在日常學習、工作或生活中,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,聚集在一塊。那么我們該如何寫一篇較為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。
初一數(shù)學知識點上冊篇一
這是小編為您傾心整理的七年級上冊數(shù)學幾何圖形初步知識點,經(jīng)典實用,希望看完之后對大家能有所幫助,謝謝您的支持,更多數(shù)學知識點,請繼續(xù)收看【初一數(shù)學知識點】欄目。
初一(七年級)上冊數(shù)學知識點:幾何圖形初步是由巨人中考網(wǎng)整理的,供大家參考,下面來看一下初一(七年級)上冊數(shù)學知識點:幾何圖形初步吧!
本章的主要內(nèi)容是圖形的初步認識,從
生活
周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯(lián)系。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角。
一、目標與要求
1.能從現(xiàn)實物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問題,轉(zhuǎn)化為平面圖形進行研究和處理,探索平面圖形與立體圖形之間的關(guān)系。
2.經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動手操作能力,經(jīng)歷問題解決的過程,提高解決問題的能力。
3.積極參與教學活動過程,形成自覺、認真的
學習
態(tài)度,培養(yǎng)敢于面對學習困難的精神,感受幾何圖形的美感;倡導自主學習和小組合作精神,在獨立思考的基礎上,能從小組交流中獲益,并對學習過程進行正確評價,體會合作學習的重要性。
二、知識框架
三、重點
從現(xiàn)實物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點;
正確判定圍成立體圖形的面是平面還是曲面,探索點、線、面、體之間的關(guān)系是重點;
畫一條線段等于已知線段,比較兩條線段的長短是一個重點,在現(xiàn)實情境中,了解線段的性質(zhì)“兩點之間,線段最短”是另一個重點。
四、難點
立體圖形與平面圖形之間的轉(zhuǎn)化是難點;
探索點、線、面、體運動變化后形成的圖形是難點;
畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點。
五、知識點、概念總結(jié)
1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。
3.直線:幾何學基本概念,是點在空間內(nèi)沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與x軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度。
4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。
5.線段:指一個或一個以上不同線素組成一段連續(xù)的或不連續(xù)的圖線,如實線的線段或由“長劃、短間隔、點、短間隔、點、短間隔”組成的雙點長劃線的線段。
線段有如下性質(zhì):兩點之間線段最短。
6.兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。
7.端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。
線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段ab或線段ba,線段a。其中ab表示直線上的任意兩點。
8.直線、射線、線段區(qū)別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。
9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。
這是小編為您傾心整理的七年級上冊數(shù)學一元一次方程知識點,經(jīng)典實用,希望看完之后對大家能有所幫助,謝謝您的支持,更多數(shù)學知識點,請繼續(xù)收看【初一數(shù)學知識點】欄目。
本章內(nèi)容是代數(shù)學的核心,也是所有代數(shù)方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。
一、目標與要求
1.通過處理實際問題,讓學生體驗從算術(shù)方法到代數(shù)方法是一種進步;
2.初步學會如何
尋找
問題中的相等關(guān)系,列出方程,了解方程的概念;
3.培養(yǎng)學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關(guān)系;
建立列方程解決實際問題的思想方法,學會合并同類項,會解"ax+bx=c"類型的一元一次方程。
三、難點
從實際問題中尋找相等關(guān)系;
分析實際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識框架
五、知識點、概念總結(jié)
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數(shù);
(3)未知數(shù)最高次項為1;
(4)含未知數(shù)的項的系數(shù)不為0.
4.等式的性質(zhì):
等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。
等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。
等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。
5.合并同類項
(1)依據(jù):乘法分配律
(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項
(3)合并時次數(shù)不變,只是系數(shù)相加減。
6.移項
(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。
(2)依據(jù):等式的性質(zhì)
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(3)移項:把含有未知數(shù)的項都移到方程的一邊,
其他
項都移到方程的另一邊;移項要變號
(4)合并同類項:把方程化成ax=b(a≠0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。
10.列一元一次方程解應用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎.
10.角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
11.角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
12.角的符號:角的符號:∠
13.角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)!
