(1)概念:當(dāng)方程中兩個(gè)方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí),把這兩個(gè)方程的兩邊相加或相減來消去這個(gè)未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法.
(2)加減法解二元一次方程組的步驟
①利用等式的基本性質(zhì),將原方程組中某個(gè)未知數(shù)的系數(shù)化成相等或相反數(shù)的形式;
②再利用等式的基本性質(zhì)將變形后的兩個(gè)方程相加或相減,消去一個(gè)未知數(shù),得到一個(gè)一元一次方程(一定要將方程的兩邊都乘以同一個(gè)數(shù),切忌只乘以一邊,然后若未知數(shù)系數(shù)相等則用減法,若未知數(shù)系數(shù)互為相反數(shù),則用加法);
③解這個(gè)一元一次方程,求出未知數(shù)的值;
④將求得的未知數(shù)的值代入原方程組中的任何一個(gè)方程中,求出另一個(gè)未知數(shù)的值;
⑤用“{”聯(lián)立兩個(gè)未知數(shù)的值,就是方程組的解;
⑥最后檢驗(yàn)求得的結(jié)果是否正確(代入原方程組中進(jìn)行檢驗(yàn),方程是否滿足左邊=右邊)
(2)加減法解二元一次方程組的步驟
①利用等式的基本性質(zhì),將原方程組中某個(gè)未知數(shù)的系數(shù)化成相等或相反數(shù)的形式;
②再利用等式的基本性質(zhì)將變形后的兩個(gè)方程相加或相減,消去一個(gè)未知數(shù),得到一個(gè)一元一次方程(一定要將方程的兩邊都乘以同一個(gè)數(shù),切忌只乘以一邊,然后若未知數(shù)系數(shù)相等則用減法,若未知數(shù)系數(shù)互為相反數(shù),則用加法);
③解這個(gè)一元一次方程,求出未知數(shù)的值;
④將求得的未知數(shù)的值代入原方程組中的任何一個(gè)方程中,求出另一個(gè)未知數(shù)的值;
⑤用“{”聯(lián)立兩個(gè)未知數(shù)的值,就是方程組的解;
⑥最后檢驗(yàn)求得的結(jié)果是否正確(代入原方程組中進(jìn)行檢驗(yàn),方程是否滿足左邊=右邊)