教案的編寫需要考慮學(xué)生的學(xué)習(xí)需求和教學(xué)資源的充分利用。那么我們該如何編寫一份優(yōu)秀的教案呢?首先,教案的內(nèi)容要與教學(xué)目標(biāo)密切相關(guān),要確保教學(xué)過程符合學(xué)生的思維規(guī)律和學(xué)習(xí)規(guī)律。其次,教案的編寫要注意教學(xué)方法的選擇和使用,要根據(jù)不同的教學(xué)內(nèi)容和學(xué)生的實際情況合理運(yùn)用多種教學(xué)方法,使學(xué)生能夠積極參與、主動思考和自主學(xué)習(xí)。此外,教案的語言要簡潔明了,邏輯嚴(yán)謹(jǐn),要注重語言表達(dá)的準(zhǔn)確性和思想的完整性。最后,教案的設(shè)計要靈活多樣,要根據(jù)學(xué)生的特長和興趣進(jìn)行差異化教學(xué),提供多樣化的學(xué)習(xí)活動和評價方式,激發(fā)學(xué)生的學(xué)習(xí)熱情和創(chuàng)造力。下面是一些經(jīng)典教案范文,希望能夠?qū)δ愕慕虒W(xué)設(shè)計提供一些思路和參考。
高一數(shù)學(xué)必修函數(shù)教案篇一
教學(xué)目標(biāo)。
理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用.
教學(xué)重難點。
1.教學(xué)重點:兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用;。
2.教學(xué)難點:兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.
教學(xué)過程。
高一數(shù)學(xué)必修函數(shù)教案篇二
(2)了解區(qū)間的概念;。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修函數(shù)教案篇三
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。
高一數(shù)學(xué)必修函數(shù)教案篇四
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修函數(shù)教案篇五
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學(xué)重難點。
教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學(xué)難點:如何將幾何等實際問題化歸為向量問題.
教學(xué)過程。
由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運(yùn)用。
思考:
運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?
運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修函數(shù)教案篇六
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運(yùn)用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進(jìn)一步的理解與應(yīng)用.
二.主體設(shè)計
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運(yùn)用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運(yùn)用
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
(2)已知等差數(shù)列中,首項,則公差
(3)已知等差數(shù)列中,公差,則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運(yùn)用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進(jìn)行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計
等差數(shù)列通項公式1.方程思想的運(yùn)用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
高一數(shù)學(xué)必修函數(shù)教案篇七
教學(xué)目標(biāo)。
1、理解平面向量的坐標(biāo)的概念;。
2、掌握平面向量的坐標(biāo)運(yùn)算;。
3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.
教學(xué)重難點。
教學(xué)重點:平面向量的坐標(biāo)運(yùn)算。
教學(xué)難點:向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.
教學(xué)過程。
平面向量基本定理:。
什么叫平面的一組基底?
平面的基底有多少組?
引入:。
1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。
表示?
2.平面向量是否也有類似的表示呢?
高一數(shù)學(xué)必修函數(shù)教案篇八
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數(shù)函數(shù)的'有關(guān)概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
高一數(shù)學(xué)必修函數(shù)教案篇九
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點:型的不等式的解法;。
教學(xué)難點:利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計。
教師活動。
學(xué)生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
二、新課。
【提問】如何解絕對值方程?.。
【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
【練習(xí)】解下列不等式:
(1)?;
(2)。
【設(shè)問】如果在?中的?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果?中的?是?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
或?。
由?得。
由?得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式?的解集表示為。
畫出數(shù)軸。
思考答案。
不等式?的解集為。
或表示為?,或。
筆答。
(1)。
(2)?,或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。
由淺入深,循序漸進(jìn),在?()型絕對值方程的基礎(chǔ)上引出(?)型絕對值方程的解法.。
針對解?(?)絕對值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出?與?(?)絕對值不等式。
高一數(shù)學(xué)必修函數(shù)教案篇十
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修函數(shù)教案篇十一
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點難點分析。
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學(xué)中的難點。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一數(shù)學(xué)必修函數(shù)教案篇十二
3、函數(shù)的三要素:定義域、值域和對應(yīng)法則。
4、兩個函數(shù)能成為同一函數(shù)的條件
當(dāng)且僅當(dāng)兩個函數(shù)的定義域和對應(yīng)法則完全相同時,這兩個函數(shù)才是同一函數(shù)。
5、區(qū)間的概念和記號
6、函數(shù)的表示方法
函數(shù)的表示方法有三種。(1)解析法(2)列表法(3)圖像法
