應(yīng)用技術(shù)的支持性。計算機應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學建模則是需要首要完成的,二者之間是相互影響共同促進的作用。
            2。2計算機為數(shù)學建模提供了重要的技術(shù)支持數(shù)學建模對于計算機應(yīng)用技術(shù)的重要的指導意義與作用。第一點,計算機在其技術(shù)的支持之下,有著大量的存儲空間能夠完成存儲資料的這一過程,許多重要資料在計算機技術(shù)的保護之下,存儲時間較為長久,且保護力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點,計算機是多媒體的一個分支,運用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實踐的效率。由于數(shù)學建模過程的復(fù)雜化及對于實際問題的研究方向的特質(zhì),使得對于各項技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過程也十分復(fù)雜,常見的過程有三維打印、三維激光掃描等。這些都是需要計算機技術(shù)的支持才能夠完成的,所以對于計算機技術(shù)的要求非常高,與此同時,計算機應(yīng)用技術(shù)為數(shù)學建模提供了更為便捷、快速的解決方案與途徑。
            2。3數(shù)學建模為計算機的發(fā)展提供了基石計算機的產(chǎn)生起源于數(shù)學建模的過程,在二十世紀八十年代,由于導彈在飛行時的運行軌跡的計算量過大,人工無法滿足這一高速率的運算條件,基于這一背景條件,產(chǎn)生了計算機,計算機應(yīng)用技術(shù)由此拉開了序幕。數(shù)學建模的過程是需要計算機來完成的,在全部的過程當中,計算機參與計算的比重很大,從某種意義程度上來講,計算機技術(shù)對于數(shù)學建模的發(fā)展是起著推動性的作用的,二者之間是有著聯(lián)系的。
            數(shù)學建模論文篇十二
            數(shù)學建模隨著人類的進步,科技的發(fā)展和社會的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學內(nèi)容越來越豐富。強調(diào)數(shù)學應(yīng)用及培養(yǎng)應(yīng)用數(shù)學意識對推動素質(zhì)教育的實施意義十分巨大。數(shù)學建模在數(shù)學教育中的地位被提到了新的高度,通過數(shù)學建模解數(shù)學應(yīng)用題,提高學生的綜合素質(zhì)。本文將結(jié)合數(shù)學應(yīng)用題的特點,把怎樣利用數(shù)學建模解好數(shù)學應(yīng)用問題進行剖析,希望得到同仁的幫助和指正。
            一、數(shù)學應(yīng)用題的特點
            我們常把來源于客觀世界的實際,具有實際意義或?qū)嶋H背景,要通過數(shù)學建模的方法將問題轉(zhuǎn)化為數(shù)學形式表示,從而獲得解決的.一類數(shù)學問題叫做數(shù)學應(yīng)用題。數(shù)學應(yīng)用題具有如下特點:
            第一、數(shù)學應(yīng)用題的本身具有實際意義或?qū)嶋H背景。這里的實際是指生產(chǎn)實際、社會實際、生活實際等現(xiàn)實世界的各個方面的實際。如與課本知識密切聯(lián)系的源于實際生活的應(yīng)用題;與模向?qū)W科知識網(wǎng)絡(luò)交匯點有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會市場經(jīng)濟、環(huán)境保護、實事政治等有關(guān)的應(yīng)用題等。
            第二、數(shù)學應(yīng)用題的求解需要采用數(shù)學建模的方法,使所求問題數(shù)學化,即將問題轉(zhuǎn)化成數(shù)學形式來表示后再求解。
            第三、數(shù)學應(yīng)用題涉及的知識點多。是對綜合運用數(shù)學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關(guān),很難將問題正確解答。
            二、數(shù)學應(yīng)用題如何建模
            第一層次:直接建模。
            根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學公式、定理等數(shù)學模型,注解圖為:
            第二層次:直接建模。可利用現(xiàn)成的數(shù)學模型,但必須概括這個數(shù)學模型,對應(yīng)用題進行分析,然后確定解題所需要的具體數(shù)學模型或數(shù)學模型中所需數(shù)學量需進一步求出,然后才能使用現(xiàn)有數(shù)學模型。
            第三層次:多重建模。對復(fù)雜的關(guān)系進行提煉加工,忽略次要因素,建立若干個數(shù)學模型方能解決問題。
            第四層次:假設(shè)建模。要進行分析、加工和作出假設(shè),然后才能建立數(shù)學模型。如研究十字路口車流量問題,假設(shè)車流平穩(wěn),沒有突發(fā)事件等才能建模。
            三、建立數(shù)學模型應(yīng)具備的能力
            從實際問題中建立數(shù)學模型,解決數(shù)學問題從而解決實際問題,這一數(shù)學全過程的教學關(guān)鍵是建立數(shù)學模型,數(shù)學建模能力的強弱,直接關(guān)系到數(shù)學應(yīng)用題的解題質(zhì)量,同時也體現(xiàn)一個學生的綜合能力。
            1提高分析、理解、閱讀能力。
            2強化將文字語言敘述轉(zhuǎn)譯成數(shù)學符號語言的能力。
            3增強選擇數(shù)學模型的能力。
            4加強數(shù)學運算能力。
            數(shù)學應(yīng)用題一般運算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
            數(shù)學建模論文篇十三
