亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        最新七年級上學期數(shù)學工作計劃免費(十六篇)

        字號:

            時間就如同白駒過隙般的流逝,我們的工作與生活又進入新的階段,為了今后更好的發(fā)展,寫一份計劃,為接下來的學習做準備吧!優(yōu)秀的計劃都具備一些什么特點呢?又該怎么寫呢?那么下面我就給大家講一講計劃書怎么寫才比較好,我們一起來看一看吧。
            七年級上學期數(shù)學工作計劃篇一
            我本學期擔任初一七、八班的數(shù)學教學工作。初一(八)班共有學生55人,初一(七)班有學生56人。根據(jù)小學升初中考試的情況來分析學生的數(shù)學成績不算理想,總體的水平一般,往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,因此要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。初一學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,初一學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應初一教學的新要求,要重視對學生進行記法指導。本學期的工作重點是扭轉學生的學習態(tài)度,培養(yǎng)學生的好的學習習慣、創(chuàng)新意識,激發(fā)學生學習數(shù)學的熱情和興趣,培優(yōu)補差,同時強調對數(shù)學知識的靈活運用,反對死記硬背,以推動數(shù)學教學中學生素質的培養(yǎng)。
            二、教學措施
            1、根據(jù)今年學校及教科室計劃,認真構建“雙思三環(huán)六步”課堂教學模式,努力提高課堂教學的有效性和實效性。雙思”是指教師反思教學、學生反思學習;“三環(huán)”就是定向、內化、發(fā)展;“六步”分別是指:提供資源(入境生趣)、了解學情(自學生疑)、弄清疑難(學習釋疑)、點難撥疑(練習解難)、反思教學(反思學習)、引導實踐(遷移創(chuàng)新)。我們要在反思中成長,學生要在反思中進步;我們要反思的主要內容是怎樣優(yōu)化“三環(huán)六步”教學設計,不斷提高課堂教學效率;學生要反思的主要內容學習積極性、學習策略和學習方法運用是否得當、不斷提高學習效率。
            初一學生剛剛進入初中階段,正是從小學過度到初中學習的重要階段,也是進行“雙思三環(huán)六步”課堂教學模式的時期,要逐步的培養(yǎng)和完善這種模式,要求我們多研究、多思考、多創(chuàng)新、多探究。按照“低(起點)慢(速度)多(落點)高(標準)”元素結構教學法進行教學,“低起點”考慮到學生的基礎,初一學生從小學數(shù)學到初中數(shù)學的學習是一個飛躍,怎樣幫助學生慢慢過渡是一個難點,從細小的問題、每一個小知識點出發(fā)結合小學知識融匯到初中的知識中去,從而使學生很快接受知識?!奥俣取狈磳焖俣冉虒W,主張教學要考慮學生的學習規(guī)律和接受程度,兼顧初一學生的生理、心理、知識、能力、意志、品德等特征和差異,步步為營,梯次推進,使學生有效地掌握知識和培養(yǎng)能力。“多落點”強調教育要考慮到初一學生個性差異的特點。個性差異是表現(xiàn)在多方面,不僅有年齡、性別、性格、身體的差異,還有很多學習上的差異,個人思維方式、生活方式的差異。推動不同層次的學生都有收獲?!案邩藴省睘閷W生確立的學習標準。而且把目標細化,使學生能很快達到,既能掌握知識又能體會到成功的愉悅,使初一的學生對數(shù)學充滿興趣,從而達到高效課堂的標準。
            2、精心設計習題,使習題從簡單到復雜形成梯度,引導學生學會發(fā)散思維,培養(yǎng)學生創(chuàng)造性思維的能力,實現(xiàn)一題多解、舉一反三、觸類旁通,培養(yǎng)思維的靈活性。
            3、批改作業(yè)做到全批全改,從過程到步驟嚴格要求,發(fā)現(xiàn)問題及時解決作認好總結,從初一使學生慢慢養(yǎng)成認真按步驟做作業(yè)的習慣。
            4、繼續(xù)實行課前一題的模式。課前五分鐘每個班的課代表把上一節(jié)課涉及到的典型題目呈現(xiàn)在黑板上,學生在解題的過程中復習上一節(jié)的內容,而且也能做到盡快把學生從課間拉回到上課的的狀態(tài),并力求把學生中新方法新思維挖掘出來。
            5、實行一對一的幫扶活動,由好學生帶動一個差一點的學生,從知識、作業(yè)、學習習慣等各方面互幫互助,從而全面提高學生的綜合素質。
            三、合理落實各項教學常規(guī)
            1、備好課是上好課的基礎,是提高課堂教學質量的關鍵。根據(jù)“雙思三環(huán)六步”課堂教學模式,所以在備課時深入鉆研教材,正確地掌握和處理好教材的重點、難點,準備大量的、難度不同的習題備用,備課以個人獨立鉆研備課為主,在此基礎上進行集體備課,廣泛吸取其他老師的優(yōu)點和精華,完善自己的備課達到精益求精。
            2、上課時要嚴格按照“雙思三環(huán)六步”課堂教學模式的步驟進行教學,講課時要圍繞中心內容,突出重點,突破難點。整個教學過程要嚴密組織,使課堂教學既層次分明,又協(xié)調緊湊。教學時要面向全體學生,使各類學生都學有所得。特別是要照顧到差生,力求使他們能掌握本課時的基本知識和技能。
            七年級上學期數(shù)學工作計劃篇二
            一、指導思想
            堅持黨的基本路線,擁護中國共產黨的領導,貫徹黨的教育方針、政策,使自己真正成為時代前進的促進派。認真學習《教師法》、《教育法》、《義務教育法》、《教師職業(yè)道德規(guī)范》及《未成年人保護法》等法律法規(guī),使自己對各項法律法規(guī)有更高的認識,做到以法執(zhí)教。忠誠于黨的教育事業(yè),立足教壇,無私奉獻,全心全意地搞好教學工作,做一名合格的人民教師。
            二、學生情況分析
            本學期我擔任七年級3班數(shù)學教學,該班共有學生38人。七年級學生往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。七年級學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,七年級學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應七年級教學的新要求,要重視對學生進行記法指導。
            三、教學目標
            (一)知識與技能
            1.獲得數(shù)學中的基本理論、概念、原理和規(guī)律等方面的知識,了解并關注這些知識在生產、生活和社會發(fā)展中的應用。
            2.學會將實踐生活中遇到的實際問題轉化為數(shù)學問題,從而通過數(shù)學問題解決實際問題。體驗幾何定理的探究及其推理過程并學會在實際問題進行應用。
            3.初步具有數(shù)學研究操作的基本技能,一定的科學探究和實踐能力,養(yǎng)成良好的科學思維習慣。
            (二)過程與方法
            1.采用思考、類比、探究、歸納、得出結論的方法進行教學;
            2.發(fā)揮學生的主體作用,作好探究性活動;
            3.密切聯(lián)系實際,激發(fā)學生的學習的積極性,培養(yǎng)學生的類比、歸納的能力.