14.幾何圖形分類
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、n棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即v=sh,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及n棱錐;
棱錐體積統(tǒng)一為v=sh/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式v=4πr3/3,
其他不常用分類:圓臺、棱臺、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
這是小編為您傾心整理的'初二數(shù)學精華一元一次不等式知識點,經(jīng)典實用,希望看完之后對大家能有所幫助,謝謝您的支持,更多數(shù)學知識點,請繼續(xù)收看【初一數(shù)學知識點】欄目。
初二數(shù)學精華一元一次不等式知識點
1、不等式與等式的性質(zhì)類比。
對于等式(例如a=b)的性質(zhì),我們比較熟悉。不等式(例如a>b或a等式有兩個基本性質(zhì):
1、等式兩邊都加上(或減去)同一個數(shù)或同一個整式,等號不變。(即兩邊仍然相等)。
2、等式兩邊都乘以(或除以)同一個不等于
0的數(shù),符號不變(即兩邊仍然相等)。
按“類比”思想考慮問題,自然會問:不等式是否也具有這樣相類似的性質(zhì),通過實例的反復檢驗得到的回答是對的,即有。
不等式的性質(zhì);1、不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變(即原來大的一邊仍然大,原來較小的一邊仍然較小)。2、不等式兩邊都乘以(或除以)同一個正數(shù),不等號方向不變。3、不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變(即原來較大的一邊反而較小,原來較小的一邊反而較大)。
例如:-x>20,兩邊都乘以-5,得,
x<-100,(變形根據(jù)是不等式基本性質(zhì)3)。
等式的基本性質(zhì)是等式變形的根據(jù),與此類似,不等式的基本性質(zhì)是不等式變形的根據(jù)。
2、不等式的解與方程的解的類比
從形式上看,含有未知數(shù)的不等式與方程是類似的。按“類比”思想來考慮問題,同樣可以仿效方程解的意義來理解不等式的解的意義。
例如:當x=3時,方程x+4=7兩邊的值相等。x=3是方程x+4=7的解。而當x=2時,方程x+4=7兩邊值不相等,x=2不是方程x+4=7的解。
類似地當x=5不等式x+4>7成立,那么x=5是不等式x+4>7的一個解。若x=2不等式x+4>7不成立,那么x=2不是不等式x+4>7的解。
注意:1、不等式與方程的解的意義雖然非常類似,但它們的解的情況卻有重大的區(qū)別。一般地說,一元方程只有一個或幾個解;而含有未知數(shù)的不等式,一般都有無數(shù)多個解。
例如:x+6=5只有一個解x=-1,在數(shù)軸上表示出來只是一個點,如圖,
而不等式x+6>5則有無數(shù)多個解
-----大于-1的任何一個數(shù)都是它的解。它的解集是x>-1,在數(shù)軸上表示出來是一個區(qū)間,如圖
2、符號“≥”讀作“大于或等于”或也可以理解為“不小于”;符號“≤”讀作“小于或等于”或可以理解為“不大于”。
例如;在數(shù)軸上表示出下列各式:
(1)x≥2(2)x<-2(3)x>1(4)x≤-1
解:
x≥2x<-2x>1x≤-1
3、不等式解法與方程的解法類比。
從形式上看,一元一次不等式與一元一次方程是類似的。在學習一元一次方程時利用等式的兩個基本性質(zhì)求得一元一次方程解,按“類比”思想考慮問題自然會推斷出若用不等式的三條基本性質(zhì),采用與解一元一次方程相類似的步驟去解一元一次不等式,可求得一元一次不等式的解集。
例如:解下列方程和不等式:=+1
≥+1
解:3(2+x)=2(2x-1)+61、去分母:解:3(2+x)≥2(2x-1)+6
6+3x=4x-2+62、去括號:6+3x≥4x-2+6
3x-4x=-2+6-63、移項:3x-4x≥-2+6-6
-x=-24、合并同類項:-x≥-2
x=25、系數(shù)化為1:x≤2
∴x=2是原方程的解∴x≤2是原不等式的解集。
注意:解一元一次不等式與解一元一次方程的步驟雖然完全相同,但是要注意步驟1和5,如果乘數(shù)或除數(shù)是負數(shù)時,解不等式時要改變不等號的方向。
六、帶有附加條件的不等式:
例1,求不等式(3x+4)-3≤7的最大整數(shù)解。
分析:此題是帶有附加條件的不等式,這時應先求不等式的解集,再在解集中,找出滿足附加條件的解。[!----]
解:(3x+4)-3≤7
去分母:3x+4-6≤14
移項:3x≤14-4+6
合并同類項:3x≤16
系數(shù)化為1:x≤5∴x≤5
的最大整數(shù)解為x=5
例2,x取哪些正整數(shù)時,代數(shù)式3-的值不小于代數(shù)式的值?