            1、從應(yīng)用數(shù)學出發(fā)數(shù)學建模主要是通過運用數(shù)學知識解決生活中遇到實際問題的全過程。要讓數(shù)學建模思想與大學數(shù)學教學課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學解決生活中的實際問題與教學內(nèi)容相融合,以應(yīng)用數(shù)學為導向,訓練學生綜合運用數(shù)學知識去刻畫實際問題、提煉數(shù)學模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學生運用數(shù)學原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學方法,培養(yǎng)引導學生樹立應(yīng)用數(shù)學建模解決實際問題的思想。
            2、從數(shù)學實驗做起要加強獨立學院學生進行數(shù)學實驗的行為,筆者認為數(shù)學建模與數(shù)學實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當前的大學生數(shù)學實驗基本上是應(yīng)用數(shù)學軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學實驗的全過程就是數(shù)學建模思想的啟發(fā)過程。但是我國的教育資源和教學方針限制了獨立學院學生的學習環(huán)境和學習資源,能夠進行數(shù)學實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W校,也未能進行充分利用,數(shù)學實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學習課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學院未開設(shè)此類課程,這是數(shù)學建模思想與大學數(shù)學教學課程融合的一大損失,不利于學生創(chuàng)新思維能力的提高。各校應(yīng)當積極創(chuàng)造條件,把數(shù)學實驗課設(shè)為大學數(shù)學的必修課,爭取設(shè)立數(shù)學建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學建模的思想和方法融入大學數(shù)學的主干課程。
            3、從計算機應(yīng)用切入數(shù)學是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導致被重視的程度不同。但在當今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學計算和數(shù)值模擬已成為絕大多數(shù)學科的必要工具和常用手段。數(shù)學在不同學科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學建模,通過計算機對各自領(lǐng)域的科學研究、生活問題等進行模擬分析,這成為數(shù)學建模思想在跨學科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學可以計算機應(yīng)用為切入點,讓數(shù)學建模思想與數(shù)學授課無縫結(jié)合,在提高學生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學數(shù)學課程內(nèi)容的豐富性、實用性,促進教學手段變革和創(chuàng)新。因此,大學應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學生將來的需求為契機,加快改進大學數(shù)學課程教學方式,把數(shù)學建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學數(shù)學的主干課程當中。
            大學數(shù)學課程是大學工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學建模課程的必修化,要從能夠擴充學生的知識結(jié)構(gòu),培養(yǎng)學生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學院學生的數(shù)學建模教學內(nèi)容。日前獨立學院開展數(shù)學建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學建模和數(shù)學實驗方而的教材。筆者近幾年通過承擔此類課題的研究,認為應(yīng)該加強以下內(nèi)容的建設(shè):
            。2、開設(shè)選修課拓展知識領(lǐng)域,讓學生可以通過選修數(shù)學建模、運籌學、開設(shè)數(shù)學實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學和經(jīng)濟學單方面的知識是不夠的,必須把數(shù)學與經(jīng)濟學聯(lián)系在一起,才能有效解決生活中的問題。
            3、積極組織學生開展或是參加數(shù)學建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學建模出發(fā)點的缺陷,通過交流,還可以拓展學生思維。因此,有必要積極組織學生參入初等數(shù)學知識可以解決的數(shù)學模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學建模知識,促進數(shù)學建模在教學中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學生數(shù)學建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學生對數(shù)學建模的興趣和對模型應(yīng)用的直觀的認識,實現(xiàn)學校應(yīng)用型人才的培養(yǎng)。
