亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        2017年中考數(shù)學(xué)模擬練習(xí)題及答案(6)

        字號(hào):

        A級(jí) 基礎(chǔ)題
            1.(2013年浙江麗水)若二次函數(shù)y=ax2的圖象經(jīng)過(guò)點(diǎn)P(-2,4),則該圖象必經(jīng)過(guò)點(diǎn)(  )
            A.(2,4)  B.(-2,-4)  C.(-4,2) D.(4,-2)
            2.拋物線(xiàn)y=x2+bx+c的圖象先向右平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為y=(x-1)2-4,則b,c的值為(  )
            A.b=2,c=-6 B.b=2,c=0 C.b=-6,c=8  D.b=-6,c=2
            3.(2013年浙江寧波)如圖3­4­11,二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向上,對(duì)稱(chēng)軸為直線(xiàn)x=1,圖象經(jīng)過(guò)(3,0),下列結(jié)論中,正確的一項(xiàng)是(  )
            A.abc<0   B.2a+b<0  C.a-b+c<0  D.4ac-b2<0
            4.(2013年山東聊城)二次函數(shù)y=ax2+bx的圖象如圖3­4­12,那么一次函數(shù)y=ax+b的圖象大致是(  )
            5.(2013年四川內(nèi)江)若拋物線(xiàn)y=x2-2x+c與y軸的交點(diǎn)為(0,-3),則下列說(shuō)法不正確的是(  )
            A.拋物線(xiàn)開(kāi)口向上       B.拋物線(xiàn)的對(duì)稱(chēng)軸是x=1
            C.當(dāng)x=1時(shí),y的值為-4   D.拋物線(xiàn)與x軸的交點(diǎn)為(-1,0),(3,0)
            6.(2013年江蘇徐州)二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的坐標(biāo)滿(mǎn)足下表:
            x … -3 -2 -1 0 1 …
            y … -3 -2 -3 -6 -11 …
            則該函數(shù)圖象的頂點(diǎn)坐標(biāo)為(  )
            A.(-3,-3) B.(-2,-2) C.(-1,-3) D.(0,-6)
            7.(2013年湖北黃石)若關(guān)于x的函數(shù)y=kx2+2x-1與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為_(kāi)_________.
            8.(2013年北京)請(qǐng)寫(xiě)出一個(gè)開(kāi)口向上,并且與y軸交于點(diǎn)(0,1)的拋物線(xiàn)的解析式______________.
            9.(2013年浙江湖州)已知拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0).
            (1)求拋物線(xiàn)的解析式;
            (2)求拋物線(xiàn)的頂點(diǎn)坐標(biāo).
            B級(jí) 中等題
            10.(2013年江蘇蘇州)已知二次函數(shù)y=x2-3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2-3x+m=0的兩實(shí)數(shù)根是(  )
            A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
            11.(2013年四川綿陽(yáng))二次函數(shù)y=ax2+bx+c的圖象如圖3­4­13,給出下列結(jié)論:①2a+b>0;②b>a>c;③若-1
            圖3­4­13
            12.(2013年廣東)已知二次函數(shù)y=x2-2mx+m2-1.
            (1)當(dāng)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
            (2)如圖3­4­14,當(dāng)m=2時(shí),該拋物線(xiàn)與y軸交于點(diǎn)C,頂點(diǎn)為D,求C,D兩點(diǎn)的坐標(biāo);
            (3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由.
            C級(jí) 拔尖題
            13.(2013年黑龍江綏化)如圖3­4­15,已知拋物線(xiàn)y=1a(x-2)(x+a)(a>0)與x軸交于點(diǎn)B,C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
            (1)若拋物線(xiàn)過(guò)點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;
            (2)在(1)的條件下,解答下列問(wèn)題;
            ①求出△BCE的面積;
            ②在拋物線(xiàn)的對(duì)稱(chēng)軸上找一點(diǎn)H,使CH+EH的值最小,直接寫(xiě)出點(diǎn)H的坐標(biāo).