            (三)情感態(tài)度與價值觀
            1.理解人與自然、社會的密切關系,和諧發(fā)展的主義,提高環(huán)境保護意識。
            2.逐步形成數(shù)學的基本觀點和科學態(tài)度,為確立辯證唯物主義世界觀奠定必在的基礎。
            四、教材章節(jié)分析
            第一章《有理數(shù)》
            1.本章的主要內容:
            對正、負數(shù)的認識;有理數(shù)的概念及分類;相反數(shù)與絕對值的概念及求法;數(shù)軸的概念、畫法及其與相反數(shù)與絕對值的關系;比較兩個有理數(shù)大小的方法;有理數(shù)加、減、乘、除、乘方運算法則及相關運算律;科學計數(shù)法、近似數(shù)、有效數(shù)字的概念及求法。
            重點:有理數(shù)加、減、乘、除、乘方運算
            難點:混合運算的運算順序,對結果符號的確定及對科學計數(shù)法、有效數(shù)字的理解。
            2.本章的地位及作用
            本章的知識是本冊教材乃至整個初中數(shù)學知識體系的基礎,它一方面是算術到代數(shù)的過渡,另一方面是學好初中數(shù)學及與之相關學科的關鍵,尤其有理數(shù)的運算在整個數(shù)學及相關學科中占有極為重要的地位,可以說這一章內容是構建“數(shù)學大廈”的地基。
            第二章《整式的加減》
            1.本章的主要內容
            列代數(shù)式,單項式及其有關概念,多項式及其有關概念,去括號法則,整式的加減,合并同類項,求代數(shù)式的值。
            重點:去括號,合并同類項。
            難點:對單項式系數(shù),次數(shù),多項式次數(shù)的理解與應用。
            2.本章的地位及作用
            整式是簡單代數(shù)式的一種形式,在日常生活中經常要用整式表示有關的量,體現(xiàn)了變量與常量之間的關系,加深了對數(shù)的理解。本章中列代數(shù)式,去括號及合并同類項是后面學習一元一次方程的基礎,求代數(shù)式的值在中考命題中占有重要的地位。
            第三章《一元一次方程》
            1.本章的主要內容
            列方程,一元一次方程的概念及解法,列一元一次方程解應用題。
            重點:列方程,一元一次方程的解法,
            難點:解有分母的一元一次方程和應用一元一次方程解決實際問題。
            2.本章的地位及作用
            一元一次方程是數(shù)學中的主要內容之一,它不僅是學習其它方程的基礎,而且是一種重要的數(shù)學思想——方程思想,利用方程思想可以使許多實際問題變得直接易懂,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。更深刻地體會數(shù)學的應用價值。
            第四章《圖形認識初步》
            1.本章的主要內容、地位及作用
            本章主要介紹了多姿多彩的圖形(立體圖形、平面圖?),以及最基本的圖形——點、線、角等,并在自主探究的過程中,結合豐富的實例,探索“兩點確定一條直線”和“兩點間線段最短”的性質,認識角以及角的表示方法,角的度量,角的畫法,角的比較及余角,補角等,探索了比較線段長短的方法及線段中點。本章中的直線,射線,線段以及角等,都是我們認識復雜圖形的基礎,因此,本章在初中數(shù)學中占有重要的地位。
            2.教學重點與難點
            教學重點:(1)角的比較與度量;(2)余角、補角的概念和性質;(3)直線、射線、線段和角的概念和性質
            教學難點:(1)用幾何語言正確表達概念和性質;(2)空間觀念的建立。
            五、具體教學策略
            1.認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內容,認真上課,批改作業(yè),認真輔導,讓學生學會認真學習。
            2.興趣是的老師,激發(fā)學生的興趣,給學生介紹數(shù)學家、數(shù)學史,介紹相應的數(shù)學趣題,給出數(shù)學課外思考題,激發(fā)學生的興趣。
            3.引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識來源于學生的構造。
            4.引導學生積極歸納解題規(guī)律,引導學生一題多解,多解歸一,培養(yǎng)學生透過現(xiàn)象看本質,提高學生舉一反三的能力,培養(yǎng)學生的發(fā)散思維,讓學生處于一種思如泉涌的狀態(tài)。
            5.運用讀新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念,將帶來不同的教育效果。
            6.培養(yǎng)學生良好的學習習慣,有助于學生進步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。
            7.進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發(fā)展鋪平道路。
            8.站在系統(tǒng)的高度,使知識構筑在一個系統(tǒng),上升到哲學的高度,八方聯(lián)系,渾然一體,使學生學得輕松,記得牢固。
            9.開展課題學習,把學生帶入研究的學習中,拓展學生的知識面。
            六、進度安排
            教學內容課時
            1.1正數(shù)和負數(shù)1課時
            1.2有理數(shù)4課時
            1.3有理數(shù)的加減法4課時
            1.4有理數(shù)的乘除法5課時
            1.5有理數(shù)的乘方3課時
            本章復習2課時
            2.1整式2課時
            2.2整式的加減3課時
            本章復習2課時
            3.1從算式到方程4課時
            3.2從古老的代數(shù)說起—一元一次方程的討論(1)4課時
            3.3從“買布問題”說起—一元一次方程的討論(2)4課時
            3.4再探實際問題和一元一次方程4課時
            本章復習2課時
            4.1多姿多彩的圖形4課時
            4.2直線、射線、線段2課時
            4.3角的度量3課時
            4.4角的比較和運算3課時
            本章復習2課時
            七年級上學期數(shù)學工作計劃篇三
            一、教材分析:
            1、教材所處的地位和作用:
            從數(shù)學科學本身看,方程是代數(shù)學的核心內容,正是對于它的研究推動了整個代數(shù)學的發(fā)展,從代數(shù)中關于方程的分類看,一元一次方程是最簡單的代數(shù)方程,也是所有代數(shù)方程的基礎.教科書將本節(jié)內容安排在第一節(jié),一方面是對小學學段已經學過的有關算術方法解題和簡單方程的運用的進一步發(fā)展,另一方面考慮引入一元一次方程后,可以盡早滲透模型化的思想,使學生盡早接觸利用一元一次方程解決實際問題的方法.
            《課程標準》對本課時的要求是通過具體實例歸納出方程及一元一次方程的概念,根據(jù)相等關系列出方程.讓學生在歸納和總結的過程中,初步建立數(shù)學模型思想,訓練學生主動探究的能力,能結合情境發(fā)現(xiàn)并提出問題,體會在解決問題中與他人合作的重要性,獲得解決問題的經驗.
            2、教學目標:
            根據(jù)課標的要求和本節(jié)內容的特點,我從知識技能、數(shù)學思考、情感價值觀三個方面確定本節(jié)課的目標:
            知識技能目標
            ①通過對實際問題的分析,讓學生體驗從算術方法到代數(shù)方法是一種進步,歸納并理解一元一次方程的概念,領悟一元一次方程的意義和作用.
            ②在學生根據(jù)問題尋找相等關系、根據(jù)相等關系列出方程的過程中,培養(yǎng)學生獲取信息、分析問題、處理問題的能力.
            ③使學生經歷把實際問題抽象為數(shù)學方程的過程,認識到方程是刻畫現(xiàn)實世界的一種有效的數(shù)學模型,初步體會建立數(shù)學模型的思想.
            數(shù)學思考目標
            用字母表示未知數(shù),找出相等關系,將實際問題抽象為數(shù)學問題,通過列方程解決.
            情感價值目標:
            讓學生體會到從算式到方程是數(shù)學的進步,滲透化未知為已知的重要數(shù)學思想.體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決,激發(fā)學習數(shù)學的熱情.
            3、重點、難點:
            結合以上目標,我在認真研究教材的基礎上,立足學生發(fā)展的宗旨,確定了本節(jié)課的教學重難點.
            教學重點:知道什么是方程、一元一次方程,找相等關系列方程.
            教學難點:思維習慣的轉變,分析數(shù)量關系,找相等關系。
            二、教學策略:
            如何突出重點,突破難點,從而達到教學目標的實現(xiàn)呢?在教學過程我運用了如下教法與手段:
            1.生活引路,感知概念背景;
            2.比較方法,明確意義;
            3.感受過程,形成核心概念;
            4.運用新知,鞏固方法;
            5.歸納總結,鞏固發(fā)展.
            本節(jié)課利用多媒體教學平臺,從學生熟悉的實際問題開始,將實際問題“數(shù)學化”建立方程模型.采用教師引導,學生自主探索、觀察、歸納的教學方式。
            三、學情分析:
            根據(jù)本節(jié)課的內容特點及學生的心理特征,在學法上,極力倡導了新課程的自主探究、合作交流的學習方法.通過對學生原有知識水平的分析,創(chuàng)設情境,使數(shù)學回到生活,鼓勵學生思考,探索情境中的所包含的數(shù)量關系,學生在經歷“建立方程模型”這一數(shù)學化的過程后,理解學習方程和一元一次方程的意義,培養(yǎng)學生抽象概括等能力.
            四、教學過程:
            本節(jié)課的教學過程我設計了以下六個環(huán)節(jié):
            (一) 情景引入
            采用教材中的情景
            在這個環(huán)節(jié)中我提出了三個問題:
            問題1:從上圖中你能獲得哪些信息?
            問題2:你會用算術方法求嗎?
            問題3:你會用方程的方法解決這個問題嗎?
            (二)學習新知
            在這個環(huán)節(jié)中,我首先提出一個問題:“如果設中山市到深圳市的路程為·千米,怎樣用式子表示中山市與東莞市的距離以及中山市與惠州市的距離?”,這樣,學生就會主動結合圖形,根據(jù)在《整式的加減》中學到的知識解決問題.
            通過上述思考過程,學生已經初步了解到尋找已知量與未知量之間存在的相等關系是利用方程解決實際問題的關鍵所在.
            然后我結合上面的過程簡單歸納列方程解決實際問題的步驟并給出方程的概念.
            解決實際問題的步驟:(1)用字母表示問題中的未知數(shù);(2)根據(jù)問題中的相等關系,列出方程.(17世紀的法國數(shù)學家迪卡爾最早使用·,y,z等字母表示未知數(shù),而我國古代則用“天元、地元、人元、物元”等表示未知數(shù),而且要比西方早1000多年,這說明我們中華民族是一個充滿智慧和才干的偉大民族.)
            在這里我介紹了字母表示未知數(shù)的文化背景,其目的就是在文化層面上讓學生進一步理解數(shù)學、喜愛數(shù)學,展示數(shù)學的文化魅力,這正是培養(yǎng)學生情感價值觀的體現(xiàn).
            方程的概念:含有未知數(shù)的等式叫方程.小學里已經給出了方程的概念,這里可適當處理.
            在這里我開始向學生滲透列方程解決實際問題的思考程序.
            (三)討論交流
            討論1:比較列算式和列方程兩種方法的特點.
            列算式:只用已知數(shù),表示計算程序,依據(jù)是間題中的數(shù)量關系;
            列方程:可用未知數(shù),表示相等關系,依據(jù)是問題中的等量關系。
            通過討論,學生體會到了:用算術方法解題時,列出的算式只能用已知數(shù),而列方程時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù),這就是說,在方程中未知數(shù)(字母)可以和已知數(shù)一起表示問題中的數(shù)量關系.