            4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學這門學科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學,除了推導就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學特點和學生情況推陳出新,要注重數(shù)學思想的滲透和數(shù)學方法的介紹,對高等數(shù)學精髓的求導、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓練。培養(yǎng)學生對一些問題的邏輯分析、抽象、簡化并用數(shù)學語言表達的能力,逐步將學生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學模型進行處理的境界,并能將數(shù)學結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
            21世紀我國進入了大眾教育時期,高校招生人數(shù)劇增,學生水平差距較大,需要學校瞄準正確的培養(yǎng)方向。通過對美國教學改革的研究,筆者認為我國的數(shù)學建模思想與大學數(shù)學教學課程融合必須盡快在大學中廣泛推進,但要注意一些問題:第一,數(shù)學教學改革一定要基于學生的現(xiàn)實水平,數(shù)學建模思想融入要與時俱進。第二,教學目標要正確定位,融合過程一定要與教學研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學生數(shù)學建模競賽的舉辦和參入,要給予正確的理解和引導,形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學思想與現(xiàn)在數(shù)學建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學主干課程的教學水平是大學教學質(zhì)量的關(guān)鍵指標之一,具備數(shù)學建模思想是理工類大學生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。
            數(shù)學建模論文篇十四
            隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學類課程。但在教學中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學生的學習興趣。并且,傳統(tǒng)教學忽視了學生用數(shù)學解決實際問題的能力,所以,進行數(shù)學教學改革勢在必行。數(shù)學建??膳囵B(yǎng)學生利用數(shù)學知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學生體會到數(shù)學不僅能傳播理論知識和求解一些數(shù)學問題,還可將其應(yīng)用到實際問題中,讓學生看到一些實際模型的來龍去脈,提高學生的學習積極性。數(shù)學建模是培養(yǎng)學生綜合科學素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當代科技最新成果的能力等。學生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學院學生將來進入社會十分重要,這也是衡量獨立學院辦學成功與否的一個方面。因此,獨立學院的人才培養(yǎng)目標定位,既要達到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨立學院的數(shù)學課堂上應(yīng)該多方面滲透數(shù)學模型的思想。
            (一)人才培養(yǎng)創(chuàng)新的需要
            根據(jù)獨立學院人才培養(yǎng)目標和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當增加實驗、實踐教學內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學生。數(shù)學建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學問題,借助數(shù)學工具和數(shù)學方法精確或近似地解決該問題,并用數(shù)學結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學建模能彌補傳統(tǒng)數(shù)學教學在實際應(yīng)用方面的不足,促進數(shù)學教師在現(xiàn)代化教學手段、教學模式方面的更新。數(shù)學建模有助于調(diào)動學生的學習興趣,在計算機應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學生將來能更好地適應(yīng)工作崗位。
            (二)高校教學改革的需要
            當今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學模式是以課堂理論講授為主,學生絕大部分時間都集中學習書本知識,很少有機會接觸社會,也難做到學以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學導致學生明顯缺乏學習的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學作為一門傳統(tǒng)基礎(chǔ)學科,對獨立學院的學生來說,學習上有一定的難度。我們的教學應(yīng)以“必需,夠用”為度。數(shù)學建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學生通過自主的學習,把實際的問題轉(zhuǎn)化為數(shù)學理論解決,有助于學生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學院院校應(yīng)用型本科人才培養(yǎng)的方向。
            (三)學生參加數(shù)學建模競賽的需要
            獨立學院學生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學生愿意在學校參加一些競賽來提高自己。全國大學生數(shù)學建模競賽尤其受學生重視,但仍有很多大學生不了解這類競賽,因此,在數(shù)學課堂上引入數(shù)學建模思想,學生既了解了數(shù)學建模,又對數(shù)學公式提起了興趣,還有助于獨立學院學生在全國大學生數(shù)學建模競賽中取得優(yōu)異成績。
