亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        人教版八年級上冊數(shù)學作業(yè)本答案

        字號:

        參考答案
            第1章
            平行線
            【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2與∠3相等,∠3與∠5互補.理由略5.同位角是∠BFD 和∠DEC,同旁內(nèi)角是∠AFD 和∠AED6.各4對.同位角有∠B 與∠GAD,∠B 與∠DCF,∠D 與∠HAB,∠D 與∠ECB;內(nèi)錯角有∠B 與∠BCE,∠B 與∠HAB,∠D 與∠GAD,∠D 與∠DCF;同旁內(nèi)角有∠B 與∠DAB,∠B 與∠DCB,∠D 與∠DAB,∠D與∠DCB
            【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,兩直線平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,兩直線平行5.a與b平行.理由略6.DG∥BF.理由如下:由DG,BF 分別是∠ADE 和∠ABC 的角平分線,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,則∠ADG=∠ABF,所以由同位角相等,兩直線平行,得DG∥BF
            【1.2(2)】1.(1)2,4,內(nèi)錯角相等,兩直線平行 (2)1,3,內(nèi)錯角相等,兩直線平行2.D3.(1)a∥c,同位角相等,兩直線平行 (2)b∥c,內(nèi)錯角相等,兩直線平行(3)a∥b,因為∠1,∠2的對頂角是同旁內(nèi)角且互補,所以兩直線平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE (同旁內(nèi)角互補,兩直線平行)5.(1)180°;AD;BC(2)AB 與CD 不一定平行.若加上條件∠ACD=90°,或∠1+∠D=90°等都可說明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略
            【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,兩直線平行),∴ ∠3=∠4(兩直線平行,同位角相等)4.垂直的意義;已知;兩直線平行,同位角相等;305.β=44°. ∵ AB∥CD, ∴ α=β6.(1)∠B=∠D (2)由2x+15=65-3x解得x=10,所以∠1=35°
            【1.3(2)】1.(1)兩直線平行,同位角相等 (2)兩直線平行,內(nèi)錯角相等2.(1)³ (2)³ 3.(1)DAB (2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(內(nèi)錯角相等,兩直線平行).∴ ∠4=∠3=120°(兩直線平行,同位角相等)5.能.舉例略6.∠APC=∠PAB+∠PCD.理由:連結(jié)AC,則∠BAC+∠ACD=180°.∴ ∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.
            【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章 特殊三角形2.AB 與CD 平行.量得線段BD 的長約為2cm,所以兩電線桿間的距離約為120m
            【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3個;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如圖,答案不,圖中點C1,C2,C3均可2于 M,BN ⊥l3于 N,則 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=15cm7.AP 平分∠BAC.理由如下:由 AP 是中線,得 BP=復習題PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50 2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5題)3.(1)∠B,兩直線平行,同位角相等
            【2.2】(2)∠5,內(nèi)錯角相等,兩直線平行(3)∠BCD,CD,同旁內(nèi)角互補,兩直線平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如圖,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25題) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS). ∴ BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本題也可用面積法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D
            【2.3】8.不正確,畫圖略1.70°,等腰 2.3 3.70°或40°9.因為∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD 是等腰三角形.理由如下:由BD,CD 分別是∠ABC,∠ACB 的平50 分線,得∠DBC=∠DCB.則DB=DC
            【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF 和△EFC 都是等腰三角形.理由如下:1.C 2.45°,45°,6 3.5∵ △ADE 和△FDE 重合, ∴ ∠ADE=∠FDE.4.∵ ∠B+∠C=90°, ∴ △ABC 是直角三角形∵ DE∥BC, ∴ ∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴ ∠B=∠DFB. ∴ DB=DF,即△DBF 是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC 是等腰三角形∴ DE=DF.∠ECD=45°, ∴ ∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100° (2)把60°分成20°和40°∴ ∠EDF=90°,即DE⊥DF
            【2.4】【2.5(2)】1.(1)3 (2)51.D 2.33° 3.∠A=65°,∠B=25° 4.DE=DF=3m2.△ADE 是等邊三角形.理由如下: ∵ △ABC 是等邊三角形,∴ ∠A=∠B=∠C=60°. ∵ DE∥BC, ∴ ∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE 6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因為∠BAC=∠ACD=60°1.(1)5 (2)12 (3)槡5 2.A=225(2)AC⊥BD.因為AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ 是等邊三角形.則∠APQ=60°.而 BP=3.作一個直角邊分別為1cm和2cm的直角三角形,其斜邊長為槡5cmAP, ∴ ∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4. 槡2 2cm (或槡8cm) 5.169cm2 6.18米∴ ∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)²BD′=1(a+b)2,6.△DEF 是等邊三角形.理由如下:由 ∠ABE+ ∠FCB= ∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°. ∴ ∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°, ∴ △DEF 是等邊三角形由1(a+b)2=ab+17.解答不,如圖22c2,得a2+b2=c2【2.6(2)】1.(1)不能 (2)能 2.是直角三角形,因為滿足m