亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)

        字號:


            因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。高二頻道為你整理了《高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)》,助你金榜題名!
            1.高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)
            函數(shù)的性質(zhì)
            函數(shù)的單調(diào)性、奇偶性、周期性
            單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
            判定方法有:定義法(作差比較和作商比較)
            導(dǎo)數(shù)法(適用于多項式函數(shù))
            復(fù)合函數(shù)法和圖像法。
            應(yīng)用:比較大小,證明不等式,解不等式。
            奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
            判別方法:定義法,圖像法,復(fù)合函數(shù)法
            應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
            周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
            其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
            應(yīng)用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
            2.高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)
            空間角問題
            (1)直線與直線所成的角
            ①兩平行直線所成的角:規(guī)定為。
            ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
            ③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
            (2)直線和平面所成的角
            ①平面的平行線與平面所成的角:規(guī)定為。
            ②平面的垂線與平面所成的角:規(guī)定為。
            ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。
            求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。
            在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
            在解題時,注意挖掘題設(shè)中兩個主要信息:
            (1)斜線上一點(diǎn)到面的垂線;
            (2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
            (3)二面角和二面角的平面角
            ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
            ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
            ③直二面角:平面角是直角的二面角叫直二面角。
            兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
            ④求二面角的方法
            定義法:在棱上選擇有關(guān)點(diǎn),過這個點(diǎn)分別在兩個面內(nèi)作垂直于棱的射線得到平面角
            垂面法:已知二面角內(nèi)一點(diǎn)到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
            3.高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)
            (1)總體和樣本:
            ①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
            ②把每個研究對象叫做個體.
            ③把總體中個體的總數(shù)叫做總體容量.
            ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
            (2)簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
            就是從總體中不加任何分組、劃類、排隊等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
            (3)簡單隨機(jī)抽樣常用的方法:
            ①抽簽法
            ②隨機(jī)數(shù)表法
            ③計算機(jī)模擬法
            在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:
            ①總體變異情況;
            ②允許誤差范圍;
            ③概率保證程度。
            (4)抽簽法:
            ①給調(diào)查對象群體中的每一個對象編號;
            ②準(zhǔn)備抽簽的工具,實施抽簽;
            ③對樣本中的每一個個體進(jìn)行測量或調(diào)查
            4.高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)
            簡單隨機(jī)抽樣的特點(diǎn):
            (1)用簡單隨機(jī)抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為
            (2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個抽取,且各個個體被抽到的概率相等;
            (3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).
            (4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個地進(jìn)行抽取;它是一種等概率抽樣
            簡單抽樣常用方法:
            (1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進(jìn)行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法.
            (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:
            第一步,將總體中的個體編號;
            第二步,選定開始的數(shù)字;
            第三步,獲取樣本號碼概率:
            5.高二數(shù)學(xué)上冊復(fù)習(xí)知識點(diǎn)
            一、導(dǎo)數(shù)的應(yīng)用
            1、用導(dǎo)數(shù)研究函數(shù)的最值
            確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
            學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗下學(xué)習(xí)成果。
            2、生活中常見的函數(shù)優(yōu)化問題
            1)費(fèi)用、成本最省問題
            2)利潤、收益問題
            3)面積、體積最(大)問題
            二、推理與證明
            1、歸納推理:歸納推理是高二數(shù)學(xué)的一個重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識,分析兩類對象之間的關(guān)系,通過兩類對象已知的相似特征得出所需要的相似特征。
            2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
            三、不等式
            對于含有參數(shù)的一元二次不等式解的討論
            1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
            2)不等式對應(yīng)方程的根:如果一元二次不等式對應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進(jìn)行分類討論,這時,兩個根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。
            通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。
            四、坐標(biāo)平面上的直線
            1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
            2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
            3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
            五、圓錐曲線
            1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
            2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
            上及求曲線的交點(diǎn)。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。
            3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價的代數(shù)表示,通過代數(shù)方法解決幾何問題。