說明:本答案來源于網(wǎng)絡(luò),請大家根據(jù)考試情況核對
1、C(1、2)
2、B(π)
3、C(10)
4、B(½)
5、C(1≤X≤2)
6、D(Y=X²)
7、C(-2)
21、1
24.(1)∵函數(shù)y=xcosx-sinx,x∈(0,2π),
∴y′=-xsinx,
由-xsinx>0,x∈(0,2π),
化為sinx>0,x∈(0,2π),
解得π
故函數(shù)y=xcosx-sinx,x∈(0,2π)單調(diào)增區(qū)間是(π,2π).
故答案為(π,2π).

1、C(1、2)
2、B(π)
3、C(10)
4、B(½)
5、C(1≤X≤2)
6、D(Y=X²)
7、C(-2)
21、1
24.(1)∵函數(shù)y=xcosx-sinx,x∈(0,2π),
∴y′=-xsinx,
由-xsinx>0,x∈(0,2π),
化為sinx>0,x∈(0,2π),
解得π
故函數(shù)y=xcosx-sinx,x∈(0,2π)單調(diào)增區(qū)間是(π,2π).
故答案為(π,2π).