解:依題意需求不等式3-≥的解集。
解這個不等式:
去分母:24-2(x-1)≥3(x+2)
去括號:24-2x+2≥3x+6
移項:-2x-3x≥6-24-2
合并同類項:-5x≥-20
系數(shù)化為1:x≤4∴x=4的正整數(shù)為x=1,2,3,4.
答:當x取1,2,3,4時,代數(shù)式3-的值不小于代數(shù)式的值。
例3,當k取何值時,方程x-2k=3(x-k)+1的解為負數(shù)。
分析:應先解
關(guān)于
x的字母系數(shù)方程,即找到x的表達式,再解帶有附加條件的不等式。
解:解關(guān)于x的方程:x-2k=3(x-k)+1
去分母:x-4k=6(x-k)+2
去括號:x-4k=6x-6k+2
移項:x-6x=-6k+2+4k
合并同類項:-5x=2-2k
系數(shù)化為1:x==.
要使x為負數(shù),即x=<0,
∵分母>0,∴2k-2<0,∴k<1,
∴當k<1時,方程
x-2k=3(x-k)+1的解是負數(shù)。
例4,若|3x-6|+(2x-y-m)2=0,求m為何值時y為正數(shù)。
分析:目前我們學習過的兩個非負數(shù)問題,一個是絕對值為非負數(shù),另一個是完全平方數(shù)是非負數(shù)。由非負數(shù)的概念可知,兩個非負數(shù)的和等于0,則這兩個非負數(shù)只能為零。由這個性質(zhì)此題可轉(zhuǎn)化為方程組來解。由此求出y的表達式再解關(guān)于m的不等式。
解:∵|3x-6|+(2x-y-m)2=0,
∴
∴
解方程組得
要使y為正數(shù),即4-m>0,∴m<4.
∴當m<4時,y為正數(shù)。
注意:要明確“大于”、“小于”、“不大于”、“不小于”、“不超過”、“至多”、“至少”、“非負數(shù)”、“正數(shù)”、“負數(shù)”、“負整數(shù)”……這些描述不等關(guān)系的語言所對應的不等號各是
什么
。求帶有附加條件的不等式時需要先求這個不等式的所有的解,即這個不等式的解集,然后再從中篩選出符合要求的解。[!----]
七、字母系數(shù)的不等式:
例:解關(guān)于x的不等式3(a+1)x+3a≥2ax+3
分析:由于x是未知數(shù),所以應把a看作已知數(shù),又由于a可以是任意有理數(shù),所以在應用同解原理時,要區(qū)別情況,進行分類討論。
解:移項,得3(a+1)x-2ax≥3-3a
合并同類項:(a+3)x≥3-3a
(1)當a+3>0,即a>-3時,x≥,
(2)當a+3=0,即a=-3時,0x≥12,不等式無解。
(3)當a+3<0,即a<-3時,x≤。
注意:在處理字母系數(shù)的不等式時,首先要弄清哪一個字母是未知數(shù),而把其他字母看作已知數(shù),在運用同解原理把未知數(shù)的系數(shù)化為1時,應作合理的分類,逐一討論,例題中只有分為a+3>0,a+3=0,a+3<0,三種情況進行研究,才有完整地解出不等式,這種處理問題的方法叫做“分類討論”。
s("content_relate");
【有關(guān)初一數(shù)學知識點】相關(guān)文章:
1.
初一數(shù)學有關(guān)知識點總結(jié)
2.
初一數(shù)學有關(guān)整式的加減的知識點
3.
初一數(shù)學知識點及例題
4.
最新初一數(shù)學角的種類知識點
5.
數(shù)學初一知識點歸納
6.
初一數(shù)學知識點匯總
7.
初一數(shù)學平移知識點
8.