            而且隨著學習的深入,學生會逐步體會到從算式到方程是數(shù)學的進步。
            緊接著的思考讓全班學生參與學習的過程,從而進一步地拓寬了學生的思維.
            討論2:對于上面的問題,你還能列出其他方程嗎?如果能,你依據(jù)的是哪個相等關系?
            在這個討論活動中,我采取了先小組合作交流后全班交流.
            通過交流后,學生中出現(xiàn)如下結果:
            從學生的分析所得,這兩種設未知數(shù)的方法就是在以后學習中將遇到的直接設元和間接設元兩種設元.
            要求出路程,只要解出方程中的·即可,我們在以后幾節(jié)課中再來學習.
            在這個環(huán)節(jié)里,問題的開放有利于培養(yǎng)學生的發(fā)散思維。這樣安排的目的是使所有的學生都有獨立思考的時間和合作交流的時間。
            (四)初步應用
            學生在小學已經學過簡易方程,通過以下的例題和練習可以回顧已經學過的知識,并為一元一次方程提供素材。
            1、例題:根據(jù)下列問題,設未知數(shù)并列出方程:
            (1)用一根長24㎝的鐵絲圍成一個正方形,正方形的邊長是多少?
            (2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規(guī)定的檢修時間2450小時?
            (3)某校女生占全體學生數(shù)的52%,比男生多80人,這個學校有多少學生?
            2、課堂練習:這一組例題和課堂練習的設置,其目的是讓學生更進一步加強列方程解決實際問題的能力。
            (五)再探新知
            提取例題和練習中出現(xiàn)的方程請學生觀察方程它們有什么共同的特點?然后達成共識:只含有一個未知數(shù);未知數(shù)的次數(shù)是1.
            在這個環(huán)節(jié)中,我引導學生觀察方程特點,給出一元一次方程的概念
            教師總結:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.
            思考:下列式子中,哪些是一元一次方程?通過思考辨析,使學生鞏固一元一次方程的概念,把握住概念的本質.
            (六)課堂小結
            讓學生先歸納,然后教師補充方式進行,主要圍繞以下問題:
            本節(jié)課學習了哪些主要內容?一元一次方程的三個特征是什么?從實際問題中列出方程的步驟及關鍵是什么?
            五、課堂設計理念
            本節(jié)課著力體現(xiàn)以下幾個方面:
            1、突出問題的應用意識。在各個環(huán)節(jié)的安排上都設計成一個個問題,使學生能圍繞問題展開討思考、討論,進行學習。
            2、體現(xiàn)學生的主體意識。讓學生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數(shù)方法是數(shù)學的進步;讓學生通過合作交流,得出問題的不同解法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納。
            3、體現(xiàn)學生思維的層次性。教師首先引導學生嘗試用算術方法解決問題,然后再引導學生列出含未知數(shù)的式了,尋找相等關系列出方程,在尋找相等關系、設未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學生思維的層次性。
            4、滲透建模思想。把實際問題中的數(shù)量關系用方程形式表示出來,就是建立一種數(shù)學模型,教師有意識地按設未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力。
            七年級上學期數(shù)學工作計劃篇四
            (一)教材所處的地位
            人教版《數(shù)學》七年級上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運算的基礎,也是學習方程、不等式和函數(shù)的基礎。
            (二)單元教學目標
            (1)理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。
            (2)理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。
            (3)理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算律性質在整式的加減運算中仍然成立。
            (4)能分析實際問題中的數(shù)量關系,并列出整式表示 .體會用字母表示數(shù)后,從算術到代數(shù)的進步。
            (5)滲透數(shù)學知識來源于生活,又要為生活而服務的辯證觀點;通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學生由特殊到一般的思維;體會整式的加減實質上就是去括號,合并同類項,結果總是比原來簡潔,體現(xiàn)了數(shù)學的簡潔美。
            (三)單元教學的重難點
            (1)重點:理解單項式、多項式的相關概念;熟練進行合并同類項和去括號的運算。
            (2)難點:準確地進行合并同類項,準確地處理去括號時的符號。
            (四)單元教學思路及策略
            (1)注意與小學相關內容的銜接。
            (2)加強與實際的聯(lián)系。
            (3)類比“數(shù)”學習“式”,加強知識的內在聯(lián)系,重視數(shù)學思想方法的滲透。
            (4)抓住重難點、加強練習。
            (五)學生學習易錯點分析:
            (1)忽視單項式的定義,誤認為式子 是單項式。
            (2)忽視單項式系數(shù)的定義,誤認為 的系數(shù)是4.
            (3)忽視單項式的次數(shù)的定義,誤認為3a的次數(shù)是0.
            (4)忽視多項式的定義,誤認為 是單項式。
            (5)忽視多項式的定義,誤認為 的次數(shù)是7.
            (6)忽視多項式的項的定義,誤認為多項式 的項分別為 .
            (7)把多項式的各項重新排列時,忽視要帶它前面的符號。
            (8)忽視同類項的定義,誤認為2x3y4與-y4x3不是同類項。
            (9)合并同類項時,誤把字母的指數(shù)也相加。
            (10) 去括號時符號的處理。
            (11)兩整式相減時,忽略加括號。
            (六)教學建議:
            (1)了解整式并學好合并同類項的關鍵是什么?
            整式的加減法,實際上就是合并同類項,同類項的概念以及合并同類項的方法,是本章的重點,而同類項及其合并是以單項式為基礎的,所以,單項式的概念或意義是完成合并的關鍵。
            (2)單項式與多項式有什么聯(lián)系與區(qū)別?
            教材中先講單項式、后講多項式,然后概括為單項式、多項式統(tǒng)稱為整式,對于單項式的系數(shù),僅限于數(shù)字系數(shù)(單項式中的數(shù)字因數(shù)),這點務求仔細體會,切不可加以引申,而多項式沒有系數(shù);對于次數(shù),單項式的次數(shù)指,所有字母的指數(shù)之和,而多項式的次數(shù)是多項式中次數(shù)最高的項(單項式)的次數(shù),需要加以注意的問題是:單項式的系數(shù),包括它前面的符號,不要把常數(shù) 作為字母,單項式x的系數(shù)是1,且單獨一個數(shù)(零次單項式)或一個字母,也是單項式,對于0也是一個單項式;多項式的每一項都應包含它前面得符號;單項式和多項式得分母中不能含有字母。
            (3)學習合并同類項的方法;
            先把同類項分別作上記號,然后根據(jù)合并同類項的法則進行合并,合并后把多項式按某一字母降冪或升冪排列;當多項式中同類項的系數(shù)互為相反數(shù)時,合并后為0;
            (4)什么是合并同類項中要加以注意的“兩同”?
            合并同類項是整式加減的基礎,深入理解同類項的概念,又是掌握合并同類項的關鍵,教材中通過一個探究問題(三個填空題)的引入,進行比較、歸納,從而得出判斷同類項的 “兩同”標準:所含字母相同,并且相同字母的指數(shù)也相同,這樣的項叫做同類項。幾個常數(shù)項也是同類項,同類項至少有兩個,單項式不叫同類項。
            (5)其它注意事項:
            ①整式中,只含一項的是單項式,否則是多項式。分母中含有字母的代數(shù)式不是整式,當然也不是單項式或多項式。
            ②單項式的次數(shù)是所有字母的指數(shù)之和;多項式的次數(shù)是多項式中最高次項的次數(shù)。
            ③單項式的系數(shù)包括它前面的符號,多項式中每一項的系數(shù)也包括它前面的符號。
            ④去括號時,要特別注意括號前面是“-”號的情形。
            (七)課時安排:
            第1課時 單項式
            第2課時 多項式
            第3課時 整式的加減(1)------合并同類項
            第4課時 整式的加減(2)------去括號
            第5課時 整式的加減(3)------一般步驟
            第6課時 整式的加減(4)------化簡求值
            第7課時 數(shù)學活動
            第8課時 復習課
            七年級上學期數(shù)學工作計劃篇五
            教學目標:
            知識與技能:
            認識常見的幾何圖形,并能用自己的語言描述常見幾何圖形的特征
            過程與方法:
            1.經歷從現(xiàn)實世界中抽象幾何圖形的過程,通過對比,概括出幾何研究的對象
            2.在實物與幾何圖形之間建立對應關系,在復習小學學過的平面圖形的基礎上,建立幾何圖形的概念,發(fā)展空間觀念
            情感態(tài)度價值觀:
            體驗數(shù)學學習的樂趣,提高數(shù)學應用意識。
            教學重點:
            通過觀察,討論,思考和實踐等活動,讓學生會辨識幾何體
            教學難點:
            從具體實物中抽象出幾何體的概念
            教學方法:
            探究式
            教學用具:
            幾何模型、實物、多媒體
            教學過程設計:
            一、觀察與思考
            師:1.呈現(xiàn)生活中的一些物體:水杯、書、鉛筆、筆筒、乒乓球、蘋果、跳棋、冰激凌筒。2.由老師課前準備或當堂演示一些圖片
            提問:這些物體中哪些形狀類似但大小不一樣?
