亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        2017高考數(shù)學(xué)專項(xiàng)練習(xí)及答案(8)

        字號(hào):

        一、非標(biāo)準(zhǔn)
            1.若數(shù)列{an}的首項(xiàng)a1=1,且an=an-1+2(n≥2),則a7等于(  )
            A.13 B.14 C.15 D.17
            2.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a2+a8=6,則S9等于(  )
            A. B.27 C.54 D.108
            3.在等差數(shù)列{an}中,a2=3,a3+a4=9,則a1a6的值為(  )
            A.14 B.18 C.21 D.27
            4.在等差數(shù)列{an}中,a5+a6+a7=15,那么a3+a4+…+a9等于(  )
            A.21 B.30 C.35 D.40
            5.(2014天津河西口模擬)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a11-a8=3,S11-S8=3,則使an>0的最小正整數(shù)n的值是(  )
            A.8 B.9 C.10 D.11
            6.(2014浙江聯(lián)考)已知每項(xiàng)均大于零的數(shù)列{an}中,首項(xiàng)a1=1,且前n項(xiàng)和Sn滿足Sn-Sn-1=2(nN+,且n≥2),則a81等于(  )
            A.638 B.639 C.640 D.641
            7.若等差數(shù)列{an}滿足a7+a8+a9>0,a7+a10<0,則當(dāng)n=     時(shí),{an}的前n項(xiàng)和.
            8.若等差數(shù)列{an}前9項(xiàng)的和等于前4項(xiàng)的和,且ak+a4=0,則k=     .
            9.已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a3·a4=117,a2+a5=22.
            (1)求數(shù)列{an}的通項(xiàng)公式;
            (2)若數(shù)列{bn}滿足bn=,是否存在非零實(shí)數(shù)c使得{bn}為等差數(shù)列?若存在,求出c的值;若不存在,請(qǐng)說明理由.
            10.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=λSn-1,其中λ為常數(shù).
            (1)證明:an+2-an=λ;
            (2)是否存在λ,使得{an}為等差數(shù)列?并說明理由.
            11.(2014遼寧,文9)設(shè)等差數(shù)列{an}的公差為d.若數(shù)列{}為遞減數(shù)列,則(  )
            A.d>0 B.d<0 C.a1d>0 D.a1d<0
            12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n等于(  )
            A.12 B.14 C.16 D.18
            13.若數(shù)列{an}滿足:a1=19,an+1=an-3(nN+),則數(shù)列{an}的前n項(xiàng)和數(shù)值時(shí),n的值為(  )
            A.6 B.7 C.8 D.9
            14.已知正項(xiàng)數(shù)列{an}滿足:a1=1,a2=2,2(nN+,n≥2),則a7=     .
            15.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且滿足2Sn=+n-4(nN+).
            (1)求證:數(shù)列{an}為等差數(shù)列;
            (2)求數(shù)列{an}的通項(xiàng)公式.
            16.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=+2(n-1)(nN+).
            (1)求證:數(shù)列{an}為等差數(shù)列,并求an與Sn;
            (2)是否存在自然數(shù)n,使得S1++…+-(n-1)2=2015?若存在,求出n的值;若不存在,請(qǐng)說明理由.
            一、非標(biāo)準(zhǔn)
            1.A 解析:an=an-1+2(n≥2),
            ∴an-an-1=2.
            又a1=1,∴數(shù)列{an}是以1為首項(xiàng),以2為公差的等差數(shù)列,
            故a7=1+2×(7-1)=13.
            2.B 解析:S9==27.
            3.A 解析:設(shè)等差數(shù)列{an}的公差為d,
            則依題意得由此解得
            所以a6=a1+5d=7,a1a6=14.
            4.C 解析:由題意得3a6=15,a6=5.
            所以a3+a4+…+a9=7a6=7×5=35.
            5.C 解析:設(shè)等差數(shù)列{an}的公差為d,
            a11-a8=3d=3,∴d=1.
            ∵S11-S8=a11+a10+a9=3a1+27d=3,
            ∴a1=-8,∴令an=-8+(n-1)>0,解得n>9.
            因此使an>0的最小正整數(shù)n的值是10.
            6.C 解析:由已知Sn-Sn-1=2,可得=2,
            {}是以1為首項(xiàng),2為公差的等差數(shù)列,
            故=2n-1,Sn=(2n-1)2,
            a81=S81-S80=1612-1592=640,故選C.
            7.8 解析:由等差數(shù)列的性質(zhì)可得a7+a8+a9=3a8>0,即a8>0;而a7+a10=a8+a9<0,故a9<0.所以數(shù)列{an}的前8項(xiàng)和.