7、分段函數(shù)
本節(jié)是段考和高考必不可少的考查部分,多以選擇題和填空題的形式出現(xiàn)。段考中??疾楹瘮?shù)的定義域、值域、對應(yīng)法則、同一函數(shù)、函數(shù)的解析式和分段函數(shù)。高考中可以和高中數(shù)學(xué)的大部分章節(jié)知識聯(lián)合考查,但是難度不大,屬于容易題。多考查函數(shù)的定義域、函數(shù)的表示方法和分段函數(shù)。
1、映射是一種特殊的函數(shù),映射中的集合a,b可以是數(shù)集,也可以是點集或其他集合,這兩個集合有先后順序。a到b的映射與b到a的映射是不同的。而函數(shù)是數(shù)集到數(shù)集的映射,所以函數(shù)是特殊的映射,但是映射不一定是函數(shù)。
2、函數(shù)的問題,要遵循“定義域優(yōu)先”的原則。無論是簡單的函數(shù),還是復(fù)雜的函數(shù),無論是具體的函數(shù),還是抽象的函數(shù),必須優(yōu)先考慮函數(shù)的定義域。之所以要做到這一點,不僅是為了防止出現(xiàn)錯誤,有時還會為解題帶來方便。
3、分段函數(shù)是一個函數(shù),而不是幾個函數(shù)。分段函數(shù)書寫時,注意格式規(guī)范,一般在左邊的區(qū)間寫在上面,右邊的區(qū)間寫在下面,每一段自變量的取值范圍的交集為空集,所有段的自變量的取值范圍的并集是函數(shù)的定義域。
高一數(shù)學(xué)必修函數(shù)教案篇十三
函數(shù)是高考數(shù)學(xué)中的重點內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個知識點,然后運(yùn)用函數(shù)的各種性質(zhì)來解決具體的問題。
2.函數(shù)的定義域。
函數(shù)的定義域分為自然定義域和實際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實際問題確定的,這時應(yīng)根據(jù)自變量的實際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。
3.求解析式。
求函數(shù)的解析式一般有三種種情況:
(1)根據(jù)實際問題建立函數(shù)關(guān)系式,這種情況需引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識找出函數(shù)關(guān)系式。
(2)有時體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。
(3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進(jìn)行換元來解。掌握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質(zhì)了解且熟悉。
目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。
高一數(shù)學(xué)必修函數(shù)教案篇十四
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修函數(shù)教案篇一
教學(xué)目標(biāo)。
理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法,體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握其應(yīng)用.
教學(xué)重難點。
1.教學(xué)重點:兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用;。
2.教學(xué)難點:兩角和與差正弦、余弦和正切公式的靈活運(yùn)用.
教學(xué)過程。
高一數(shù)學(xué)必修函數(shù)教案篇二
(2)了解區(qū)間的概念;。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修函數(shù)教案篇三
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項公式,可以求其項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。
高一數(shù)學(xué)必修函數(shù)教案篇四
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進(jìn)、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高一數(shù)學(xué)必修函數(shù)教案篇五
教學(xué)目標(biāo)。
3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
教學(xué)重難點。
教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
教學(xué)難點:如何將幾何等實際問題化歸為向量問題.
教學(xué)過程。
由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運(yùn)用。
思考:
運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?
運(yùn)用向量方法解決平面幾何問題可以分哪幾個步驟?
“三步曲”:
(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系.
高一數(shù)學(xué)必修函數(shù)教案篇六
3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的愛好.
教學(xué)重點是通項公式的熟悉;教學(xué)難點是對公式的靈活運(yùn)用.
實物投影儀,多媒體軟件,電腦.
研探式.
一.復(fù)習(xí)提問
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進(jìn)一步的理解與應(yīng)用.
二.主體設(shè)計
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運(yùn)用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
1.方程思想的運(yùn)用
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
(2)已知等差數(shù)列中,首項,則公差
(3)已知等差數(shù)列中,公差,則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運(yùn)用方程的思想方法,已知其中三個量的值,可以求得第四個量.
2.基本量方法的使用
(1)已知等差數(shù)列中,求的值.
(2)已知等差數(shù)列中,求.
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量.
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的`制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
類似的還有
(4)已知等差數(shù)列中,求的值.
以上屬于對數(shù)列的項進(jìn)行定量的研究,有無定性的判定?引出
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
這是為研究等差數(shù)列前項和的最值所做的預(yù)備工作.可配備的題目如
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第x項起以后每項均為負(fù)數(shù).
三.小結(jié)
1.用方程思想熟悉等差數(shù)列通項公式;
2.用函數(shù)思想解決等差數(shù)列問題.
四.板書設(shè)計
等差數(shù)列通項公式1.方程思想的運(yùn)用
2.基本量方法的使用
3.研究等差數(shù)列的單調(diào)性
4.研究項的符號
高一數(shù)學(xué)必修函數(shù)教案篇七
教學(xué)目標(biāo)。
1、理解平面向量的坐標(biāo)的概念;。
2、掌握平面向量的坐標(biāo)運(yùn)算;。
3、會根據(jù)向量的坐標(biāo),判斷向量是否共線.