            學生積極思考,踴躍發(fā)言。
            引導學生簡述自己的理由,用自己的語言描述這些幾何體的特征
            師:大家在分類的時候有沒有考慮他們的顏色、材料、質量?
            生:沒有
            師:我們的生活中有類似形狀的許多物體,而對于這些物體如果不考慮他們的顏色、材料、質量,而只注意它們的形狀、大小和位置,就得到我們今后要學習的幾何圖形。
            找出你所認識的幾何圖形
            生:圓錐、圓柱、球
            師:下面讓我們一起來認識它們,(電腦顯示上面各物體抽象出來的幾何體)配注各幾何體名稱(中、英文)。請同學們觀察,剛才的物體分別類似于屏幕上的哪一種幾何體?
            圓柱、圓錐、正方、長方體、棱柱、球
            circular、cylinder、circular、cone、cube、cuboid、prism、sphere
            生:思考,并作出回答
            師:讓我們一起來回想一下平時的日常生活中所見到過的哪些物體的形狀類似于以上的幾何體,(在實物與幾何體模型之間建立對應關系)。
            二、做一做
            師:將書上p3的圖打到屏幕上,同學們一起做,鞏固概念
            三、一起探究
            1.電腦演示七種幾何體,同學們說出它們的名稱
            2.思考,在上述幾何體中,有哪些是我們學過的平面圖形?
            學生思考一段時間后,同桌交流,將部分幾何體拆分,以達到讓學生認識幾何圖形與平面圖形的區(qū)別的目的。
            進一步讓學生思考:
            (1)立體圖形和平面圖形的區(qū)別是什么?
            (2)幾何圖形分幾部分?
            四、小結
            同學們說說這節(jié)課的收獲是什么?
            收獲:(1)初步認識了幾何圖形,有立體圖形和平面圖形。
            (2)立體圖形的分類
            小編為大家提供的七年級上冊數(shù)學幾何圖形教學計劃表大家仔細閱讀了嗎?最后祝同學們學習進步。
            七年級上學期數(shù)學工作計劃篇六
            一、創(chuàng)設情境,展示問題。
            問題1:
            世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術解法,讓學生充分發(fā)表意見。
            算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`—1 學生獨立思考,小組交流,代表發(fā)言,解釋說明。
            問題1的算術解法:
            (50+70)÷2=60(千米/時) 605—70=230(千米) 問題1用算術法較容易解決,但問題2卻不容易解決,這樣產生矛盾沖突,使學生認識到進一步學習的必要性。 示意圖有助于分析問題。
            二、尋找關系,列出方程。
            1、對于問題1,如果設王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊—青山 王家莊—秀水 根據(jù)汽車勻速前進,可知各路段汽車速度相等,列方程。
            2、比一比:列算式與列方程有什么不同?哪一個更簡便?
            3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據(jù)的是哪個相等關系?你認為列方程的關鍵是什么? 結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。
            學生思考回答:
            1、王家莊—青山(`—50)千米,王家莊—秀水(`+70)千米。
            2、汽車以每小時(`—50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學生體會:用算術方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。
            三、定義方程,建立模型。
            1、定義:(板書)含有未知數(shù)的等式叫做方程。
            練習一:判斷下列式子是不是方程,是的打“√”,不是的打“` ”。
            (1)1+2=3 ( ) (2) 1+2`=4 ( ) (3) `+y=2 ( ) (1) `+1—3 ( ) (2) `2—1=0 ( )
            練習二:根據(jù)下列問題,設未知數(shù)并列出方程。
            (1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為` cm。那么依題意得到方程:_________。
            (2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________。
            (3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數(shù)為 ,男生數(shù)為 。 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。
            3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。
            4、歸納分析實際問題中的數(shù)量關系,利用其中的相等關系 列出方程,是用數(shù)學解決實際問題的一種方法。
            (學生舉例并完成練習一) 師生合作,根據(jù)數(shù)量關系列出方程。
            教師結合練習給出方程、一元一次方程的定義。
            (我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解。 教師引導學生對上面的分析過程進行思考,將實際問題轉化為數(shù)學問題的一般過程。
            學生舉出方程的例子。
            (學生獨立思考、互相討論,先分析出等量關系,再根據(jù)所設未知數(shù)列出方程) 判斷哪些是一元一次方程。 學生單獨計算,并填表。 學生得出解決實際問題的模型。
            四、訓練鞏固,課堂小結。
            1、根據(jù)下列問題,設未數(shù)列方程,并指出是不是一元一次方程。
            (1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?
            (2)甲種鉛筆每枝0。3元,乙種鉛筆每枝0。6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?
            (3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。
            2、小結。
            本節(jié)課你學到了哪些知識?哪些方法?
            五、布置作業(yè)。
            a、必做 82頁,第1、2、3、題;
            b、 拓展阿凡提經過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种?,第二個城市向他征收的稅是他剩余錢財?shù)囊话胗秩种唬降谌齻€城市里,又向他征收他經過兩次交稅后所剩余錢財?shù)囊话胗秩种唬斔氐郊业臅r候,他剩下了11個金幣,問阿凡提原來有多少個金幣?
            c、課堂評價。
            1、本節(jié)課的主要知識點是:
            2、你對列方程這節(jié)課的感受是:3、這節(jié)課我的困惑是:
            (1) 設跑`周。 列方程400`=3000
            (2)設甲種鉛筆買了`枝,乙種鉛筆買了(20—`)枝。列方程 0。3`+0。6(20—`)=9 (3)設上底為` cm,下底為(`+2)cm。列方程 學生自己探索,獨立完成,集體訂正。 學生課后完成,并寫學習心得。
            七年級上學期數(shù)學工作計劃篇七
            第一課時
            平面圖形的認識
            教學目標:通過復習使同學進一步理解角、垂直與平行、三角形和四邊形的概念,掌握它們的特征和性質,以和各圖形的聯(lián)系。&lsquo;
            教學過程:
            直線、射線、線段。
            提問:1)分別說一說什么叫直線、射線、線段?
            直線、射線和線段有什么區(qū)別?
            完成123頁上面的“做一做”。(同學筆做)
            角
            提問:1)什么叫做角?
            2)角的大小與什么有關?
            整理:把表中的空格填寫完整。
            完成123頁下面“做一做”的1題、2題。
            銳角
            直角
            鈍角
            平角
            周角
            大于0&deg;
            小于90&deg;
            垂直與平行
            提問:
            1)在同一平面內,兩條直線的相互位置有哪幾種情況?
            2)什么樣的兩條直線叫做互相垂直?
            什么樣的兩條直線叫做互相平行?
            回答:下面幾組直線中,哪組的兩條直線互相垂直?哪組的兩條直線互相平
            完成教材124頁的“做一做”
            三角形。
            提問:
            1)什么叫做三角形?
            2)在下面的三角形中,頂點a的對邊是指哪一條邊?
            先筆做:以頂點a的對邊為底,畫出三角形的高,并標出底和高。(前頁一幅圖)
            在下面的表中填寫三角形的名稱和各自的特征。
            名稱
            圖形
            特征
            回答:銳角三角形、直角三角形、鈍角三角形的聯(lián)系與區(qū)別。
            四邊形
            提問:什么叫四邊形?
            回答:看圖說出下面各圖的特點,再說一說圖中各字母表示什么
            想一想:為什么說長方形、正方形都是特殊的平行四邊形?為什么說正方形是特殊的長方形?
            完成125頁“做一做”中的1、2題。
            七年級上學期數(shù)學工作計劃篇八
            教學目標
            1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
            2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;
            3.三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結合律簡化運算過程;
            4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
            5.本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
            教學建議
            (一)重點、難點分析
            本節(jié)教學的重點是依據(jù)有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。難點是有理數(shù)的加法法則的理解。
            (1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
            (2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
            (3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
            (二)知識結構
            (三)教法建議
            1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。
            2.有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
            3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。
            4.計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
            5.可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結論在有理數(shù)加法運算中未必也成立。
            6.在探討導出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。
            教學設計示例
            有理數(shù)的加法(第一課時)
            教學目的
            1.使學生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算.
            2.通過有理數(shù)的加法運算,培養(yǎng)學生的運算能力.
            教學重點與難點
            重點:熟練應用有理數(shù)的加法法則進行加法運算.
            難點:有理數(shù)的加法法則的理解.
            教學過程
            (一)復習提問
            1.有理數(shù)是怎么分類的?
            2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
            3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
            -3與-2;|3|與|-3|;|-3|與0;
            -2與|+1|;-|+4|與|-3|.
            (二)引入新課
            在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學有理數(shù)的加法運算.
            (三)進行新課 有理數(shù)的加法(板書課題)
            例1 如圖所示,某人從原點0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
            兩次行走后距原點0為8米,應該用加法.
            為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
            1.同號兩數(shù)相加
            (1)某人向東走5米,再向東走3米,兩次一共走了多少米?
            這是求兩次行走的路程的和.
            5+3=8
            用數(shù)軸表示如圖
            從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
            可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
            (2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
            顯然,兩次一共向西走了8米
            (-5)+(-3)=-8
            用數(shù)軸表示如圖
            從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
            可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
            總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
            例如,(-4)+(-5),……同號兩數(shù)相加
            (-4)+(-5)=-( ),…取相同的符號
            4+5=9……把絕對值相加
            ∴ (-4)+(-5)=-9.