初一的數(shù)學知識點總結(jié)
初一數(shù)學知識點上冊篇一
這是小編為您傾心整理的七年級上冊數(shù)學幾何圖形初步知識點,經(jīng)典實用,希望看完之后對大家能有所幫助,謝謝您的支持,更多數(shù)學知識點,請繼續(xù)收看【初一數(shù)學知識點】欄目。
初一(七年級)上冊數(shù)學知識點:幾何圖形初步是由巨人中考網(wǎng)整理的,供大家參考,下面來看一下初一(七年級)上冊數(shù)學知識點:幾何圖形初步吧!
本章的主要內(nèi)容是圖形的初步認識,從
生活
周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯(lián)系。在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角。
一、目標與要求
1.能從現(xiàn)實物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問題,轉(zhuǎn)化為平面圖形進行研究和處理,探索平面圖形與立體圖形之間的關(guān)系。
2.經(jīng)歷探索平面圖形與立體圖形之間的關(guān)系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動手操作能力,經(jīng)歷問題解決的過程,提高解決問題的能力。
3.積極參與教學活動過程,形成自覺、認真的
學習
態(tài)度,培養(yǎng)敢于面對學習困難的精神,感受幾何圖形的美感;倡導自主學習和小組合作精神,在獨立思考的基礎上,能從小組交流中獲益,并對學習過程進行正確評價,體會合作學習的重要性。
二、知識框架
三、重點
從現(xiàn)實物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點;
正確判定圍成立體圖形的面是平面還是曲面,探索點、線、面、體之間的關(guān)系是重點;
畫一條線段等于已知線段,比較兩條線段的長短是一個重點,在現(xiàn)實情境中,了解線段的性質(zhì)“兩點之間,線段最短”是另一個重點。
四、難點
立體圖形與平面圖形之間的轉(zhuǎn)化是難點;
探索點、線、面、體運動變化后形成的圖形是難點;
畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點。
五、知識點、概念總結(jié)
1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。
3.直線:幾何學基本概念,是點在空間內(nèi)沿相同或相反方向運動的軌跡。從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與x軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度。
4.射線:在歐幾里德幾何學中,直線上的一點和它一旁的部分所組成的圖形稱為射線或半直線。
5.線段:指一個或一個以上不同線素組成一段連續(xù)的或不連續(xù)的圖線,如實線的線段或由“長劃、短間隔、點、短間隔、點、短間隔”組成的雙點長劃線的線段。
線段有如下性質(zhì):兩點之間線段最短。
6.兩點間的距離:連接兩點間線段的長度叫做這兩點間的距離。
7.端點:直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。
線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段ab或線段ba,線段a。其中ab表示直線上的任意兩點。
8.直線、射線、線段區(qū)別:直線沒有距離。射線也沒有距離。因為直線沒有端點,射線只有一個端點,可以無限延長。
9.角:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊。
這是小編為您傾心整理的七年級上冊數(shù)學一元一次方程知識點,經(jīng)典實用,希望看完之后對大家能有所幫助,謝謝您的支持,更多數(shù)學知識點,請繼續(xù)收看【初一數(shù)學知識點】欄目。
本章內(nèi)容是代數(shù)學的核心,也是所有代數(shù)方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。
一、目標與要求
1.通過處理實際問題,讓學生體驗從算術(shù)方法到代數(shù)方法是一種進步;
2.初步學會如何
尋找
問題中的相等關(guān)系,列出方程,了解方程的概念;
3.培養(yǎng)學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關(guān)系;
建立列方程解決實際問題的思想方法,學會合并同類項,會解"ax+bx=c"類型的一元一次方程。
三、難點
從實際問題中尋找相等關(guān)系;
分析實際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識框架
五、知識點、概念總結(jié)
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數(shù);
(3)未知數(shù)最高次項為1;
(4)含未知數(shù)的項的系數(shù)不為0.
4.等式的性質(zhì):
等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。
等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。
等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。
5.合并同類項
(1)依據(jù):乘法分配律
(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項
(3)合并時次數(shù)不變,只是系數(shù)相加減。
6.移項
(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。
(2)依據(jù):等式的性質(zhì)
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(3)移項:把含有未知數(shù)的項都移到方程的一邊,
其他
項都移到方程的另一邊;移項要變號
(4)合并同類項:把方程化成ax=b(a≠0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。
10.列一元一次方程解應用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎.
10.角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
11.角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
12.角的符號:角的符號:∠
13.角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)!