            14.(2012年廣東肇慶)已知二次函數(shù)y=mx2+nx+p圖象的頂點(diǎn)橫坐標(biāo)是2,與x軸交于A(x1,0),B(x2,0),x1<0
            (1)求證:n+4m=0;
            (2)求m,n的值;
            (3)當(dāng)p>0且二次函數(shù)圖象與直線(xiàn)y=x+3僅有一個(gè)交點(diǎn)時(shí),求二次函數(shù)的值.
            15.(2013年廣東湛江)如圖3­4­16,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線(xiàn)交y軸于A點(diǎn),交x軸與B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).
            (1)求此拋物線(xiàn)的解析式;
            (2)過(guò)點(diǎn)B作線(xiàn)段AB的垂線(xiàn)交拋物線(xiàn)于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線(xiàn)BD相切,請(qǐng)判斷拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C的位置關(guān)系,并給出證明;
            (3)在拋物線(xiàn)上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形.若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
            參考答案:
            1.A
            2.B 解析:利用反推法解答, 函數(shù)y=(x-1)2-4的頂點(diǎn)坐標(biāo)為(1,-4),其向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得到函數(shù)y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函數(shù)頂點(diǎn)坐標(biāo)為(-1,-1),函數(shù)解析式為y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.
            3.D 4.C 5.C 6.B
            7.k=0或k=-1 8.y=x2+1(答案不)
            9.解:(1)∵拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0),B(-1,0),
            ∴拋物線(xiàn)的解析式為y=-(x-3)(x+1),
            即y=-x2+2x+3.
            (2)∵y=-x2+2x+3=-(x-1)2+4,
            ∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(1,4).
            10.B 11.①③④
            12.解:(1)將點(diǎn)O(0,0)代入,解得m=±1,
            二次函數(shù)關(guān)系式為y=x2+2x或y=x2-2x.
            (2)當(dāng)m=2時(shí),y=x2-4x+3=(x-2)2-1,
            ∴D(2,-1).當(dāng)x=0時(shí),y=3,∴C(0,3).
            (3)存在.接連接C,D交x軸于點(diǎn)P,則點(diǎn)P為所求.
            由C(0,3),D(2,-1)求得直線(xiàn)CD為y=-2x+3.
            當(dāng)y=0時(shí),x=32,∴P32,0.
            13.解:(1)將M(-2,-2)代入拋物線(xiàn)解析式,得
            -2=1a(-2-2)(-2+a),
            解得a=4.
            (2)①由(1),得y=14(x-2)(x+4),
            當(dāng)y=0時(shí),得0=14(x-2)(x+4),
            解得x1=2,x2=-4.
            ∵點(diǎn)B在點(diǎn)C的左側(cè),∴B(-4,0),C(2,0).
            當(dāng)x=0時(shí),得y=-2,即E(0,-2).
            ∴S△BCE=12×6×2=6.
            ②由拋物線(xiàn)解析式y(tǒng)=14(x-2)(x+4),得對(duì)稱(chēng)軸為直線(xiàn)x=-1,
            根據(jù)C與B關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸x=-1對(duì)稱(chēng),連接BE,與對(duì)稱(chēng)軸交于點(diǎn)H,即為所求.
            設(shè)直線(xiàn)BE的解析式為y=kx+b,
            將B(-4,0)與E(0,-2)代入,得-4k+b=0,b=-2,
            解得k=-12,b=-2.∴直線(xiàn)BE的解析式為y=-12x-2.
            將x=-1代入,得y=12-2=-32,
            則點(diǎn)H-1,-32.
            14.(1)證明:∵二次函數(shù)y=mx2+nx+p圖象的頂點(diǎn)橫坐標(biāo)是2,
            ∴拋物線(xiàn)的對(duì)稱(chēng)軸為x=2,即-n2m=2,
            化簡(jiǎn),得n+4m=0.