            口答練習:
            (1)舉例說明算式7+9的實際意義?
            (2)(-20)+(-13)=?
            (3)
            2.異號兩數(shù)相加
            (1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
            由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
            5+(-5)=0
            可知,互為相反數(shù)的兩個數(shù)相加,和為零.
            (2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
            由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
            就是 5+(-3)=2.
            (3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
            由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
            就是 3+(-5)=-2.
            請同學們想一想,異號兩數(shù)相加的法則是怎么規(guī)定的?強調和的符號是如何確定的?和的絕對值如何確定?
            最后歸納
            絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0.
            例如(-8)+5……絕對值不相等的異號兩數(shù)相加
            8>5
            (-8)+5=-( )……取絕對值較大的加數(shù)符號
            8-5=3 ……用較大的絕對值減去較小的絕對值
            ∴(-8)+5=-3.
            口答練習
            用算式表示:溫度由-4℃上升7℃,達到什么溫度.
            (-4)+7=3(℃)
            3.一個數(shù)和零相加
            (1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
            顯然,5+0=5.結果向東走了5米.
            (2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
            容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.
            請同學們把(1)、(2)畫出圖來
            由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
            總結有理數(shù)加法的三個法則.學生看書,引導他們看有理數(shù)加法運算的三種情況.
            有理數(shù)加法運算的三種情況:
            特例:兩個互為相反數(shù)相加;
            (3)一個數(shù)和零相加.
            每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
            (四)例題分析
            例1 計算(-3)+(-9).
            分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
            解:(-3)+(-9)=-12.
            例2
            分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值.
            .(強調“兩個較大”“一個較小”)
            解:#formatimgid_13#
            解題時,先確定和的符號,后計算和的絕對值.
            (五)鞏固練習
            1.計算(口答)
            (1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);
            (5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
            2.計算
            (1)5+(-22);(2)(-1.3)+(-8)
            (3)(-0.9)+1.5;(4)2.7+(-3.5)
            七年級上學期數(shù)學工作計劃篇九
            教學目標
            知識與能力:掌握去括號法則,運用法則,能按要求正確去括號.
            過程與方法:經歷類比帶有括號的有理數(shù)的運算,探究、發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學生觀察、分析、歸納能力.
            情感、態(tài)度與價值觀:通過參與探究活動,培養(yǎng)學生主動探究、合作交流的意識,嚴謹治學的學習態(tài)度,體會合作與交流的重要性.
            教學重難點
            重點:去括號法則,準確應用法則將整式化簡.
            難點:括號前面是“-”號,去括號時括號內各項都變號.
            教學過程
            一、復習舊知
            1. 化簡
            -(+5) +(+5) -(-7) +(-7)
            2. 去括號
            ① -(3- 7) ② +(3- 7)
            二、探索新知
            想一想:根據(jù)分配律,你能為下面的式子去括號嗎?
            ①+(- a+c) ② - (- a+c)
            ③ +(a-b+c) ④ -(a-b+c)
            觀察這兩組算式,看看去括號前后,括號里各項的符號有什么變化?
            去括號法則:
            括號前是“+”號的,把括號和它前面的“+”號去掉,
            括號里各項都不改變符號;
            括號前是“ - ”號的,把括號和它前面的“ - ”號去掉,
            括號里各項都改變符號。
            順口溜:
            去括號,看符號;是“+”號,不變號;是“-”號,全變號。
            三、鞏固練習:
            (1)去括號:
            a+(b-c)= _______ a- (b-c)= ______
            a+(- b+c)= _______ a- (- b+c)= ______
            (2)判斷正誤
            a-(b+c)=a-b+c ( )
            a-(b-c)=a-b-c ( )
            2b+(-3a+1)=2b-3a-1 ( )
            3a-(3b-c)=3a-3b+c ( )
            四、例題學習:為下面的式子去括號
            +3(a - b+c) - 3(a - b+c)
            五、課堂檢測:
            去括號:
            ① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
            六、課堂小結
            去括號時應注意的事項:
            (1)、去括號時應先判斷括號前面是“+”號還是“-”號。
            (2)、去括號后,括號內各項符號要么全變號,要么全不變號。
            (3)、括號前面是“-”號時,去掉括號后,括號內的各項都要改變符號,不能只改變第一項或前幾項的符號。
            七、布置作業(yè):
            必做題:課本70頁習題2.2 第2,3題
            選做題:課本70頁 習題2.2 第4題
            七年級上學期數(shù)學工作計劃篇十
            【學習目標】
            1、理解什么是一元一次方程。
            2、理 解什么是方程的解及解方程,學會檢驗一個數(shù)值是不是方程的 解的方法。
            【重點難點】能驗證一個數(shù)是否是一個方程 的解。
            【導學指導】
            一、溫故知新
            1:前面學 過有關方程的一些 知識,同學們能說出什么是方程嗎?
            答: 叫做方程。
            2: 判斷下列是不是 方程,是打“√”,不是打“×”:
            ① ;( ) ②3+4=7;( )
            ③ ;( )④ ;( )
            ⑤ ;( ) ⑥ ;( )
            二、自主探究
            1. 一元一次方程的概念
            觀察下面方程的特點
            (1)4 =24;(2)1700+150=2450
            (3)0.52`-(1-0.52`)=80
            小結:象上面方程,它們都含有 個未知數(shù)(元),未知數(shù)的次數(shù)都是 ,這樣的方程叫做一元一次方程。
            (即方程的一邊或兩邊含有未知數(shù))
            2.方程的解
            如何求出使方程左右兩邊相等的未知數(shù)的值?
            如方程 =4中, =?
            方程 中的 呢?
            請用小學所學過的逆運算嘗試解決上面的問題。
            解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。
            例 檢驗2和-3是否為方程 的解。
            解:當`=2時,
            左邊= = ,
            右邊= = ,
            ∵左邊 右邊(填=或≠)
            ∴`=2 方程的解(填是或不是)
            當`= 時,
            左邊= = ,
            右邊= = ,
            ∵左邊 右邊(填=或≠)
            ∴`=3 方程的解(填是或不是)
            【課堂練習】
            1.判斷下列是不是一元一次方程,是打“√”,不是打“×”:
            ① =4;( ) ② ;( )
            ③ ; ( ) ④ ; ( )
            ⑤ ; ( ) ⑥3+4 =7 ;( )
            2.檢驗3和-1是否為方程 的解。
            3.`=1是下列方程( )的解:
            (a) , ( b) ,
            (c) ), ( d)
            4 、已知方程 是關于`的一元一次方程,則a= 。
            【要點歸納】:
            1. 這節(jié)課我們學習了什么內容?
            2.什么是方程的解?如何檢驗一個數(shù)是否是方程的解?
            【拓展訓練】:
            1.檢驗2和 是否為方程 的解。
            2.老師要求把一篇有20__字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個字,問:小華要多少分鐘才能完成?(請設未知數(shù)列出方程,并嘗試求出 方程的解)
            七年級上學期數(shù)學工作計劃篇十一
            一、教材分析
            (一)教材的地位和作用
            方程是初等數(shù)學的基本知識,也是進一步學習一元一次方程,二元一次方程組,一元一次不等式及一元二次方程的基礎.方程在實際問題中的應用,是中學階段應用數(shù)學知識解決實際問題的重要開端,也是增強學生學習數(shù)學、應用數(shù)學意識的重要題材.本節(jié)教材主要起著承前啟后的作用,可以說是小學與中學內容上的銜接點,方法上的分水嶺.
            (二)教學內容
            “從算式到方程”新教材與原教材的顯著區(qū)別:方程這一部分內容不是按照由定義到解法最后講應用的純數(shù)學體系編排,而是首先從實際問題出發(fā),通過比較算術方法與方程求解的區(qū)別,體會方程的優(yōu)越性,讓學生認識到從算式到方程是數(shù)學的一大進步.然后再通過具體實際問題所列方程,介紹方程等概念.新教材的編寫更加體現(xiàn)了數(shù)學的應用價值.
            (三)教學重點難點
            由于學生在小學階段已習慣用算術方法解決實際問題,對列方程不太熟練,為了防止學生仍停留在列算式解題的低層上,所以本節(jié)重點確定為:讓學生在討論問題、解決問題的過程中,比較列算式與列方程在分析數(shù)量關系上的區(qū)別及列方程時相等關系的建立.而本節(jié)中學生可能感到困難的仍是實際問題相等關系的建立.
            二、目標分析
            依據(jù)課程標準的要求,確定以下目標:
            (一)知識與技能目標
            1.了解方程等基本概念.
            2.會根據(jù)具體問題中的數(shù)量關系列出方程.
            (二)過程與方法目標
            經歷從具體問題中的數(shù)量相等關系列出方程的過程,體會并認識方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型,滲透數(shù)學建模的思想.