14.幾何圖形分類
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、n棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即v=sh,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及n棱錐;
棱錐體積統(tǒng)一為v=sh/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式v=4πr3/3,
其他不常用分類:圓臺、棱臺、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形
這是小編為您傾心整理的'初二數(shù)學精華一元一次不等式知識點,經(jīng)典實用,希望看完之后對大家能有所幫助,謝謝您的支持,更多數(shù)學知識點,請繼續(xù)收看【初一數(shù)學知識點】欄目。
初二數(shù)學精華一元一次不等式知識點
1、不等式與等式的性質(zhì)類比。
對于等式(例如a=b)的性質(zhì),我們比較熟悉。不等式(例如a>b或a等式有兩個基本性質(zhì):
1、等式兩邊都加上(或減去)同一個數(shù)或同一個整式,等號不變。(即兩邊仍然相等)。
2、等式兩邊都乘以(或除以)同一個不等于
0的數(shù),符號不變(即兩邊仍然相等)。
按“類比”思想考慮問題,自然會問:不等式是否也具有這樣相類似的性質(zhì),通過實例的反復檢驗得到的回答是對的,即有。
不等式的性質(zhì);1、不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變(即原來大的一邊仍然大,原來較小的一邊仍然較小)。2、不等式兩邊都乘以(或除以)同一個正數(shù),不等號方向不變。3、不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變(即原來較大的一邊反而較小,原來較小的一邊反而較大)。
例如:-x>20,兩邊都乘以-5,得,
x<-100,(變形根據(jù)是不等式基本性質(zhì)3)。
等式的基本性質(zhì)是等式變形的根據(jù),與此類似,不等式的基本性質(zhì)是不等式變形的根據(jù)。
2、不等式的解與方程的解的類比
從形式上看,含有未知數(shù)的不等式與方程是類似的。按“類比”思想來考慮問題,同樣可以仿效方程解的意義來理解不等式的解的意義。
例如:當x=3時,方程x+4=7兩邊的值相等。x=3是方程x+4=7的解。而當x=2時,方程x+4=7兩邊值不相等,x=2不是方程x+4=7的解。
類似地當x=5不等式x+4>7成立,那么x=5是不等式x+4>7的一個解。若x=2不等式x+4>7不成立,那么x=2不是不等式x+4>7的解。
注意:1、不等式與方程的解的意義雖然非常類似,但它們的解的情況卻有重大的區(qū)別。一般地說,一元方程只有一個或幾個解;而含有未知數(shù)的不等式,一般都有無數(shù)多個解。
例如:x+6=5只有一個解x=-1,在數(shù)軸上表示出來只是一個點,如圖,
而不等式x+6>5則有無數(shù)多個解
-----大于-1的任何一個數(shù)都是它的解。它的解集是x>-1,在數(shù)軸上表示出來是一個區(qū)間,如圖
2、符號“≥”讀作“大于或等于”或也可以理解為“不小于”;符號“≤”讀作“小于或等于”或可以理解為“不大于”。
例如;在數(shù)軸上表示出下列各式:
(1)x≥2(2)x<-2(3)x>1(4)x≤-1
解:
x≥2x<-2x>1x≤-1
3、不等式解法與方程的解法類比。
從形式上看,一元一次不等式與一元一次方程是類似的。在學習一元一次方程時利用等式的兩個基本性質(zhì)求得一元一次方程解,按“類比”思想考慮問題自然會推斷出若用不等式的三條基本性質(zhì),采用與解一元一次方程相類似的步驟去解一元一次不等式,可求得一元一次不等式的解集。
例如:解下列方程和不等式:=+1
≥+1
解:3(2+x)=2(2x-1)+61、去分母:解:3(2+x)≥2(2x-1)+6
6+3x=4x-2+62、去括號:6+3x≥4x-2+6
3x-4x=-2+6-63、移項:3x-4x≥-2+6-6
-x=-24、合并同類項:-x≥-2
x=25、系數(shù)化為1:x≤2
∴x=2是原方程的解∴x≤2是原不等式的解集。
注意:解一元一次不等式與解一元一次方程的步驟雖然完全相同,但是要注意步驟1和5,如果乘數(shù)或除數(shù)是負數(shù)時,解不等式時要改變不等號的方向。
六、帶有附加條件的不等式:
例1,求不等式(3x+4)-3≤7的最大整數(shù)解。
分析:此題是帶有附加條件的不等式,這時應先求不等式的解集,再在解集中,找出滿足附加條件的解。[!----]
解:(3x+4)-3≤7
去分母:3x+4-6≤14
移項:3x≤14-4+6
合并同類項:3x≤16
系數(shù)化為1:x≤5∴x≤5
的最大整數(shù)解為x=5
例2,x取哪些正整數(shù)時,代數(shù)式3-的值不小于代數(shù)式的值?
