方差(variance)是在概率論和統(tǒng)計方差衡量隨機變量或一組數(shù)據(jù)時離散程度的度量。概率論中方差用來度量隨機變量和其數(shù)學(xué)期望(即均值)之間的偏離程度。統(tǒng)計中的方差(樣本方差)是每個樣本值與全體樣本值的平均數(shù)之差的平方值的平均數(shù)。在許多實際問題中,研究方差即偏離程度有著重要意義。方差是衡量源數(shù)據(jù)和期望值相差的度量值。下面是為大家?guī)淼木拍昙墛W數(shù)定理大全:方差,歡迎大家閱讀。
方差的性質(zhì)
1.設(shè)C為常數(shù),則D(C) = 0(常數(shù)無波動);
2. D(CX )=C2 D(X ) (常數(shù)平方提取);
證:
特別地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差無負(fù)值)
3.若X 、Y 相互獨立,則
證:記則
前面兩項恰為 D(X )和D(Y ),第三項展開后為
當(dāng)X、Y 相互獨立時,
故第三項為零。
特別地
獨立前提的逐項求和,可推廣到有限項。
方差公式:
平均數(shù):M=(x1+x2+x3+…+xn)/n (n表示這組數(shù)據(jù)個數(shù),x1、x2、x3……xn表示這組數(shù)據(jù)具體數(shù)值)
方差公式:S2=〈(M-x1)2+(M-x2)2+(M-x3)2+…+(M-xn)2〉╱n
方差的性質(zhì)
1.設(shè)C為常數(shù),則D(C) = 0(常數(shù)無波動);
2. D(CX )=C2 D(X ) (常數(shù)平方提取);
證:
特別地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差無負(fù)值)
3.若X 、Y 相互獨立,則
證:記則
前面兩項恰為 D(X )和D(Y ),第三項展開后為
當(dāng)X、Y 相互獨立時,
故第三項為零。
特別地
獨立前提的逐項求和,可推廣到有限項。
方差公式:
平均數(shù):M=(x1+x2+x3+…+xn)/n (n表示這組數(shù)據(jù)個數(shù),x1、x2、x3……xn表示這組數(shù)據(jù)具體數(shù)值)
方差公式:S2=〈(M-x1)2+(M-x2)2+(M-x3)2+…+(M-xn)2〉╱n