第一章 整式的運算
一、整式
1、單項式:表示數(shù)與字母的積的代數(shù)式。另外規(guī)定單獨的一個數(shù)或字母也是單項式。
單項式中的數(shù)字因數(shù)叫做單項式的系數(shù)。注意系數(shù)包括前面的符號,系數(shù)是1時通常省略, 是系數(shù), 的系數(shù)是
單項式的次數(shù)是指所有字母的指數(shù)的和。
2、多項式:幾個單項式的和叫做多項式。 (幾次幾項式)
每一個單項式叫做多項式的項,注意項包括前面的符號。
多項式的次數(shù):多項式中次數(shù)的項的次數(shù)。項的次數(shù)是幾就叫做幾次項,其中不含字母的項叫做常數(shù)項。
3、整式;單項式與多項式統(tǒng)稱為整式。(最明顯的特征:分母中不含字母)
二、整式的加減:①先去括號; (注意括號前有數(shù)字因數(shù))
②再合并同類項。 (系數(shù)相加,字母與字母指數(shù)不變)
三、冪的運算性質(zhì)
1、同底數(shù)冪相乘:底數(shù)不變,指數(shù)相加。
2、冪的乘方:底數(shù)不變,指數(shù)相乘。
3、積的乘方:把積中的每一個因式各自乘方,再把所得的冪相乘。
4、零指數(shù)冪:任何一個不等于0的數(shù)的0次冪等于1。 ( ) 注意00沒有意義。
5、負整數(shù)指數(shù)冪: ( 正整數(shù), )
6、同底數(shù)冪相除:底數(shù)不變,指數(shù)相減。 ( )
注意:以上公式的正反兩方面的應用。
常見的錯誤: , , , ,
四、單項式乘以單項式:系數(shù)相乘,相同的字母相乘,只在一個因式中出現(xiàn)的字母則連同它的指數(shù)作為積的一個因式。
五、單項式乘以多項式:運用乘法的分配率,把這個單項式乘以多項式的每一項。
六、多項式乘以多項式:連同各項的符號把其中一個多項式的各項乘以另一個多項式的每一項。
七、平方差公式
兩數(shù)的和乘以這兩數(shù)的差,等于這兩數(shù)的平方差。
即:一項符號相同,另一項符號相反,等于符號相同的平方減去符號相反的平方。
八、完全平方公式
兩數(shù)的和(或差)的平方,等于這兩數(shù)的平方和再加上(或減去)兩數(shù)積的2倍。
常見錯誤:
九、單項除以單項式:把單項式的系數(shù)相除,相同的字母相除,只在被除式中出現(xiàn)的字母則連同它的指數(shù)作為商的一個因式。
十、多項式除以單項式:連同各項的符號,把多項式的各項都除以單項式。
第二章 平行線與相交線
一、互余、互補、對頂角
1、相加等于90°的兩個角稱這兩個角互余。 性質(zhì):同角(或等角)的余角相等。
2、相加等于180°的兩個角稱這兩個角互補。 性質(zhì):同角(或等角)的補角相等。
3、兩條直線相交,有公共頂點但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。 對頂角的性質(zhì):對頂角相等。
4、兩條直線相交,有公共頂點且有一條公共邊的兩個角互為鄰補角。 (相鄰且互補)
二、三線八角: 兩直線被第三條直線所截
①在兩直線的相同位置上,在第三條直線的同側(旁)的兩個角叫做同位角。
②在兩直線之間(內(nèi)部),在第三條直線的兩側(旁)的兩個角叫做內(nèi)錯角。
③在兩直線之間(內(nèi)部),在第三條直線的同側(旁)的兩個角叫做同旁內(nèi)角。
三、平行線的判定
①同位角相等
②內(nèi)錯角相等 兩直線平行
③同旁內(nèi)角互補
四、平行線的性質(zhì)
①兩直線平行,同位角相等。 ②兩直線平行,內(nèi)錯角相等。 ③兩直線平行,同旁內(nèi)角互補。
五、尺規(guī)作圖(用圓規(guī)和直尺作圖)
①作一條線段等于已知線段。 ②作一個角等于已知角。