解:依題意需求不等式3-≥的解集。
解這個不等式:
去分母:24-2(x-1)≥3(x+2)
去括號:24-2x+2≥3x+6
移項:-2x-3x≥6-24-2
合并同類項:-5x≥-20
系數(shù)化為1:x≤4∴x=4的正整數(shù)為x=1,2,3,4.
答:當x取1,2,3,4時,代數(shù)式3-的值不小于代數(shù)式的值。
例3,當k取何值時,方程x-2k=3(x-k)+1的解為負數(shù)。
分析:應先解
關(guān)于
x的字母系數(shù)方程,即找到x的表達式,再解帶有附加條件的不等式。
解:解關(guān)于x的方程:x-2k=3(x-k)+1
去分母:x-4k=6(x-k)+2
去括號:x-4k=6x-6k+2
移項:x-6x=-6k+2+4k
合并同類項:-5x=2-2k
系數(shù)化為1:x==.
要使x為負數(shù),即x=<0,
∵分母>0,∴2k-2<0,∴k<1,
∴當k<1時,方程
x-2k=3(x-k)+1的解是負數(shù)。
例4,若|3x-6|+(2x-y-m)2=0,求m為何值時y為正數(shù)。
分析:目前我們學習過的兩個非負數(shù)問題,一個是絕對值為非負數(shù),另一個是完全平方數(shù)是非負數(shù)。由非負數(shù)的概念可知,兩個非負數(shù)的和等于0,則這兩個非負數(shù)只能為零。由這個性質(zhì)此題可轉(zhuǎn)化為方程組來解。由此求出y的表達式再解關(guān)于m的不等式。
解:∵|3x-6|+(2x-y-m)2=0,
∴
∴
解方程組得
要使y為正數(shù),即4-m>0,∴m<4.
∴當m<4時,y為正數(shù)。
注意:要明確“大于”、“小于”、“不大于”、“不小于”、“不超過”、“至多”、“至少”、“非負數(shù)”、“正數(shù)”、“負數(shù)”、“負整數(shù)”……這些描述不等關(guān)系的語言所對應的不等號各是
什么
。求帶有附加條件的不等式時需要先求這個不等式的所有的解,即這個不等式的解集,然后再從中篩選出符合要求的解。[!----]
七、字母系數(shù)的不等式:
例:解關(guān)于x的不等式3(a+1)x+3a≥2ax+3
分析:由于x是未知數(shù),所以應把a看作已知數(shù),又由于a可以是任意有理數(shù),所以在應用同解原理時,要區(qū)別情況,進行分類討論。
解:移項,得3(a+1)x-2ax≥3-3a
合并同類項:(a+3)x≥3-3a
(1)當a+3>0,即a>-3時,x≥,
(2)當a+3=0,即a=-3時,0x≥12,不等式無解。
(3)當a+3<0,即a<-3時,x≤。
注意:在處理字母系數(shù)的不等式時,首先要弄清哪一個字母是未知數(shù),而把其他字母看作已知數(shù),在運用同解原理把未知數(shù)的系數(shù)化為1時,應作合理的分類,逐一討論,例題中只有分為a+3>0,a+3=0,a+3<0,三種情況進行研究,才有完整地解出不等式,這種處理問題的方法叫做“分類討論”。
s("content_relate");
【有關(guān)初一數(shù)學知識點】相關(guān)文章:
1.
初一數(shù)學有關(guān)知識點總結(jié)
2.
初一數(shù)學有關(guān)整式的加減的知識點
3.
初一數(shù)學知識點及例題
4.
最新初一數(shù)學角的種類知識點
5.
數(shù)學初一知識點歸納
6.
初一數(shù)學知識點匯總
7.
初一數(shù)學平移知識點
8.
初一的數(shù)學知識點總結(jié)