            8.10 解析:設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則S9-S4=0,
            即a5+a6+a7+a8+a9=0,5a7=0,故a7=0.
            而ak+a4=0=2a7,故k=10.
            9.解:(1)設(shè)等差數(shù)列{an}的公差為d,且d>0,
            由等差數(shù)列的性質(zhì),得a2+a5=a3+a4=22,
            所以a3,a4是關(guān)于x的方程x2-22x+117=0的解,
            所以a3=9,a4=13.
            易知a1=1,d=4,故所求通項(xiàng)為an=1+(n-1)×4=4n-3.
            (2)由(1)知Sn==2n2-n,
            所以bn=.
            (方法一)所以b1=,b2=,b3=(c≠0).
            令2b2=b1+b3,解得c=-.
            當(dāng)c=-時(shí),bn==2n,
            當(dāng)n≥2時(shí),bn-bn-1=2.
            故當(dāng)c=-時(shí),數(shù)列{bn}為等差數(shù)列.
            (方法二)bn=.
            c≠0,∴可令c=-,得到bn=2n.
            bn+1-bn=2(n+1)-2n=2(n∈N+),
            ∴數(shù)列{bn}是公差為2的等差數(shù)列.
            故存在一個(gè)非零常數(shù)c=-,使數(shù)列{bn}也為等差數(shù)列.
            10.解:(1)由題設(shè),anan+1=λSn-1,an+1an+2=λSn+1-1,
            兩式相減,得an+1(an+2-an)=λan+1.
            由于an+1≠0,所以an+2-an=λ.
            (2)由題設(shè),a1=1,a1a2=λS1-1,可得a2=λ-1.
            由(1)知,a3=λ+1.
            令2a2=a1+a3,解得λ=4.
            故an+2-an=4.
            由此可得{a2n-1}是首項(xiàng)為1,公差為4的等差數(shù)列,a2n-1=4n-3;{a2n}是首項(xiàng)為3,公差為4的等差數(shù)列,a2n=4n-1.
            所以an=2n-1,an+1-an=2.
            因此存在λ=4,使得數(shù)列{an}為等差數(shù)列.
            11.D 解析:{}為遞減數(shù)列,
            =<1.
            ∴a1d<0.故選D.
            12.B 解析:易得Sn-Sn-4=an+an-1+an-2+an-3=80.
            又S4=a1+a2+a3+a4=40,
            所以4(a1+an)=120,a1+an=30.
            由Sn==210,得n=14.
            13.B 解析:a1=19,an+1-an=-3,
            ∴數(shù)列{an}是以19為首項(xiàng),-3為公差的等差數(shù)列.
            an=19+(n-1)×(-3)=22-3n.
            設(shè){an}的前k項(xiàng)和數(shù)值,
            則有kN+.
            ∴
            ∴≤k≤.
            ∵k∈N+,∴k=7.
            ∴滿足條件的n的值為7.
            14. 解析:因?yàn)?(nN+,n≥2),
            所以數(shù)列{}是以=1為首項(xiàng),以d==4-1=3為公差的等差數(shù)列.
            所以=1+3(n-1)=3n-2.
            所以an=,n≥1.
            所以a7=.
            15.(1)證明:當(dāng)n=1時(shí),有2a1=+1-4,即-2a1-3=0,
            解得a1=3(a1=-1舍去).
            當(dāng)n≥2時(shí),有2Sn-1=+n-5.
            又2Sn=+n-4,
            兩式相減得2an=+1,
            即-2an+1=,
            也即(an-1)2=,因此an-1=an-1或an-1=-an-1.
            若an-1=-an-1,則an+an-1=1.
            而a1=3,所以a2=-2,這與數(shù)列{an}的各項(xiàng)均為正數(shù)相矛盾,
            所以an-1=an-1,即an-an-1=1.
            因此,數(shù)列{an}為首項(xiàng)為3,公差為1的等差數(shù)列.
            (2)解:由(1)知a1=3,d=1,所以數(shù)列{an}的通項(xiàng)公式an=3+(n-1)×1=n+2,即an=n+2.
            16.(1)證明:由an=+2(n-1),得Sn=nan-2n(n-1)(nN+).
            當(dāng)n≥2時(shí),an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),
            即an-an-1=4,
            故數(shù)列{an}是以1為首項(xiàng),4為公差的等差數(shù)列.
            于是,an=4n-3,Sn==2n2-n(nN+).
            (2)解:由(1),得=2n-1(nN+).
            又S1++…+-(n-1)2=1+3+5+7+…+(2n-1)-(n-1)2=n2-(n-1)2=2n-1.
            令2n-1=2015,得n=1008,
            即存在滿足條件的自然數(shù)n=1008.