            (三)情感目標
            讓學生進一步認識到方程與現(xiàn)實世界的密切關系,感受數(shù)學的價值.培養(yǎng)學生獲取信息,分析問題,處理問題的能力。
            三、教法與學法分析
            根據(jù)本節(jié)內容與現(xiàn)實生活聯(lián)系較緊密的特點,教學中選取學生熟悉的、感興趣的背景材料,充分調動學生的學習熱情.并恰當設計各種問題,讓學生在教師的引導下,通過小組討論、相互交流、動手操作、自主探索等活動,獲得知識,積累經驗,體驗成功,積極推行自主學習、合作學習、探究學習等新的學習方式,努力完成教師和學生在教與學活動中角色的轉變.
            四、教學過程分析
            教學目標 ①進一步理解用等式的性質解簡簡單的(兩次運用等式的性質)一元一次方程
            ②初步具有解方程中的化歸意識;
            ③培養(yǎng)言必有據(jù)的思維能力和良好的思維品質.
            教學重點 用等式的性質解方程。
            知識難點 需要兩次運用等式的性質,并且有一定的思維順序。
            教學過程(師生活動) 設計理念
            復習引入 解下列方程:(1)`+7=1.2; (2)
            在學生解答后的講評中圍繞兩個問題:
            ① 每一步的依據(jù)分別是什么?
            ② 求方程的解就是把方程化成什么形式?
            這節(jié)課繼續(xù)學習用等式的性質解一元一次方程。 由于這一課時也是學習用等式的性質解方程,所以通過復習來引入比較自然。
            探究新知 對于簡單的方程,我們通過觀察就能選擇用等式的哪一條性質來解,下列方程你也能馬上做出選擇嗎?
            例1 利用等式的性質解方程:
            0.5`-`=3.4 (2)
            先讓學生對第(1)題進行嘗試,然后教師進行引導:
            ① 要把方程0.5`-`=3.4轉化為`=a的形式,必須去掉方程左邊的0.5,怎么去?
            ② 要把方程-`=2.9轉化為`=a的形式,必須去掉`前面的“-”號,怎么去?
            然后給出解答:
            解:兩邊減0.5,得0.5-`-0.5=3.4-0.5
            化簡,得
            -`=-2.9,、
            兩邊同乘-1,得l
            `=-2.9
            小結:(1)這個方程的解答中兩次運用了等式的性質(2)解方程的目標是把方程最終化為`=a的形式,在運用性質進行變形時,始終要朝著這個目標去轉化.
            你能用這種方法解第(2)題嗎?
            在學生解答后再點評.
            解后反思:
            ①第(2)題能否先在方程的兩邊同乘“一3”?
            ②比較這兩種方法,你認為哪一種方法更好?為什么?
            允許學生在討論后再回答.
            例2(補充)服裝廠用355米布做成人服裝和兒童服裝,成人服裝每套平均用布3.5米,兒童服裝每套平均用布1.5米.現(xiàn)已做了80套成人服裝,用余下的布還可以做幾套兒童服裝?
            在學生弄清題意后,教師再作分析:如果設余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5`米,根據(jù)題意,你能列出方程嗎?
            解:設余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5米,根據(jù)題意,得
            80`×3.5+1.5`=355.
            化簡,得
            280+1.5`=355,
            兩邊減280,得
            280+1.5`-280=355-280,
            化簡,得
            1.5`=75,
            兩邊同除以1.5,得`=50.
            答:用余下的布還可以做50套兒童服裝.
            解后反思:對于許多實際間題,我們可以通過設未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉化為數(shù)學問題.
            問題:我們如何才能判別求出的答案50是否正確?
            在學生代入驗算后,教師引導學生歸納出方法:檢驗一個數(shù)值是不是某個方程的解,可以把這個數(shù)值代入方程,看方程左右兩邊是否相等,例如:把`=50代入方程80×3.5+1.5`=355的左邊,得80×3.5+1.5×50=280+75=355
            方程的左右兩邊相等,所以`=50是方程的解。
            你能檢驗一下`=-27是不是方程 的解嗎? 不同層次的學生經過嘗試就會有不同的收獲:一部分學生能獨立解決,一部分學生雖不能解答,但經過老師的引導后,也能受到啟發(fā),這比純粹的老師講解更能激發(fā)學生的積級性。
            這里補充一個例題的目的一是解方程的應用,二是前兩節(jié)課中已學到了方程,在這里可以進一步應用,三是使后面的“檢驗”更加自然。
            解題的格式現(xiàn)在不一定要學生嚴格掌握。
            課堂練習 ① 教科書第73頁練習 第(3)(4)題。
            ② 小聰帶了18元錢到文具店買學習用品,他買了5支單價為1.2元的圓珠筆,剩下的錢剛好可以買8本筆記本,問筆記本的單價是多少?(用列方程的方法求解)
            建議:采用小組競賽的方法進行評議
            小結與作業(yè)
            課堂小結 建議:①先讓學生進行歸納、補充。主要圍繞以下幾個方面:
            (1) 這節(jié)課學習的內容。
            (2) 我有哪些收獲?
            (3) 我應該注意什么問題?
            ②教師對學生的學習情況進行評價。
            ③思考題 用等式的性質求`:-2`=-5`+7 引發(fā)競爭意識,提高自我評價和自我表現(xiàn)的機會,以達到激發(fā)興趣,鞏固知識的目的。評價包括對學生個人、小組,對學生的學習態(tài)度、情感投入及學習的效果方面等。
            本課作業(yè) ① 必做題:教科書第73頁第4(1)、(2)、(4)題;補充:用等式的性質解方程:①3+4`=17;②4- =3
            ② 選做題:教科書第73頁第4(3)題,第74頁第10題。
            本課教育評注(課堂設計理念,實際教學效果及改進設想)
            1、力求體現(xiàn)新課程理念:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知
            識經驗基礎之上。教師應激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會……學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者.本設計從新課的引人、例題的處理(包括解題后的反思)、反饋練習及小結提高等各環(huán)節(jié)都力求充分體現(xiàn)這一點.
            2、在傳統(tǒng)的課堂教學中,教師往往通過大量地講解,把學生變成任教師“灌輸”的“容
            器”,學生只能接受、輸入并存儲知識,而教師進行的也只不過是機械地復制文化知識.新
            課程的一個重要方面就是要改變學生的學習方式,將被動的、接受式的學習方式,轉變?yōu)閯邮謱嵺`、自主探索與合作交流等方式.本設計在這方面也有較好的體現(xiàn).
            3、為突出重點,分散難點,使學生能有較多機會接觸列方程,本章把對實際問題的討論作為貫穿于全章前后的一條主線.對一元一次方程解法的討論始終是結合解決實際問題進行的,即先列出方程,然后討論如何解方程,這是本章的又一特點.本設計充分體現(xiàn)了這一特點.
            七年級上學期數(shù)學工作計劃篇十二
            一、學生起點分析
            學生的知識技能基礎:學生在小學已經學習過算術四則運算,而初中的有理數(shù)運算是以小學算術四則運算為基礎的,不同的是有理數(shù)運算多了一個符號問題。符號法則是有理數(shù)運算法則的重要組成部分,也是學生學習本章知識和今后學習其他與計算有關的內容時容易出錯的知識點之一。
            學生活動經驗基礎:在前面相關知識的學習過程中,學生已經經歷了一些數(shù)學活動,感受到了數(shù)的范圍的擴大,能借助生活經驗對一些簡單的實際問題進行有理數(shù)的運算,如計算比賽的得分,計算溫差等等。同時在以前的數(shù)學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定數(shù)學交流的能力。
            學生學習中的困難預設:學生學習數(shù)學是一種認識過程,要遵循一般的認識規(guī)律,而七年級的學生,對異號兩數(shù)相加從未接觸過,與小學加法比較,思維強度增大,需要通過絕對值大小的比較來確定和的符號和加法轉化為減法兩個過程,要求學生在課堂上短時間內完成這個認識過程確有一定的難度,在教學時應從實例出發(fā),充分利用教材中的正負抵消的思想,用數(shù)形結合的觀點加以解釋,讓學生感知法則的由來,以突破這一難點。
            二、教學任務分析
            對于有理數(shù)的運算,首先在于運算的意義的理解,即首先要回答為什么要進行運算。為此,必須讓學生通過具體的問題情境,認識到運算的作用,加深學生對運算本身意義的理解,同時也讓學生體會到運算的應用,從而培養(yǎng)學生一定的應用意識和能力。教科書基于學生學習了相反數(shù)和絕對值基礎之上,提出了本課時的具體學習任務:探索有理數(shù)的加法運算法則,進行有理數(shù)的加法運算。本課時的教學重點是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進行計算,教學難點是異號兩數(shù)相加的法則。教學方法是“引導——分類——歸納”。本課時的教學目標如下:
            1.經歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;
            2.能熟練進行整數(shù)加法運算;
            3.培養(yǎng)學生的數(shù)學交流和歸納猜想的能力;
            4.滲透分類、探索、歸納等思想方法,使學生了解研究數(shù)學的一些基本方法。
            三、教學過程設計
            本課時設計了六個教學環(huán)節(jié):第一環(huán)節(jié):復習引入,提出問題;第二環(huán)節(jié):活動探究,猜想結論;第三環(huán)節(jié):驗證明確結論;第四環(huán)節(jié):運用鞏固;第五環(huán)節(jié):課堂小結;第六環(huán)節(jié):布置作業(yè)。
            (一)復習引入,提出問題
            活動內容:
            1.復習提問:
            (1)下列各組數(shù)中,哪一個較大?
