歸納好每一個知識點,會讓你在考試中受益匪淺。為各位同學(xué)整理了《高二文科數(shù)學(xué)知識點整理》,希望對你的學(xué)習(xí)有所幫助!
1.高二文科數(shù)學(xué)知識點整理 篇一
解決不等式的有關(guān)問題:
(1)不等式恒成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
2.高二文科數(shù)學(xué)知識點整理 篇二
等腰直角三角形面積公式:
S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
S=ch/2=c2/4
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
3.高二文科數(shù)學(xué)知識點整理 篇三
極值的定義:
(1)極大值:一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)
(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。
極值的性質(zhì):
(1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;
(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;
(3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;
(4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。
求函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f(x);
(2)求方程f(x)=0的根;
(3)用函數(shù)的導(dǎo)數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f(x)在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則f(x)在這個根處無極值。
4.高二文科數(shù)學(xué)知識點整理 篇四
1、頻率分布直方圖
(1)通常我們對總體作出的估計一般分成兩種:一種是用樣本的頻率分布估計總體的分布;另一種是用樣本的數(shù)字特征估計總體的數(shù)字特征。
(2)作頻率分布直方圖的步驟。
①求極差(即一組數(shù)據(jù)中值與最小值的差)。
②決定組距與組數(shù)。
③將數(shù)據(jù)分組。
④列頻率分布表。
⑤畫頻率分布直方圖。
(3)在頻率分布直方圖中,縱軸表示頻率/組距,數(shù)據(jù)落在各小組內(nèi)的頻率用各小長方形的面積表示。各小長方形的面積總和等于1。
2、頻率分布折線圖和總體密度曲線
(1)頻率分布折線圖:連接頻率分布直方圖中各小長方形上端的中點,就得頻率分布折線圖。
(2)總體密度曲線:隨著樣本容量的增加,作圖時所分組數(shù)增加,組距減小,相應(yīng)的頻率折線圖會越來越接近于一條光滑曲線,即總體密度曲線。
3、莖葉圖的優(yōu)點
用莖葉圖表示數(shù)據(jù)有兩個突出的優(yōu)點:
一是統(tǒng)計圖上沒有原始數(shù)據(jù)信息的損失,所有數(shù)據(jù)信息都可以從莖葉圖中得到;
二是莖葉圖中的數(shù)據(jù)可以隨時記錄,隨時添加,方便記錄與表示。
5.高二文科數(shù)學(xué)知識點整理 篇五
曲線與方程
1.橢圓
橢圓的定義是橢圓章節(jié)的基礎(chǔ)內(nèi)容,高考對本節(jié)內(nèi)容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現(xiàn).橢圓方面的知識與向量等知識的綜合考查命題趨勢較強(qiáng)。
2.雙曲線
標(biāo)準(zhǔn)方程的求法:雙曲線標(biāo)準(zhǔn)方程最常用的兩種方法是定義法和待定系數(shù)法.利用定義法求解,首先要熟悉雙曲線的定義,只要知道雙曲線的焦點和雙曲線上的任意一點的坐標(biāo)都可以運用定義法求解其標(biāo)準(zhǔn)方程;解法二是利用待定系數(shù)法求解,是求雙曲線方程的根本方法之一,其思想是根據(jù)題目中的條件確定雙曲線方程中的系數(shù)a,b,主要是解方程組;解法三是利用共焦點曲線系方程求解,其要點是根據(jù)題目中的一個條件寫出含一個參數(shù)的共焦點的二次曲線系方程,再根據(jù)另外一個條件求出這個參數(shù).