            高等數(shù)學的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學習提供必要的數(shù)學知識,培養(yǎng)各專業(yè)學生的數(shù)學思想與數(shù)學修養(yǎng),全面提高大學生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學建模思想融入數(shù)學教學中,才能調(diào)動學生學習數(shù)學的積極性,培養(yǎng)學生的創(chuàng)新能力,實現(xiàn)提高學生綜合分析問題能力的最終目標。
            作者:崔瑋王文麗單位:中國地質(zhì)大學長城學院信息工程系
            數(shù)學建模論文篇十五
            摘要:數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。
            關(guān)鍵詞:數(shù)學建模;教師
            一、新課的引入需要發(fā)揮教師的作用
            教師在數(shù)學建模課堂上的引導作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導入會點燃學生學習的熱情、激發(fā)學生的學習興趣、喚起學生的好奇心,能把學生的注意力迅速集中到要學的知識上來。這對提高教學質(zhì)量、提高學生的學習效果起著不可估量的作用。同時,新課前的導入環(huán)節(jié)是對學生進行情感教育的最佳時刻。學生只有在教師的引導下才能夠體會到數(shù)學建模的價值、增強學好數(shù)學建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
            二、在教學任務(wù)的設(shè)計上需要發(fā)揮教師的作用
            數(shù)學建模課堂一般應(yīng)采用任務(wù)型教學模式,是讓學生通過自主探究、合作學習、交流展示的方式完成一系列學習任務(wù)來達到特定的教學目標和學習目標。學生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學建模問題分解成若干簡單問題來引導學生更好地發(fā)揮其主動性。學生也只有在這些問題的正確引導下才能突破難點并向著學習目標努力,有效防止學生思考、探究、交流的內(nèi)容偏離學習目標等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
            三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用
            建構(gòu)主義強調(diào)新知識是在學生已有知識的基礎(chǔ)上通過學生自身有意義的建構(gòu)獲得的。筆者認為,學生自主建構(gòu)知識應(yīng)在教師的科學引導下進行。尤其是對于數(shù)學建模這樣高難度的知識更是這樣。失去了教師的科學引導,學生易產(chǎn)生疲倦感,久而久之會喪失學習數(shù)學建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準確掌握教學目標、難點的基礎(chǔ)上,充分考慮學生的認知能力、習慣、思維方式,通過有針對性的具體問題喚起學生對舊知識的回憶,再通過啟發(fā)性問題引導學生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學生自主建構(gòu)知識可以使學生少走彎路,從而使學生更加高效地自主探究、掌握新知識。
            四、在教學重點、難點上需要教師的引導
            教學的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學生自主探究、小組合作學習的課堂教學模式中,數(shù)學建模教材的重點、難點學生往往把握不準、難以突破。這就需要教師科學引導學生主動去發(fā)現(xiàn)重點、突破難點。教師引導學生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導讓學生自己找到重點、并通過學生自己的思考、討論解決疑難問題。學生在教師的引導下通過自己的努力、討論解決了疑難后,學生會非常興奮,從而會越來越喜歡數(shù)學建模課。相反,在沒有教師引導的數(shù)學建模課堂中,學生經(jīng)常被困難嚇倒,從而對數(shù)學建模課產(chǎn)生畏懼感。由此可見,教師對學生的科學引導是學生學好數(shù)學建模必不可少的環(huán)節(jié)。在以學生為本、注重學生全面發(fā)展、提倡課堂中突出學生主體地位的背景下,教師的引導仍是數(shù)學建模課堂中不可缺失的要素。數(shù)學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當?shù)匾龑虏拍芨玫赝怀鰧W生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數(shù)學建模課堂。
            數(shù)學建模論文篇十六
            優(yōu)秀高教社杯全國大學生數(shù)學建模競賽題目
            (請先閱讀“全國大學生數(shù)學建模競賽論文格式規(guī)范”)
            a題城市表層土壤重金屬污染分析
            隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
            按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
            現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
            附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
            現(xiàn)要求你們通過數(shù)學建模來完成以下任務(wù):
            (1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
            (2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
            (3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
