為大家整理的七年級上冊數(shù)學(xué)補(bǔ)習(xí)題的文章,供大家學(xué)習(xí)參考!更多最新信息請點(diǎn)擊初一考試網(wǎng)
(1)概念型(正數(shù),負(fù)數(shù),正整數(shù),負(fù)整數(shù),非正數(shù),非負(fù)數(shù),非正整數(shù),非負(fù)整數(shù),有理數(shù))
(2)綜合計算題(計算先后順序:括號>乘方>乘除>1(n為偶數(shù)) 注意先確定符號,后計算結(jié)果。符號確定方法: (-1)n
-1(n為奇數(shù))
(3)利用相反數(shù)(a+b=0),倒數(shù)(ab=1),非負(fù)數(shù)性質(zhì)(0)
(4)數(shù)形結(jié)合(讀出數(shù)軸上的信息,注意絕對值是到原點(diǎn)的距離,即已知距離有左右兩種情況)
(5)找規(guī)律題(必須找到至少三項(xiàng)的聯(lián)系:有后一項(xiàng)減去前一項(xiàng)=常數(shù),有后一項(xiàng)除以前一項(xiàng)=常數(shù),有周期性規(guī)律)
—.填空題(每小題3.5分,共35分)
1.-12的相反數(shù)是________________2.-13___________________
3.|1/2-1-2/3|的值_____________________4.比較-3/7__________--4/9
5.絕對值不大于4的整數(shù)有_________個6.計算1-10.7-(-22.9)-|-23/10|=________________
7.已知|x+3|+(x-3)2=0,求xy+x2-y2的值___________________
8.x3=-1,則x=_________________;x2=4,則x=__________________
9.182500000用科學(xué)計數(shù)法_____________________
10.近似數(shù)1.30是由a四舍五入得到的,求a的取值范圍______________________
二.計算題(每小題5分,共85分)
1.計算(-1/2)2+(-0.25)38—(—2/3)3
2
2.計算—32—|(—5)3|(—2/5)2—18|—(—3)2|
算3.527(—10/9)—3.5272/9+3.5271/3+(—1)23(1+2)2×(−3.527) 、
4.計算—14—(2—0.5)1/3[(1/2)2—(1/2)3]5.計算—231×(—12(1)2 533312
6.—1×[1—3(—2/3)2]—(1/4)2×(—2)3(—3/4)3 21
7.已知—2,1.5,+2/3,0,—3.142,100,20,—20,—1.14,—1/2,30
屬于正數(shù)的是( )負(fù)數(shù)的是( )非負(fù)數(shù)的是( )非正數(shù)的是( )非負(fù)整數(shù)的是( )非正整數(shù)的是( )整數(shù)的是( )
8.已知|x+y|與 (x—3)2互為相反數(shù),a與b互為倒數(shù),a=—1/2,求x2y3+ax+b2(x—b+a)+(a+b) ba
9.已知O是原點(diǎn),|OA|=1,|AB|=2,|BC|=1,求所有滿足條件C點(diǎn)的絕對值的和。
10.已知一組數(shù)據(jù)3,12,48,192,…………求第n項(xiàng)
11.已知一組數(shù)據(jù)5,8,11,14…………….求第n項(xiàng)
12.已知|a—b|=a—b,且|a|=2,|b|=5,求a-b的值。
13.已知1/(1-a)是其規(guī)律,a1=—1/3,a2=3/4,……………….,求a2015
14.已知一組數(shù)據(jù)1,3,7,15,………………., 求第n項(xiàng)
15. 已知一組數(shù)據(jù)1,4,9,16……………. 求第n項(xiàng)
16. 已知一組數(shù)據(jù)3,8,15,24………………求第n項(xiàng)
17.比較—1.5,2.3,12/5,—6/7,—3/5,0,5/3(用大于號連接)
第二章:整式的加減
復(fù)習(xí)知識關(guān)鍵詞:
(1)概念型
單項(xiàng)式:一個數(shù)或字母的積,可以是一個數(shù),也可以是一個字母
多項(xiàng)式:多個單項(xiàng)式的和
整式:單項(xiàng)式與多項(xiàng)式
單項(xiàng)式的次數(shù):所有指數(shù)的和
多項(xiàng)式的次數(shù):單項(xiàng)式的次數(shù)
單項(xiàng)式的系數(shù):除去字母的常數(shù)
多項(xiàng)式次數(shù)項(xiàng),常數(shù)項(xiàng),多項(xiàng)式次數(shù)項(xiàng)系數(shù)
(2)整式的加減
方法:合并同類項(xiàng)(同類項(xiàng)是單項(xiàng)式,同類項(xiàng)的所有字母的指數(shù)均相同)
(3)根據(jù)題意列代數(shù)式(重點(diǎn),必須掌握的)
(4)學(xué)會整體性及逆向思維
一.填空題(每個4分,共40分)
1.在0,—1,—x,3,3—x,
2.在—2x+3,3x,x+2x11−x2x,x+y____________ 414,5a2,5a2+b,x2—y2,m+1,多項(xiàng)式的個數(shù)是___________
,5a2,5a2+b,x2—y2,m+11/3,42xy253. 在—2x+3,3x,x+2x,5ax+3
