亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)

        字號(hào):

        奮斗也就是我們平常所說的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價(jià)攻克它。為了學(xué)習(xí),廢寢忘食一點(diǎn)也不是難事,只要你做到了有興趣。高三頻道給大家整理的《高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)》供大家參考,歡迎閱讀!
            1.高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)
            1.導(dǎo)數(shù)的意義:
            曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))
            2.多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性
            在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為增函數(shù).
            在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為減函數(shù).
            3.導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:
            (1)函數(shù)處有且“左正右負(fù)”在處取極大值;
            函數(shù)在處有且左負(fù)右正”在處取極小值.
            注意:
            ①在處有是函數(shù)在處取極值的必要非充分條件.
            ②求函數(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值.特別是給出函數(shù)極大(小)值的條件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點(diǎn)一定要切記.
            ③單調(diào)性與最值(極值)的研究要注意列表!
            (2)函數(shù)在一閉區(qū)間上的值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“值”
            函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;
            注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對(duì)應(yīng)函數(shù)值的大小,其中的就是值,最小就為最小。
            2.高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)
            (一)導(dǎo)數(shù)第一定義
            設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
            (二)導(dǎo)數(shù)第二定義
            設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
            (三)導(dǎo)函數(shù)與導(dǎo)數(shù)
            如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。
            (四)單調(diào)性及其應(yīng)用
            1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
            (1)求f¢(x)
            (2)確定f¢(x)在(a,b)內(nèi)符號(hào)(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
            2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
            (1)求f¢(x)
            (2)f¢(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間
            3.高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)
            1.數(shù)列的定義
            按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
            (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
            (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
            (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.
            (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.
            2.數(shù)列的分類
            (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
            (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.
            3.數(shù)列的通項(xiàng)公式
            數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來表示的,
            這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,
            由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒有通用的方法可循.
            再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):
            (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.
            (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).
            (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.
            如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項(xiàng)公式.
            (4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:
            (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.
            4.高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)
            一、函數(shù)的定義域的常用求法:
            1、分式的分母不等于零;
            2、偶次方根的被開方數(shù)大于等于零;
            3、對(duì)數(shù)的真數(shù)大于零;
            4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;
            5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
            6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。
            二、函數(shù)的解析式的常用求法:
            1、定義法;
            2、換元法;
            3、待定系數(shù)法;
            4、函數(shù)方程法;
            5、參數(shù)法;
            6、配方法
            三、函數(shù)的值域的常用求法:
            1、換元法;
            2、配方法;
            3、判別式法;
            4、幾何法;
            5、不等式法;
            6、單調(diào)性法;
            7、直接法
            四、函數(shù)的最值的常用求法:
            1、配方法;
            2、換元法;
            3、不等式法;
            4、幾何法;
            5、單調(diào)性法
            五、函數(shù)單調(diào)性的常用結(jié)論:
            1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。
            2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
            3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
            4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。
            5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
            六、函數(shù)奇偶性的常用結(jié)論:
            1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
            2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
            3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。
            4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。
            5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。
            5.高三下冊(cè)數(shù)學(xué)必修三知識(shí)點(diǎn)
            一.隨機(jī)事件的概率及概率的意義
            1、基本概念:
            (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
            (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
            (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
            (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
            (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
            (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率
            二.概率的基本性質(zhì)
            1、基本概念:
            (1)事件的包含、并事件、交事件、相等事件
            (2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
            (3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;
            (4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以
            P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
            2、概率的基本性質(zhì):
            1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
            2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);
            3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
            4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:
            (1)事件A發(fā)生且事件B不發(fā)生;
            (2)事件A不發(fā)生且事件B發(fā)生;
            (3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;
            (1)事件A發(fā)生B不發(fā)生;
            (2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。