            (2)一位同學在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點的哪個方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負,該問題用算式表示為 。
            活動目的:我們已經熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。這里先讓學生回顧在具體問題中感受正數(shù)和負數(shù)的加法運算。
            2.提出問題:
            某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分.
            如果我們用1個 表示+1,用1個 ,那么 就表示0,同樣 也表示0.
            (1)計算(-2)+(-3).
            在方框中放進2個 和3個 :
            因此,(-2)+(-3)= -5.
            用類似的方法計算(2)(-3)+ 2
            (3) 3 +(-2)
            (4) 4+(-4)
            思考: 兩個有理數(shù)相加,還有哪些不同的情形?舉例說明。
            引導學生列舉兩個正數(shù)相加,如3 + 2,一個數(shù)和零相加,如0+(-4),4 + 0。
            活動目的:通過實際問題情境類比列出兩個有理數(shù)相加的7種不同情形,兩個正數(shù)相加、兩個負數(shù)相加,異號兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個加數(shù)為0。進而討論如何進行一般的有理數(shù)加法的運算。
            活動的實際效果: 實際問題情境為學生營造了良好的學習氛圍,利于他們積極探究.
            (二)活動探究,猜想結論:
            上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?
            學生分組進行活動,教師關注學生在活動中的表現(xiàn),可以根據(jù)學生的實際情況給予適當點撥和引導,鼓勵學生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認識。
            對“一起探究”,教師可引導學生按以下步驟思考:
            1、觀察列出的具體算式,根據(jù)兩個加數(shù)的符號分類:兩個正數(shù)相加、兩個負數(shù)相加,異號兩數(shù)相加(根據(jù)絕對值又可分為三類)、一個加數(shù)為0。
            2、同號兩數(shù)相加時,和的符號與兩個加數(shù)的符號有怎樣的關系?和的絕對值和加數(shù)的絕對值有怎樣的關系?異號兩數(shù)相加時和的符號與兩個加數(shù)的符號有怎樣的關系?和的絕對值和加數(shù)的絕對值有怎么樣的關系?有一個加數(shù)為0時,和是什么?
            3、從中歸納概括出規(guī)律
            在學生探究的基礎上,教師引出規(guī)定的加法法則。
            在活動中,盡可能讓學生獨立完成,必要時可以交流,教師只在適當?shù)臅r候給予幫助。
            同號兩數(shù)相加,取相同的符號,并把絕對值相加。
            異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
            一個數(shù)同0相加,仍得這個數(shù)。
            活動目的:利用分組討論、分類歸納幫助學生理解加法運算過程,同時有利于加法運算法則的歸納。
            活動的實際效果:由于采用了圖示的教學手段,在教師的引導下讓學生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語言表達規(guī)律,最后由學生對規(guī)律進行歸納總結補充,從而得出有理數(shù)的加法法則.通過實際問題情境,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學生的分類和歸納概括的能力。
            (三)驗證明確結論:
            例1 計算下列算式的結果,并說明理由:
            (1) 180 +(-10) (2) (-10)+(-1);
            (3)5+(-5); (4) 0+(-2)
            活動目的:給學生提供示范,進行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進行,一觀察是指觀察兩個加數(shù)是同號還是異號,二確定是指確定“和”的符號,三求和是指計算“和”的絕對值.
            活動的實際效果:通過習題,加深了學生對有理數(shù)加法法則的理解。
            (四)運用鞏固:
            活動內容:
            1. 口答下列算式的結果
            (1) (+4)+(+3); (2) (-4)+(-3);
            (3)(+4)+(-3); (4) (+3)+(-4);
            (5)(+4)+(-4); (6) (-3)+0
            (7) 0+(+2); (8) 0+0.
            活動目的:通過這組練習,讓學生進一步鞏固有理數(shù)加法的法則,達到熟練程度。
            2.請同學們完成書上的隨堂練習:
            (1)(-25)+(-7); (2)(-13)+5;
            (3)(-23)+0; (4)45+(-45)
            全班學生書面練習,四位學生板演,教師對學生板演進行講評.
            活動目的:習題的配備上,注意到學生的思維是一個循序漸進的過程,所以由易到難,使學生在練習的過程中能夠逐步地提高能力,得到發(fā)展。
            活動的實際效果: 通過練習進一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯,活躍課堂氣氛,充分調動學生的積極性,學生在一種比較活躍的氛圍中,解決各種(五)課堂小結:
            活動內容:師生共同總結。
            1. 兩個有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號,最后確定和的絕對值
            2. 有理數(shù)加法法則及其應用。
            3. 注意異號的情況。
            活動目的:課堂小結并不只是課堂知識點的回顧,要盡量讓學生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學,更要有所思考,達到對所學知識鞏固的目的。
            活動的實際效果: 學生對“一觀察,二確定,三求和”的步驟印象較深,達到了本節(jié)課的教學目標。
            七年級上學期數(shù)學工作計劃篇十三
            教學目標和要求:
            1.理解同類項的概念,在具體情景中,認識同類項。
            2.通過小組討論、合作學習等方式,經歷概念的形成過程,培養(yǎng)學生自主探索知識和合作交流的能力。
            3.初步體會數(shù)學與人類生活的密切聯(lián)系。
            教學重點和難點:
            重點:理解同類項的概念。
            難點:根據(jù)同類項的概念在多項式中找同類項。
            教學方法:
            分層次教學,講授、練習相結合。
            教學過程:
            一、復習引入:
            1、創(chuàng)設問題情境
            ⑴5個人+8個人=
            ⑵5只羊+8只羊=
            ⑶5個人+8只羊=
            (數(shù)學教學要緊密聯(lián)系學生的生活實際、學習實際,這是新課程標準所賦予的任務。學生嘗試按種類、顏色等多種方法進行分類,一方面可提供學生主動參與的機會,把學生的注意力和思維活動調節(jié)到積極狀態(tài);另一方面可培養(yǎng)學生思維的靈活性,同時體現(xiàn)分類的思想方法。)
            2、觀察下列各單項式,把你認為相同類型的式子歸為一類。
            8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
            由學生小組討論后,按不同標準進行多種分類,教師巡視后把不同的分類方法投影顯示。
            要求學生觀察歸為一類的式子,思考它們有什么共同的特征?
            請學生說出各自的分類標準,并且肯定每一位學生按不同標準進行的分類。
            (充分讓學生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學習和合作交流,可極大的激發(fā)學生學習的積極性和主動性,滿足學生的表現(xiàn)欲和探究欲,使學生學得輕松愉快,充分體現(xiàn)課堂教學的開放性。)
            二、講授新課:
            1.同類項的定義:
            我們常常把具有相同特征的事物歸為一類。8x2y與-x2y可以歸為一類,2xy2與-可以歸為一類,-mn2、7mn2與0.4mn2可以歸為一類,5a與9a可以歸為一類,還有、0與也可以歸為一類。8x2y與-x2y只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是2,y的指數(shù)都是1;同樣地,2xy2與-也只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是1,y的指數(shù)都是2。
            像這樣,所含字母相同,并且相同字母的指數(shù)也分別相等的項叫做同類項(similar terms)。另外,所有的常數(shù)項都是同類項。比如,前面提到的、0與也是同類項。
            通過特征的講述,選擇所含字母相同,并且相同字母的指數(shù)也分別相等的項作為研究對象,并稱它們?yōu)橥愴棥?板書課題:同類項。)
            (教師為了讓學生理解同類項概念,可設問同類項必須滿足什么條件,讓學生歸納總結。)
            板書由學生歸納總結得出的同類項概念以及所有的常數(shù)項都是同類項。
            2.例題:
            例1:判斷下列說法是否正確,正確地在括號內打“√”,錯誤的打“×”。
            (1)3x與3mx是同類項。 ( ) (2)2ab與-5ab是同類項。 ( )
            (3)3x2y與-yx2是同類項。 ( ) (4)5ab2與-2ab2c是同類項。 ( )
            (5)23與32是同類項。 ( )
            (這組判斷題能使學生清楚地理解同類項的概念,其中第(3)題滿足同類項的條件,只要運用乘法交換律即可;第(5)題兩個都是常數(shù)項屬于同類項。一部分學生可能會單看指數(shù)不同,誤認為不是同類項。)
            例2:游戲:
            規(guī)則:一學生說出一個單項式后,指定一位同學回答它的兩個同類項。[來源:學|科|網z|x|x|k]
            要求出題同學盡可能使自己的題目與眾不同。
            可請回答正確的同學向大家介紹寫一個單項式同類項的經驗,從而揭示同類項的本質特征,透徹理解同類項的概念。
            (學生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的程式化做法,并由編題學生指定某位同學回答,可使課堂氣氛活躍,學生透徹理解知識,這種形式適合初中生的年齡特征。學生通過一定的嘗試后,能得出只要改變單項式的系數(shù),即可得到其同類項,實際是抓住了同類項概念中的兩個“相同”,從而深刻揭示了概念的內涵。)
            例3:指出下列多項式中的同類項:
            (1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
            解:(1)3x與-2x是同類項,-2y與3y是同類項,1與-5是同類項。
            (2)3x2y與-yx2是同類項,-2xy2與xy2是同類項。
            例4:k取何值時,3xky與-x2y是同類項?