一、整式
1、單項式:表示數(shù)與字母的積的代數(shù)式。另外規(guī)定單獨的一個數(shù)或字母也是單項式。
單項式中的數(shù)字因數(shù)叫做單項式的系數(shù)。注意系數(shù)包括前面的符號,系數(shù)是1時通常省略, 是系數(shù), 的系數(shù)是
單項式的次數(shù)是指所有字母的指數(shù)的和。
2、多項式:幾個單項式的和叫做多項式。 (幾次幾項式)
每一個單項式叫做多項式的項,注意項包括前面的符號。
多項式的次數(shù):多項式中次數(shù)的項的次數(shù)。項的次數(shù)是幾就叫做幾次項,其中不含字母的項叫做常數(shù)項。
3、整式;單項式與多項式統(tǒng)稱為整式。(最明顯的特征:分母中不含字母)
二、整式的加減:①先去括號; (注意括號前有數(shù)字因數(shù))
②再合并同類項。 (系數(shù)相加,字母與字母指數(shù)不變)
三、冪的運算性質(zhì)
1、同底數(shù)冪相乘:底數(shù)不變,指數(shù)相加。
2、冪的乘方:底數(shù)不變,指數(shù)相乘。
3、積的乘方:把積中的每一個因式各自乘方,再把所得的冪相乘。
4、零指數(shù)冪:任何一個不等于0的數(shù)的0次冪等于1。 ( ) 注意00沒有意義。
5、負整數(shù)指數(shù)冪: ( 正整數(shù), )
6、同底數(shù)冪相除:底數(shù)不變,指數(shù)相減。 ( )
注意:以上公式的正反兩方面的應用。
常見的錯誤: , , , ,
四、單項式乘以單項式:系數(shù)相乘,相同的字母相乘,只在一個因式中出現(xiàn)的字母則連同它的指數(shù)作為積的一個因式。
五、單項式乘以多項式:運用乘法的分配率,把這個單項式乘以多項式的每一項。
六、多項式乘以多項式:連同各項的符號把其中一個多項式的各項乘以另一個多項式的每一項。
七、平方差公式
兩數(shù)的和乘以這兩數(shù)的差,等于這兩數(shù)的平方差。
即:一項符號相同,另一項符號相反,等于符號相同的平方減去符號相反的平方。
八、完全平方公式
兩數(shù)的和(或差)的平方,等于這兩數(shù)的平方和再加上(或減去)兩數(shù)積的2倍。
常見錯誤:
九、單項除以單項式:把單項式的系數(shù)相除,相同的字母相除,只在被除式中出現(xiàn)的字母則連同它的指數(shù)作為商的一個因式。
十、多項式除以單項式:連同各項的符號,把多項式的各項都除以單項式。
第二章 平行線與相交線
一、互余、互補、對頂角
1、相加等于90°的兩個角稱這兩個角互余。 性質(zhì):同角(或等角)的余角相等。
2、相加等于180°的兩個角稱這兩個角互補。 性質(zhì):同角(或等角)的補角相等。
3、兩條直線相交,有公共頂點但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。 對頂角的性質(zhì):對頂角相等。
4、兩條直線相交,有公共頂點且有一條公共邊的兩個角互為鄰補角。 (相鄰且互補)
二、三線八角: 兩直線被第三條直線所截
①在兩直線的相同位置上,在第三條直線的同側(旁)的兩個角叫做同位角。
②在兩直線之間(內(nèi)部),在第三條直線的兩側(旁)的兩個角叫做內(nèi)錯角。
③在兩直線之間(內(nèi)部),在第三條直線的同側(旁)的兩個角叫做同旁內(nèi)角。
三、平行線的判定
①同位角相等
②內(nèi)錯角相等 兩直線平行
③同旁內(nèi)角互補
四、平行線的性質(zhì)
①兩直線平行,同位角相等。 ②兩直線平行,內(nèi)錯角相等。 ③兩直線平行,同旁內(nèi)角互補。
五、尺規(guī)作圖(用圓規(guī)和直尺作圖)
①作一條線段等于已知線段。 ②作一個角等于已知角。