            (2)解:∵二次函數(shù)y=mx2+nx+p與x軸交于A(x1,0),B(x2,0),x1<0
            ∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.
            令x=0,得y=p,∴C(0,p).∴OC=|p|.
            由三角函數(shù)定義,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.
            ∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.
            化簡(jiǎn),得x1+x2x1•x2=-1|p|.
            將x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化簡(jiǎn),得⇒n=p|p|=±1.
            由(1)知n+4m=0,
            ∴當(dāng)n=1時(shí),m=-14;當(dāng)n=-1時(shí),m=14.
            ∴m,n的值為:m=14,n=-1(此時(shí)拋物線(xiàn)開(kāi)口向上)或m=-14,n=1(此時(shí)拋物線(xiàn)開(kāi)口向下).
            (3)解:由(2)知,當(dāng)p>0時(shí),n=1,m=-14,
            ∴拋物線(xiàn)解析式為:y=-14x2+x+p.
            聯(lián)立拋物線(xiàn)y=-14x2+x+p與直線(xiàn)y=x+3解析式得到-14x2+x+p=x+3,
            化簡(jiǎn),得x2-4(p-3)=0.
            ∵二次函數(shù)圖象與直線(xiàn)y=x+3僅有一個(gè)交點(diǎn),
            ∴一元二次方程根的判別式等于0,
            即Δ=02+16(p-3)=0,解得p=3.
            ∴y=-14x2+x+3=-14(x-2)2+4.
            當(dāng)x=2時(shí),二次函數(shù)有值,值為4.
            15.解:(1)設(shè)此拋物線(xiàn)的解析式為y=a(x-3)2+4,
            此拋物線(xiàn)過(guò)點(diǎn)A(0,-5),
            ∴-5=a(0-3)2+4,∴a=-1.
            ∴拋物線(xiàn)的解析式為y=-(x-3)2+4,
            即y=-x2+6x-5.
            (2)拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C相離.
            證明:令y=0,即-x2+6x-5=0,得x=1或x=5,
            ∴B(1,0),C(5,0).
            設(shè)切點(diǎn)為E,連接CE,
            由題意,得,Rt△ABO∽R(shí)t△BCE.
            ∴ABBC=OBCE,即12+524=1CE,
            解得CE=426.
            ∵以點(diǎn)C為圓心的圓與直線(xiàn)BD相切,⊙C的半徑為r=d=426.
            又點(diǎn)C到拋物線(xiàn)對(duì)稱(chēng)軸的距離為5-3=2,而2>426.
            則此時(shí)拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C相離.
            (3)假設(shè)存在滿(mǎn)足條件的點(diǎn)P(xp,yp),
            ∵A(0,-5),C(5,0),
            ∴AC2=50,
            AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.
            ①當(dāng)∠A=90°時(shí),在Rt△CAP中,
            由勾股定理,得AC2+AP2=CP2,
            ∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,
            整理,得xp+yp+5=0.
            ∵點(diǎn)P(xp,yp)在拋物線(xiàn)y=-x2+6x-5上,
            ∴yp=-x2p+6xp-5.
            ∴xp+(-x2p+6xp-5)+5=0,
            解得xp=7或xp=0,∴yp=-12或yp=-5.
            ∴點(diǎn)P為(7,-12)或(0,-5)(舍去).
            ②當(dāng)∠C=90°時(shí),在Rt△ACP中,
            由勾股定理,得AC2+CP2=AP2,
            ∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,
            整理,得xp+yp-5=0.
            ∵點(diǎn)P(xp,yp)在拋物線(xiàn)y=-x2+6x-5上,
            ∴yp=-x2p+6xp-5,
            ∴xp+(-x2p+6xp-5)-5=0,
            解得xp=2或xp=5,∴yp=3或yp=0.
            ∴點(diǎn)P為(2,3)或(5,0)(舍去)
            綜上所述,滿(mǎn)足條件的點(diǎn)P的坐標(biāo)為(7,-12)或(2,3).