            數(shù)學建模論文篇十七
            培養(yǎng)應(yīng)用型人才是我國高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識經(jīng)濟飛速發(fā)展和市場對人才多元化需求的必然要求。隨著科學技術(shù)的不斷發(fā)展,各學科各領(lǐng)域?qū)嶋H問題的研究日益精確化與定量化,數(shù)學在科學研究與工程技術(shù)中的作用不斷增強,其應(yīng)用的范圍幾乎覆蓋了所有學科分支,滲透到社會生活中的各個領(lǐng)域。前蘇聯(lián)數(shù)學家亞歷山大洛夫曾說過,“數(shù)學在其它科學中,在技術(shù)中,在全部生活實踐中都有廣泛的應(yīng)用”。1993年,王梓坤院士發(fā)表的著名報告《今日數(shù)學及其應(yīng)用》中也深刻指出:“現(xiàn)代世界國家間的競爭本質(zhì)上是高技術(shù)的競爭,而高技術(shù)本質(zhì)上是一種數(shù)學技術(shù)?!睌?shù)學是一門技術(shù)已經(jīng)成為人們的共識。數(shù)學技術(shù)離不開數(shù)學建模,數(shù)學建模是把數(shù)學作為工具,并應(yīng)用它解決實際問題的一種活動,它是一個跨學科、跨專業(yè)、綜合性和應(yīng)用性都非常強的過程,是數(shù)學應(yīng)用的必由之路,是聯(lián)系數(shù)學與實際問題的橋梁,是數(shù)學在各個領(lǐng)域廣泛應(yīng)用的媒介。因此,數(shù)學建模的過程是一個全而培養(yǎng)學生綜合素質(zhì)、提高學生各種能力的過程,數(shù)學建模是培養(yǎng)生產(chǎn)一線應(yīng)用型人才的一條重要途徑。
            應(yīng)用型人才是將專業(yè)知識和專業(yè)技能應(yīng)用于社會實踐的專門人才是熟練掌握社會生產(chǎn)或社會活動一線的基礎(chǔ)知識和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)iT人才社會對應(yīng)用型人才的基本要求是具有基礎(chǔ)扎實,知識而寬,應(yīng)用能力強,素質(zhì)高,有較強的創(chuàng)新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎(chǔ)理論,又能將所學知識應(yīng)用于本行業(yè)相關(guān)技術(shù)領(lǐng)域,適應(yīng)產(chǎn)業(yè)發(fā)展對應(yīng)用型人才市場需求的不斷變化,還有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學科知識能力。
            隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學術(shù)型”人才培養(yǎng)模式受到了嚴峻的挑戰(zhàn),因此,一些發(fā)達國家率先提出了“發(fā)展應(yīng)用型大學”,“培養(yǎng)應(yīng)用型人才”的口號。德國早在20世紀70年代就成立了應(yīng)用科技大學,其應(yīng)用型人才的培養(yǎng)特色鮮明,深受歡迎。美國的工程教育,英國的技術(shù)學院,日本的短期大學都以培養(yǎng)應(yīng)用型人才而著稱。近年來,我國高等院校對應(yīng)用型人才的培養(yǎng)取得了一定的進展,但仍然存在認識上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應(yīng)用型人才的培養(yǎng)模式還有待于進一步探索。通過多年的實踐和探索,根據(jù)應(yīng)用型人才的特點和社會日益數(shù)字化,對應(yīng)用型人才的要求以及數(shù)學在各行各業(yè)中的廣泛應(yīng)用、數(shù)學建模在應(yīng)用型人才培養(yǎng)中具有不可替代的重要作用。
            數(shù)學建模就是用數(shù)學語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數(shù)值計算等技術(shù)手段及相應(yīng)的數(shù)學軟件求解,并利用所得的結(jié)果擬合實際問題。數(shù)學建模在應(yīng)用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個方面:
            由于實際問題的'復(fù)雜性,在數(shù)學建模過程中要涉及到大量的數(shù)據(jù)收集和對數(shù)據(jù)的分析與處理,一個完整的建模過程一般要經(jīng)歷模型的假設(shè)、模型的建立與求解、算法的設(shè)計和計算機實現(xiàn)、對結(jié)果的分析與檢驗并將所得的結(jié)果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內(nèi)是很難完成的,這就注定了數(shù)學建模是一個團隊的集體行為,需要有師生之間、學生之間以及學生與社會之間的交流與合作。因此數(shù)學建模有利于提高學生的團隊合作精神,而團隊合作精神又是社會對應(yīng)用型人才的基本要求。
            數(shù)學建模所面臨的數(shù)據(jù)是雜亂無章的,這就要求學生對這些數(shù)據(jù)進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當?shù)臄?shù)學關(guān)系,從而組建一定的數(shù)學模型,再用所學的數(shù)學理論和方法去求解數(shù)學模型。在對實際問題中的數(shù)據(jù)進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對實際問題的理解、研究問題的目的以及數(shù)學背景來完成這個過程,應(yīng)該說這是一個創(chuàng)造性的過程。另外,數(shù)學模型是對實際問題的近似刻畫,為了使建立的數(shù)學模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產(chǎn)生新的疑問,這個過程多次循環(huán)們復(fù),學生的創(chuàng)新能力將不斷得到加強。創(chuàng)新能力也是社會對應(yīng)用型人才的基本要求。
