奧數(shù)能夠有效地培養(yǎng)學生用數(shù)學觀點看待和處理實際問題的能力,提高學生用數(shù)學語言和模型解決實際問題的意識和能力,提高學生揭示實際問題中隱含的數(shù)學概念及其關(guān)系的能力等等。使學生能夠在創(chuàng)造性思維過程中,看到數(shù)學的實際作用,感受到數(shù)學的魅力,增強學生對數(shù)學美的感受力。以下是為您整理的相關(guān)資料,希望對您有所幫助。
1.小明從家里到學校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家里到學校有多遠?
解題思路:
在每分走50米的到校時間內(nèi)按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。
答題:
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明從家里到學校是600米。
2.有一周長600米的環(huán)形跑道,甲、乙二人同時、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經(jīng)過幾分鐘二人第相遇?
解題思路:
由已知條件可知,二人第相遇時,乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第相遇時經(jīng)過的時間。
答題:
解:600÷(400-300)=600÷100=6(分)
答:經(jīng)過6分鐘兩人第相遇
3.有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?
解題思路:
由“只把寬增加2厘米,面積就增加12平方厘米”,可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。
答題:
解:(12÷2)×(8÷2)=24(平方厘米)
答:這個長方形紙板原來的面積是24平方厘米。
4.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
解題思路:
用去的錢數(shù)除以3就是1千克蘋果和1千克梨的總錢數(shù)。從這個總錢數(shù)里去掉1千克蘋果的錢數(shù),就是每千克梨的錢數(shù)。
答題:
解:(20-7.4)÷3-2.4=12.6÷3-2.4=4.2-2.4=1.8(元)
答:每千克梨1.8元。
5.甲乙兩人同時從相距135千米的兩地相對而行,經(jīng)過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?
解題思路:
由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。
答題:
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小時分別行30千米、15千米。
6.盒子里有同樣數(shù)目的黑球和白球。每次取出8個黑球和5個白球,取出幾次以后,黑球沒有了,白球還剩12個。一共取了幾次?盒子里共有多少個球?
解題思路:
兩種球的數(shù)目相等,黑球取完時,白球還剩12個,說明黑球多取了12個,而每次多?。?-5)個,可求出一共取了幾次。
答題:
解:12÷(8-5)=4(次)
8×4+5×4+12=64(個)
或8×4×2=64(個)
答:一共取了4次,盒子里共有64個球。
7.上午6時從汽車站同時發(fā)出1路和2路公共汽車,1路車每隔12分鐘發(fā),2路車每隔18分鐘發(fā),求下次同時發(fā)車時間。
解題思路:
1路和2路下次同時發(fā)車時,所經(jīng)過的時間必須既是12分的倍數(shù),又是18分的倍數(shù)。也就是它們的小公倍數(shù)。
答題:
解:12和18的小公倍數(shù)是36
6時+36分=6時36分
答:下次同時發(fā)車時間是上午6時36分。
8.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
解題思路:
父、子年齡的差是(45-15)歲,當父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的11倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數(shù)的差就是所求的問題。
答題:
解:(45-15)÷(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
9.王老師有一盒鉛筆,如平均分給2名同學余1支,平均分給3名同學余2支,平均分給4名同學余3支,平均分給5名同學余4支。問這盒鉛筆少有多少支?
解題思路:
根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學、3名同學、4名同學、5名同學都少一支,因此,求出2、3、4、5的小公倍數(shù)再減去1就是要求的問題。
答題:
解:2、3、4、5的小公倍數(shù)是60
60-1=59(支)
答:這盒鉛筆少有59支。
10.一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來的面積?
解題思路:
根據(jù)只把底增加8米,面積就增加40平方米,?可求出原來平行四邊形的高。根據(jù)只把高增加5米,面積就增加40平方米,可求出原來平行四邊形的底。再用原來的底乘以原來的高就是要求的面積。
答題:
解:(40÷5)×(40÷8)=40(平方米)
答:平行四邊形地原來的面積是40平方米。
1.小明從家里到學校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家里到學校有多遠?
解題思路:
在每分走50米的到校時間內(nèi)按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。
答題:
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明從家里到學校是600米。
2.有一周長600米的環(huán)形跑道,甲、乙二人同時、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經(jīng)過幾分鐘二人第相遇?
解題思路:
由已知條件可知,二人第相遇時,乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第相遇時經(jīng)過的時間。
答題:
解:600÷(400-300)=600÷100=6(分)
答:經(jīng)過6分鐘兩人第相遇
3.有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?
解題思路:
由“只把寬增加2厘米,面積就增加12平方厘米”,可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。
答題:
解:(12÷2)×(8÷2)=24(平方厘米)
答:這個長方形紙板原來的面積是24平方厘米。
4.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
解題思路:
用去的錢數(shù)除以3就是1千克蘋果和1千克梨的總錢數(shù)。從這個總錢數(shù)里去掉1千克蘋果的錢數(shù),就是每千克梨的錢數(shù)。
答題:
解:(20-7.4)÷3-2.4=12.6÷3-2.4=4.2-2.4=1.8(元)
答:每千克梨1.8元。
5.甲乙兩人同時從相距135千米的兩地相對而行,經(jīng)過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?
解題思路:
由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。
答題:
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小時分別行30千米、15千米。
6.盒子里有同樣數(shù)目的黑球和白球。每次取出8個黑球和5個白球,取出幾次以后,黑球沒有了,白球還剩12個。一共取了幾次?盒子里共有多少個球?
解題思路:
兩種球的數(shù)目相等,黑球取完時,白球還剩12個,說明黑球多取了12個,而每次多?。?-5)個,可求出一共取了幾次。
答題:
解:12÷(8-5)=4(次)
8×4+5×4+12=64(個)
或8×4×2=64(個)
答:一共取了4次,盒子里共有64個球。
7.上午6時從汽車站同時發(fā)出1路和2路公共汽車,1路車每隔12分鐘發(fā),2路車每隔18分鐘發(fā),求下次同時發(fā)車時間。
解題思路:
1路和2路下次同時發(fā)車時,所經(jīng)過的時間必須既是12分的倍數(shù),又是18分的倍數(shù)。也就是它們的小公倍數(shù)。
答題:
解:12和18的小公倍數(shù)是36
6時+36分=6時36分
答:下次同時發(fā)車時間是上午6時36分。
8.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
解題思路:
父、子年齡的差是(45-15)歲,當父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的11倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數(shù)的差就是所求的問題。
答題:
解:(45-15)÷(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
9.王老師有一盒鉛筆,如平均分給2名同學余1支,平均分給3名同學余2支,平均分給4名同學余3支,平均分給5名同學余4支。問這盒鉛筆少有多少支?
解題思路:
根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學、3名同學、4名同學、5名同學都少一支,因此,求出2、3、4、5的小公倍數(shù)再減去1就是要求的問題。
答題:
解:2、3、4、5的小公倍數(shù)是60
60-1=59(支)
答:這盒鉛筆少有59支。
10.一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來的面積?
解題思路:
根據(jù)只把底增加8米,面積就增加40平方米,?可求出原來平行四邊形的高。根據(jù)只把高增加5米,面積就增加40平方米,可求出原來平行四邊形的底。再用原來的底乘以原來的高就是要求的面積。
答題:
解:(40÷5)×(40÷8)=40(平方米)
答:平行四邊形地原來的面積是40平方米。