            解:要使3xky與-x2y是同類項,這兩項中x的次數(shù)必須相等,即 k=2。所以當k=2時,3xky與-x2y是同類項。
            例5:若把(s+t)、(s-t)分別看作一個整體,指出下面式子中的同類項。
            (1)(s+t)-(s-t)-(s+t)+(s-t);
            (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
            解:略。
            (組織學生口頭回答上面三個例題,例3多項式中的同類項可由教師標出不同的下劃線,并運用投影儀打出書面解答,為合并同類項作準備。例4讓學生明確同類項中相同字母的指數(shù)也相同。例5必須把(s-t)、(s+t)分別看作一個整體。)
            (通過變式訓練,可進一步明晰“同類項”的意義,在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、提高識別能力。)
            6.五分鐘測試:
            1、請寫出2ab2c3的一個同類項.你能寫出多少個?它本身是自己的同類項嗎?
            (學生先在課本上解答,再回答,若有錯誤請其他同學及時糾正。)
            三、課堂小結:[
            ①理解同類項的概念,會在多項式中找出同類項,會寫出一個單項式的同類項,會判斷同類項。
            ②這堂課運用到分類思想和整體思想等數(shù)學思想方法。
            ③學習同類項的用途是為了簡化多項式,為下一課的合并同類項打下基礎。
            (課堂小結不僅僅是知識點的羅列,應使知識條理化、系統(tǒng)化,應上升到數(shù)學思想方法的總結與運用.采用學生相互補充完善,教師適時點撥的課堂小結方式,可訓練學生的歸納能力和表達能力,提高學生學習的積極性和主動性。)
            四、課堂作業(yè):
            若2amb2m+3n與a2n-3b8的和仍是一個單項式,則m與 n的值分別是______。
            板書設計:
            教學后記:
            建立在學生的認知發(fā)展水平上,從學生已有的生活經驗出發(fā),通過小組討論,把一些實物進行分類,從而引出同類項這個概念,并通過練習、游戲、合作交流等學習活動讓學生更清楚地認識同類項。在整堂課的教學活動中充分體現(xiàn)學生的主體性,向學生提供充分參與數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能,培養(yǎng)學生動手、動口、動腦的能力和學生的合作交流能力。
            七年級上學期數(shù)學工作計劃篇十四
            學習目標:
            1、理解加減法統(tǒng)一成加法運算的意義.
            2、會將有理數(shù)的加減混合運算轉化為有理數(shù)的加法運算.
            3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
            學習重點、難點:有理數(shù)加減法統(tǒng)一成加法運算
            教學方法:講練相結合
            教學過程
            一、學前準備
            1、一架飛機作特技表演,起飛后的高度變化如下表:
            高度的變化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米
            記作 +4.5千米 —3.2千米 +1.1千米 —1.4千米
            請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了 千米.
            2、你是怎么算出來的,方法是
            二、探究新知
            1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
            2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
            3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉化為 .再把加號記在腦子里,省略不寫
            如:(-20)+(+3)-(-5)-(+7) 有加法也有減法
            =(-20)+(+3)+(+5)+(-7) 先把減法轉化為加法
            = -20+3+5-7 再把加號記在腦子里,省略不寫
            可以讀作:“負20、正3、正5、負7的 ”或者“負20加3加5減7”.
            4、師生完整寫出解題過程
            三、解決問題
            1、解決引例中的問題,再比較前面的方法,你的感覺是
            2、例題:計算-4.4-(-4 )-(+2 )+(-2 )+12.4
            3、練習:計算 1)(—7)—(+5)+(—4)—(—10)
            三、鞏固
            1、小結:說說這節(jié)課的收獲
            2、p241、2
            3、計算
            1)27—18+(—7)—32 2)
            四、作業(yè)
            1、p255 2、p26第8題、14題
            七年級上學期數(shù)學工作計劃篇十五
            1.熟練地進行有理數(shù)加減混合運算,并利用運算律簡化運算;
            2. 培養(yǎng)學生的運算能力。
            加減運算法則和加法運算律。
            省略加號與括號的計算。
            電腦、投影儀
            一、從學生原有認知結構提出問題
            說出-6+9-8-7+3兩種讀法.
            二、解決問題
            1.計算:(1)-12+11-8+39; (2)+45-9-91+5;
            (3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;
            2.用較簡便方法計算:
            -16+25+16-15+4-10.
            三、應用、拓展
            例1.計算:2/3-1/8-(-1/3)+(-3/8)
            練一練:1.p46第1題(1)-(4)題;p46問題解決
            例2.當a=13,b=-12.1,c=-10.6,d=25.1時,求下列代數(shù)式的值:
            (1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;
            (5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;
            (9)(a-c)-(b-d); (10)a-c-b+d.
            請同學們觀察一下計算結果,可以發(fā)現(xiàn)什么規(guī)律?
            練一練:1.當a=2.7,b=-3.2,c=-1.8時,求下列代數(shù)式的值:
            (1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.
            2.分別根據(jù)下列條件求代數(shù)式·-y-z+w的值:
            (1)·=-3,y=-2,z=0,w=5;
            (2)·=0.3,y=-0.7,z=1.1,w=-2.1;
            七年級上學期數(shù)學工作計劃篇十六
            1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義;
            2、了解什么是方程,什么是一元一次方程及什么是方程的解。
            1、認識列方程解決問題的思想以及用字母表示未知數(shù),用方程表示相等關系的符號化的方法
            2、結合從實際問題中得出的方程,學會用“去分母”解一元一次方程,進一步體會化歸的思想。體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決,激發(fā)學習數(shù)學的熱情。建立一元一次方程的概念。 問題與情境 師生活動 設計意圖
            一、創(chuàng)設情境,展示問題:
            問題1:世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術解法,讓學生充分發(fā)表意見。算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`-1 學生獨立思考,小組交流,代表發(fā)言,解釋說明。問題1的算術解法:(50+70)÷2=60(千米/時) 605-70=230(千米) 問題1用算術法較容易解決,但問題2卻不容易解決,這樣產生矛盾沖突,使學生認識到進一步學習的必要性。 示意圖有助于分析問題。
            二、尋找關系,列出方程
            1、對于問題1,如果設王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊-青山 王家莊-秀水 根據(jù)汽車勻速前進,可知各路段汽車速度相等,列方程。
            2、比一比:列算式與列方程有什么不同?哪一個更簡便?
            3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據(jù)的是哪個相等關系?你認為列方程的關鍵是什么? 結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。學生思考回答:
            1、王家莊-青山(`—50)千米,王家莊-秀水(`+70)千米。
            2、汽車以每小時(`-50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學生體會:用算術方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。
            三、定義方程,建立模型
            1、定義:(板書)含有未知數(shù)的等式叫做方程。
            練習一:判斷下列式子是不是方程,是的打“√”,不是的打“` ”.
            (1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )
            練習二:根據(jù)下列問題,設未知數(shù)并列出方程。
            (1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為` cm。那么依題意得到方程:_________. (2)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________. (3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數(shù)為 ,男生數(shù)為 . 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。
            練習三:判斷下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)
            3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。
            4、歸納分析實際問題中的數(shù)量關系,利用其中的相等關系 列出方程,是用數(shù)學解決實際問題的一種方法。 (學生舉例并完成練習一) 師生合作,根據(jù)數(shù)量關系列出方程。
            教師結合練習給出方程、一元一次方程的定義。 (我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解. 教師引導學生對上面的分析過程進行思考,將實際問題轉化為數(shù)學問題的一般過程。
            學生舉出方程的例子。 (學生獨立思考、互相討論,先分析出等量關系,再根據(jù)所設未知數(shù)列出方程) 判斷哪些是一元一次方程。 學生單獨計算,并填表。 學生得出解決實際問題的模型。
            四、訓練鞏固,課堂小結
            1、根據(jù)下列問題,設未數(shù)列方程,并指出是不是一元一次方程。(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?(2)甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。
            2、小結 本節(jié)課你學到了哪些知識?哪些方法?
            五、布置作業(yè)a、 必做 82頁,第1、2、3、題; b、 拓展阿凡提經過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种?,第二個城市向他征收的稅是他剩余錢財?shù)囊话胗秩种?,到第三個城市里,又向他征收他經過兩次交稅后所剩余錢財?shù)囊话胗秩种?,當他回到家的時候,他剩下了11個金幣,問阿凡提原來有多少個金幣? c、課堂評價
            1、 本節(jié)課的主要知識點是:
            2、 你對列方程這節(jié)課的感受是:
            3、 這節(jié)課我的困惑是: 解:(1) 設跑`周. 列方程400`=3000
            4、 (2)設甲種鉛筆買了`枝,乙種鉛筆買了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)設上底為` cm,下底為(`+2)cm.列方程 學生自己探索,獨立完成,集體訂正。 學生課后完成,并寫學習心得。