教學(xué)重難點。
教學(xué)重點:平面向量的坐標(biāo)運(yùn)算。
教學(xué)難點:向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.
教學(xué)過程。
平面向量基本定理:。
什么叫平面的一組基底?
平面的基底有多少組?
引入:。
1.平面內(nèi)建立了直角坐標(biāo)系,點a可以用什么來。
表示?
2.平面向量是否也有類似的表示呢?
高一數(shù)學(xué)必修函數(shù)教案篇八
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數(shù)函數(shù)的定義是什么?
(4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
一、提問題
1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
1.對數(shù)函數(shù)的'有關(guān)概念
(1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
高一數(shù)學(xué)必修函數(shù)教案篇九
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。
教學(xué)重點:型的不等式的解法;。
教學(xué)難點:利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計。
教師活動。
學(xué)生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
二、新課。
【提問】如何解絕對值方程?.。
【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
【練習(xí)】解下列不等式:
(1)?;
(2)。
【設(shè)問】如果在?中的?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果?中的?是?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
或?。
由?得。
由?得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式?的解集表示為。
畫出數(shù)軸。
思考答案。
不等式?的解集為。
或表示為?,或。
筆答。
(1)。
(2)?,或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。
由淺入深,循序漸進(jìn),在?()型絕對值方程的基礎(chǔ)上引出(?)型絕對值方程的解法.。
針對解?(?)絕對值不等式學(xué)生常出現(xiàn)的情況,運(yùn)用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出?與?(?)絕對值不等式。
高一數(shù)學(xué)必修函數(shù)教案篇十
(1)理解函數(shù)的概念;。
(2)了解區(qū)間的概念;。
2、目標(biāo)解析。
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】。
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
高一數(shù)學(xué)必修函數(shù)教案篇十一
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點難點分析。
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學(xué)中的難點。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一數(shù)學(xué)必修函數(shù)教案篇十二
3、函數(shù)的三要素:定義域、值域和對應(yīng)法則。
4、兩個函數(shù)能成為同一函數(shù)的條件
當(dāng)且僅當(dāng)兩個函數(shù)的定義域和對應(yīng)法則完全相同時,這兩個函數(shù)才是同一函數(shù)。
5、區(qū)間的概念和記號
6、函數(shù)的表示方法
函數(shù)的表示方法有三種。(1)解析法(2)列表法(3)圖像法
7、分段函數(shù)
本節(jié)是段考和高考必不可少的考查部分,多以選擇題和填空題的形式出現(xiàn)。段考中??疾楹瘮?shù)的定義域、值域、對應(yīng)法則、同一函數(shù)、函數(shù)的解析式和分段函數(shù)。高考中可以和高中數(shù)學(xué)的大部分章節(jié)知識聯(lián)合考查,但是難度不大,屬于容易題。多考查函數(shù)的定義域、函數(shù)的表示方法和分段函數(shù)。
1、映射是一種特殊的函數(shù),映射中的集合a,b可以是數(shù)集,也可以是點集或其他集合,這兩個集合有先后順序。a到b的映射與b到a的映射是不同的。而函數(shù)是數(shù)集到數(shù)集的映射,所以函數(shù)是特殊的映射,但是映射不一定是函數(shù)。
2、函數(shù)的問題,要遵循“定義域優(yōu)先”的原則。無論是簡單的函數(shù),還是復(fù)雜的函數(shù),無論是具體的函數(shù),還是抽象的函數(shù),必須優(yōu)先考慮函數(shù)的定義域。之所以要做到這一點,不僅是為了防止出現(xiàn)錯誤,有時還會為解題帶來方便。
3、分段函數(shù)是一個函數(shù),而不是幾個函數(shù)。分段函數(shù)書寫時,注意格式規(guī)范,一般在左邊的區(qū)間寫在上面,右邊的區(qū)間寫在下面,每一段自變量的取值范圍的交集為空集,所有段的自變量的取值范圍的并集是函數(shù)的定義域。
高一數(shù)學(xué)必修函數(shù)教案篇十三
函數(shù)是高考數(shù)學(xué)中的重點內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個知識點,然后運(yùn)用函數(shù)的各種性質(zhì)來解決具體的問題。
2.函數(shù)的定義域。
函數(shù)的定義域分為自然定義域和實際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實際問題確定的,這時應(yīng)根據(jù)自變量的實際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。
3.求解析式。
求函數(shù)的解析式一般有三種種情況:
(1)根據(jù)實際問題建立函數(shù)關(guān)系式,這種情況需引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識找出函數(shù)關(guān)系式。
(2)有時體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。
(3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進(jìn)行換元來解。掌握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質(zhì)了解且熟悉。
目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。
高一數(shù)學(xué)必修函數(shù)教案篇十四
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認(rèn)識結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。