其中單項(xiàng)式是_____________________________________________________ 多項(xiàng)式是________________________________________________________
整式是_______________________________________________________________
4.多項(xiàng)式3x2y—1—6y2x4—4yx3+5xy是_______次_________項(xiàng)式,其中次數(shù)項(xiàng)是_____________,次數(shù)項(xiàng)系數(shù)是__________________,常數(shù)項(xiàng)是_____________。
5.5xy與6yx是否是同類項(xiàng)___________________
5x2y3與12y2x3是否是同類項(xiàng)____________________
6.6xyz與6xy是否是同類項(xiàng)__________________
7.計算2xy+3x2y3+(—2xy)+5y2x3—2y3x2+1—3x+12
8.計算5(2x+3)+4(3—3x)+3(2—2x)x—4(3+x)(2—x)
9.已知—4x6yz2與x2m-6y1—nz3+3a是同類項(xiàng),則m=____________,n=___________, a=______________。
10.已知2x3y2—n與3yx2m+2是同類項(xiàng),則m=_____________,n=______________
二.計算題(第一題20分,其他每個10分,共80分)
1.先化簡,后計算
(1)(x2—2x2+x—4)—(2x2—5x—4)+(3x3-2x2+2x—2),其中x=—1;(8分)
(2)4xy+x2-y2-(3x2+4x-3+y-4xy+6xy-1.5y-6),其中x=1,y=2.(6分)
(3)2xy+6x2—5xy+(6x2+5y2+3xy—8)—(3xy+4—3x2+6y2),其中x=3,y=—1(6分)
2.指出多項(xiàng)式3x2y—5xy+3—3y2x是幾次幾項(xiàng)式,指出次數(shù)項(xiàng),次數(shù)項(xiàng)系數(shù),并求當(dāng)x=1,y=—2的值。
3.若多項(xiàng)式3x2—2xy+y2+kxy—(2k—3)xy—(a2—6)x2—x+5若無x2,xy項(xiàng),求k與a的值。
4.若式子(2x2+3ax—y)—2(bx2—3x+2y—1)的值與字母x的取值無關(guān),求(a+b)—(a—b)3+3a—b+3的值
。
5.若x與y,z兩數(shù)之和的差為1;x=1,求(y+z)2—4x+(y—x+z)3—5的值。
6.一個多項(xiàng)式加上—x2+x—5+x3得2x3+1,求此多項(xiàng)式
7.某學(xué)生計算2x2—6xy+6y3—3x3+5x2—8xy—5y3+10加上某多項(xiàng)式時,由于粗心,誤算為減去這個多項(xiàng)式而得到x2+3xy+2y3+2,請求出正確答案。
第三章:一元一次方程
復(fù)習(xí)知識關(guān)鍵詞:
(1) 一元一次方程的概念及解得定義:
一元一次方程定義:滿足三個條件,即僅含有一個未知數(shù),指數(shù)為1,等式兩邊均為整式。(單項(xiàng)式與多項(xiàng)式)
一元一次方程的解:即當(dāng)x=算出的值時,代入算出使等式成立。
(2) 一元一次方程的解法:
性質(zhì)1:等式兩邊加上或減去某個數(shù)時,等式兩邊值不變;
性質(zhì)2:等式兩邊同時乘以某個數(shù)時,等式兩邊值不變。
方法:①利用性質(zhì)1把含x的移到左邊,常數(shù)移到右邊;
②把左邊和右邊分別合并同類項(xiàng),即化簡;
③利用性質(zhì)2把x前的系數(shù)變?yōu)?,最終結(jié)果將變成x=某個值,即該
值為方程的解。
去分母方法:等式兩邊同時乘以最小公因式
(3) 用一元一次方程解決一些實(shí)際問題:
方法:設(shè)列解答(利用誰比誰大或小,幾個和為常數(shù),誰是誰的幾倍,誰比
誰的幾倍大多少或少多少設(shè)x,找到另一個未知項(xiàng)用x的表達(dá)式,再利用一
個等式進(jìn)行列等式。)
分類:①配套問題:
已知a個A與b個B配套,利用有多少個a個A=多少個b個B,若A
的個數(shù)為x,B的個數(shù)為y=x的一次表達(dá)式,則x/a=y/b。
②工程問題:
方法:總工作量(一般設(shè)為1)=時間×效率×人數(shù)(一般為1人)
利用工作總量=1,誰比誰提前多少天完成列等式
③銷售問題:
出售價=成本×(1+盈利百分率)=成本×(1—虧損百分率)
還有打折問題
④球賽積分問題(利用總分=某個值列等式)
⑤ 電話計費(fèi),面積問題(分段進(jìn)行加和)
一、選擇題(每題3分,共24分)
1、下列四個方程中,是一元一次方程的是 ( ) A 11 xBx1 2Cx11 Dxy6
2、已知某數(shù)x,若比它的3大1的數(shù)的相反數(shù)是5,求x.則可列出方程 ( ) 433A.x15 B.(x1)544
33C.x15 D.(x1)5 44
3、如果方程(m-1)x + 2 =0是表示關(guān)于x的一元一次方程,那么m的取值范圍是 ( )
A.m0 B.m1 C.m=-1 D.m=0
4、小華想找一個解為x=-6的方程,那么他可以選擇下面哪一個方程 ( )
11xx123 2C、2x54x D、xx2 3A、2x-1=x+7 B、
25、當(dāng)x3時,代數(shù)式3x5ax10的值為7,則a等于 ( )