            一個完整的數(shù)學建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學生有較好的數(shù)學基礎(chǔ)和嚴密的邏輯推理能力,還要求學生對問題的實際背景有一定的了解,要求學生有廣博的知識和深厚的專業(yè)基礎(chǔ),并能對這些知識進行融會貫通。數(shù)學建模面臨的數(shù)據(jù)}i-.}i是龐大而復(fù)雜的,對數(shù)據(jù)的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過程。在這個過程中,學生的應(yīng)變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強。綜合素質(zhì)和能力是應(yīng)用型人才的基本特征和社會對應(yīng)用型人才的起碼要求。
            從實際問題中抽象出來的數(shù)學模型一般很復(fù)雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復(fù)雜性而無多大的應(yīng)用價值。所以數(shù)學模型的求解通常需要編寫算法,運用某些數(shù)學軟件利用計算機求其數(shù)值解,這就要求學生有較強的數(shù)學軟件應(yīng)用能力和對計算機的實際操作能力。在操作的過程中,學生的動手能力和實踐能力自然而然得到提高。另外在數(shù)學建模中,需要進行調(diào)查研究,需要對有關(guān)的數(shù)據(jù)進行廣泛的采集和補充,這就是應(yīng)用型人才培養(yǎng)中所強調(diào)的實踐性。
            數(shù)學建模本身就是綜合運用知識,解決實際問題的過程。數(shù)學建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風險”,“車燈線光源的優(yōu)化設(shè)計”等就較好地突現(xiàn)了知識的應(yīng)用性。數(shù)學建模是數(shù)學應(yīng)用的必由之路,是聯(lián)系數(shù)學與實際問題的橋梁。一方面數(shù)學建模需要用數(shù)學語言、方法近似地刻畫要解決的實際問題,另一方面數(shù)學建模需要利用所得的結(jié)果擬合實際問題,所有這些都與應(yīng)用型人才的突出特點和社會對應(yīng)用型人才的要求是一致的。
            數(shù)學建模需要學生親自參與問題的研究與探索,數(shù)據(jù)的收集和補充需要學生的積極參與,數(shù)據(jù)的處理和模型的建立需要學生的主動參與,模型的求解需要學生獨立完成。數(shù)學建模一般需要綜合運用多方面的知識,需要了解相關(guān)問題的背景材料,需要對相關(guān)的數(shù)據(jù)進行合理的取舍和有效的篩選,有些知識和相關(guān)的資料需要學生自己去查詢,所有這些都為學生的自主學習提供了一個良好的“下臺。另外,數(shù)學建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學生語言表達能力的提高具有重要的作用。應(yīng)用型人才的一個突出特點就是具有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學科知識能力,而自學能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎(chǔ)。
            應(yīng)該說,數(shù)學建模的作用是多方面的,通過數(shù)學建模的訓練,學生獲得了參與研究探索的體驗,培養(yǎng)了收集、分析和利用信息的能力,學會了分享與合作,鍛煉了學生的意志力、洞察力、想象力、自學能力、語言的翻譯和表達能力以及綜合應(yīng)用專業(yè)知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應(yīng)用型人才培養(yǎng)所要達到的目標,也是與應(yīng)用型人才培養(yǎng)模式的四個基本點是一致的。因此數(shù)學建模能將應(yīng)用型人才的突出特征和社會對應(yīng)用型人才的要求體現(xiàn)得淋漓盡致,它在應(yīng)用型人才的培養(yǎng)中具有不可替代的重要作用。
            1.馬克思有一句名言,“一門科學只有成功地應(yīng)用了數(shù)學時,才算真正達到了完善的地步”。不論是自然科學還是社會科學都需要數(shù)學,都蘊含數(shù)學。一門科學要成功地應(yīng)用數(shù)學,必須對這門學科中的問題建立數(shù)學模型。因此,建議高等院校的各個專業(yè)都要不同程度地開設(shè)數(shù)學建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學建模內(nèi)容,真正做到“人人學有用的數(shù)學,人人做有用的數(shù)學,人人用有用的數(shù)學”。
            2.數(shù)學建模課程應(yīng)增加實訓內(nèi)容,數(shù)學建模的學習應(yīng)以實訓內(nèi)容為主。教師應(yīng)根據(jù)學生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓題目,讓學生自己進行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學生為主體,并以論文的形式提交給教師,教師提供實時指導和幫助,對建模的結(jié)果進行有的放矢的點評,并將實訓內(nèi)容作為學生期末考評的主要內(nèi)容和重要依據(jù)。
            3.舉辦多種形式的數(shù)學建模競賽,豐富數(shù)學建模的教學內(nèi)容和教學方式,引進案例教學和專題講座,通過對典型案例的深入剖析,激發(fā)學生的學習興趣和積極性,培養(yǎng)學生的數(shù)學建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
            數(shù)學建模論文篇十八
            為了培養(yǎng)小學生良好的數(shù)學學習興趣,激發(fā)他們的數(shù)學潛能,教師需要采取必要的措施注重數(shù)學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學生的性格特點,提高數(shù)學建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學生數(shù)學建模思想的培養(yǎng)策略進行初步的探討。