3.拋物線
1)利用已知條件求拋物線方程,一般有兩種方法:待定系數(shù)法和軌跡法。
2)韋達(dá)定理的熟練運用,可以防止運算復(fù)雜的焦點坐標(biāo),巧妙利用拋物線的性質(zhì)進(jìn)行解題。
3)焦點弦的幾何性質(zhì)是答題中容易忽略的問題,在復(fù)雜的求解拋物線方程中,運用好這方面的知識能夠少走很多彎路。
6.高二文科數(shù)學(xué)知識點整理 篇六
1.任意角
(1)角的分類:
①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。
②按終邊位置不同分為象限角和軸線角。
(2)終邊相同的角:
終邊與角相同的角可寫成+k360(kz)。
(3)弧度制:
①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。
②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。
③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關(guān),僅與角的大小有關(guān)。
④弧度與角度的換算:360弧度;180弧度。
⑤弧長公式:l=||r,扇形面積公式:s扇形=lr=||r2。
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設(shè)是一個任意角,角的終邊與單位圓交于點p(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。
(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦。
3.三角函數(shù)線
設(shè)角的頂點在坐標(biāo)原點,始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點p,過p作pm垂直于x軸于m.由三角函數(shù)的定義知,點p的坐標(biāo)為(cos_,sin_),即p(cos_,sin_),其中cos=om,sin=mp,單位圓與x軸的正半軸交于點a,單位圓在a點的切線與的終邊或其反向延長線相交于點t,則tan=at.我們把有向線段om、mp、at叫做的余弦線、正弦線、正切線。
1.高二文科數(shù)學(xué)知識點整理 篇一
解決不等式的有關(guān)問題:
(1)不等式恒成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。
2.高二文科數(shù)學(xué)知識點整理 篇二
等腰直角三角形面積公式:
S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
S=ch/2=c2/4
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
3.高二文科數(shù)學(xué)知識點整理 篇三
極值的定義:
(1)極大值:一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)
(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。
極值的性質(zhì):
(1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;
(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;
(3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;
(4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。
求函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f(x);
(2)求方程f(x)=0的根;
(3)用函數(shù)的導(dǎo)數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f(x)在方程根左右的值的符號,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則f(x)在這個根處無極值。
4.高二文科數(shù)學(xué)知識點整理 篇四
1、頻率分布直方圖
(1)通常我們對總體作出的估計一般分成兩種:一種是用樣本的頻率分布估計總體的分布;另一種是用樣本的數(shù)字特征估計總體的數(shù)字特征。
(2)作頻率分布直方圖的步驟。
①求極差(即一組數(shù)據(jù)中值與最小值的差)。
②決定組距與組數(shù)。
③將數(shù)據(jù)分組。
④列頻率分布表。
⑤畫頻率分布直方圖。
(3)在頻率分布直方圖中,縱軸表示頻率/組距,數(shù)據(jù)落在各小組內(nèi)的頻率用各小長方形的面積表示。各小長方形的面積總和等于1。
2、頻率分布折線圖和總體密度曲線
(1)頻率分布折線圖:連接頻率分布直方圖中各小長方形上端的中點,就得頻率分布折線圖。
(2)總體密度曲線:隨著樣本容量的增加,作圖時所分組數(shù)增加,組距減小,相應(yīng)的頻率折線圖會越來越接近于一條光滑曲線,即總體密度曲線。
3、莖葉圖的優(yōu)點
用莖葉圖表示數(shù)據(jù)有兩個突出的優(yōu)點:
一是統(tǒng)計圖上沒有原始數(shù)據(jù)信息的損失,所有數(shù)據(jù)信息都可以從莖葉圖中得到;
二是莖葉圖中的數(shù)據(jù)可以隨時記錄,隨時添加,方便記錄與表示。
5.高二文科數(shù)學(xué)知識點整理 篇五
曲線與方程
1.橢圓
橢圓的定義是橢圓章節(jié)的基礎(chǔ)內(nèi)容,高考對本節(jié)內(nèi)容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現(xiàn).橢圓方面的知識與向量等知識的綜合考查命題趨勢較強(qiáng)。
2.雙曲線
標(biāo)準(zhǔn)方程的求法:雙曲線標(biāo)準(zhǔn)方程最常用的兩種方法是定義法和待定系數(shù)法.利用定義法求解,首先要熟悉雙曲線的定義,只要知道雙曲線的焦點和雙曲線上的任意一點的坐標(biāo)都可以運用定義法求解其標(biāo)準(zhǔn)方程;解法二是利用待定系數(shù)法求解,是求雙曲線方程的根本方法之一,其思想是根據(jù)題目中的條件確定雙曲線方程中的系數(shù)a,b,主要是解方程組;解法三是利用共焦點曲線系方程求解,其要點是根據(jù)題目中的一個條件寫出含一個參數(shù)的共焦點的二次曲線系方程,再根據(jù)另外一個條件求出這個參數(shù).
3.拋物線
1)利用已知條件求拋物線方程,一般有兩種方法:待定系數(shù)法和軌跡法。
2)韋達(dá)定理的熟練運用,可以防止運算復(fù)雜的焦點坐標(biāo),巧妙利用拋物線的性質(zhì)進(jìn)行解題。
3)焦點弦的幾何性質(zhì)是答題中容易忽略的問題,在復(fù)雜的求解拋物線方程中,運用好這方面的知識能夠少走很多彎路。
6.高二文科數(shù)學(xué)知識點整理 篇六
1.任意角
(1)角的分類:
①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。
②按終邊位置不同分為象限角和軸線角。
(2)終邊相同的角:
終邊與角相同的角可寫成+k360(kz)。
(3)弧度制:
①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。
②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。
③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關(guān),僅與角的大小有關(guān)。
④弧度與角度的換算:360弧度;180弧度。
⑤弧長公式:l=||r,扇形面積公式:s扇形=lr=||r2。
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設(shè)是一個任意角,角的終邊與單位圓交于點p(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。
(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦。
3.三角函數(shù)線
設(shè)角的頂點在坐標(biāo)原點,始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點p,過p作pm垂直于x軸于m.由三角函數(shù)的定義知,點p的坐標(biāo)為(cos_,sin_),即p(cos_,sin_),其中cos=om,sin=mp,單位圓與x軸的正半軸交于點a,單位圓在a點的切線與的終邊或其反向延長線相交于點t,則tan=at.我們把有向線段om、mp、at叫做的余弦線、正弦線、正切線。