勤奮是學習的枝葉,當然很苦,智慧是學習的花朵,當然香郁。為各位同學整理了《高一數(shù)學必修三知識點筆記整理》,希望對你的學習有所幫助!
1.高一數(shù)學必修三知識點筆記整理 篇一
概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.
2.高一數(shù)學必修三知識點筆記整理 篇二
映射
一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
對于映射f:A→B來說,則應(yīng)滿足:
(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;
(2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;
(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。
3.高一數(shù)學必修三知識點筆記整理 篇三
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
4.高一數(shù)學必修三知識點筆記整理 篇四
總體和樣本
①在統(tǒng)計學中,把研究對象的全體叫做總體。
②把每個研究對象叫做個體。
③把總體中個體的總數(shù)叫做總體容量。
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。
簡單隨機抽樣也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的`每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
簡單隨機抽樣常用的方法
①抽簽法
②隨機數(shù)表法
③計算機模擬法
④使用統(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
抽簽法
①給調(diào)查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調(diào)查。
5.高一數(shù)學必修三知識點筆記整理 篇五
1、直線方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x軸截距)
點斜式:y-y1=k(x-x1)(直線過定點(x1,y1))
兩點式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
做題過程中,點斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
在與圓及圓錐曲線結(jié)合的過程中,還要用到點到直線距離公式。
2、直線方程的局限性
各種不同形式的直線方程的局限性:
(1)點斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點式不能表示與坐標軸平行的直線;
(3)截距式不能表示與坐標軸平行或過原點的直線;
(4)直線方程的`一般式中系數(shù)A、B不能同時為零。
1.高一數(shù)學必修三知識點筆記整理 篇一
概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.
2.高一數(shù)學必修三知識點筆記整理 篇二
映射
一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
對于映射f:A→B來說,則應(yīng)滿足:
(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;
(2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;
(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。
3.高一數(shù)學必修三知識點筆記整理 篇三
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
4.高一數(shù)學必修三知識點筆記整理 篇四
總體和樣本
①在統(tǒng)計學中,把研究對象的全體叫做總體。
②把每個研究對象叫做個體。
③把總體中個體的總數(shù)叫做總體容量。
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。
簡單隨機抽樣也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的`每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
簡單隨機抽樣常用的方法
①抽簽法
②隨機數(shù)表法
③計算機模擬法
④使用統(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
抽簽法
①給調(diào)查對象群體中的每一個對象編號;
②準備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調(diào)查。
5.高一數(shù)學必修三知識點筆記整理 篇五
1、直線方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x軸截距)
點斜式:y-y1=k(x-x1)(直線過定點(x1,y1))
兩點式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
做題過程中,點斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
在與圓及圓錐曲線結(jié)合的過程中,還要用到點到直線距離公式。
2、直線方程的局限性
各種不同形式的直線方程的局限性:
(1)點斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點式不能表示與坐標軸平行的直線;
(3)截距式不能表示與坐標軸平行或過原點的直線;
(4)直線方程的`一般式中系數(shù)A、B不能同時為零。