            作為小學數(shù)學教學中的重要組成部分,數(shù)學建模思想的滲透及相關(guān)教學活動的順利開展,有利于提高復(fù)雜數(shù)學問題的處理效率,保持數(shù)學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數(shù)學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數(shù)學建模思想的有效培養(yǎng),促使小學生能夠在數(shù)學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學計劃的實施打下堅實的基礎(chǔ)。通過這種教學方法的合理運用,可以激發(fā)出學生們在數(shù)學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數(shù)學建模能力。
            通過對小學階段各種數(shù)學實踐教學活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數(shù)學建模教學活動的積極性。因此,為了使小學生數(shù)學建模思想培養(yǎng)能夠達到預(yù)期的效果,教師需要結(jié)合實際的教學內(nèi)容,建立必要的數(shù)學參考模型,提升學生對數(shù)學建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學模型的構(gòu)建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數(shù)學建模思想的有效培養(yǎng)。
            加強小學生數(shù)學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數(shù)學思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學生在長期的數(shù)學學習中能夠不斷提高自身的數(shù)學能力,運用各種數(shù)學知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學生數(shù)學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數(shù)學建模教學水平。
            總之,加強小學生數(shù)學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學生數(shù)學能力的有效鍛煉,確保相關(guān)的教學計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當前小學數(shù)學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數(shù)學建模思想培養(yǎng)策略,有利于滿足學生數(shù)學建模學習中的多樣化需求,為相關(guān)教學目標的順利實現(xiàn)提供可靠的保障。
            [1]童小艷.小學數(shù)學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).
            [2]白寧.先學而后教——小學生數(shù)學建模思想培養(yǎng)的捷徑[j].數(shù)學學習與研究,20xx(16).
            數(shù)學建模論文篇十九
            摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學建模已經(jīng)成為應(yīng)用數(shù)學知識解決日常問題的一個重要手段。本文通過簡述數(shù)學建模的方法與過程,以及應(yīng)用數(shù)學建模解決實際經(jīng)濟問題的應(yīng)用,展現(xiàn)的了數(shù)學學習的重要意義,以及數(shù)學在經(jīng)濟問題解決中的重要作用。
            關(guān)鍵詞:數(shù)學;數(shù)學建模;經(jīng)濟;應(yīng)用
            經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風險的預(yù)估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學知識、應(yīng)用數(shù)學建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
            一、數(shù)學建模
            數(shù)學建模,其實就是建立數(shù)學模型的簡稱,實際上數(shù)學建模可以稱之為解決問題的一種思考方法,借助數(shù)學工具應(yīng)用已知的定理定義進行合理的運算,推導出一種理性的結(jié)果的過程。數(shù)學建模是可以聯(lián)系數(shù)學和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學的語言和方法進行問題的求解和推導,實際上,都是一種數(shù)學建模的過程。數(shù)學建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進行簡化,提取主要因素,提煉精確的數(shù)學語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當?shù)臄?shù)學工具,建立各個量(變量、常量)間的數(shù)學關(guān)系,化實際問題為數(shù)學語言;4.模型求解:對上述數(shù)學關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。
            二、經(jīng)濟問題數(shù)學模型的建立
            經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學知識建立完整的數(shù)學經(jīng)濟模型。
            三、建模舉例
            四、結(jié)語
            綜上所述,我們可以看到,數(shù)學建模在經(jīng)濟中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W習和思考。