教案的編寫要符合學(xué)生的學(xué)習(xí)特點(diǎn),能夠引導(dǎo)學(xué)生主動參與課堂活動,提高其學(xué)習(xí)效果。編寫教案要充分了解教學(xué)內(nèi)容,把握教材的核心要點(diǎn)和難點(diǎn)。教案的編寫應(yīng)該注重培養(yǎng)學(xué)生的綜合能力和創(chuàng)新思維。
一元二次方程數(shù)學(xué)教案篇一
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會有不同的結(jié)果。
教學(xué)目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
一元二次方程數(shù)學(xué)教案篇二
1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實(shí)際問題。本節(jié)仍是進(jìn)一步討論如何建立和利用一元二次方程模型來解決實(shí)際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。
2、教學(xué)目標(biāo)要求:
(2)能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理;
(4)通過用一元二次方程解決身邊的問題,體會數(shù)學(xué)知識應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用。
3、教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):列一元二次方程解與面積有關(guān)問題的應(yīng)用題。
難點(diǎn):發(fā)現(xiàn)問題中的等量關(guān)系。
1、本節(jié)課的設(shè)計(jì)中除了探究3教師參與多一些外,其余時(shí)間都堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,教師只注重點(diǎn)、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動都由生生交流,兵教兵從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
本節(jié)課是新授課,根據(jù)學(xué)生的知識結(jié)構(gòu),整個課堂教學(xué)流程大致可分為:
活動1復(fù)習(xí)回顧解決課前參與。
活動2封面設(shè)計(jì)問題的探究。
活動3草坪規(guī)劃問題的延伸。
活動4課堂回眸。
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
活動1復(fù)習(xí)回顧解決課前參與。
由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。
活動2封面設(shè)計(jì)問題的探究。
通過學(xué)生自己獨(dú)立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進(jìn)一步突破難點(diǎn):上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價(jià)。
活動3草坪規(guī)劃問題的延伸。
放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。
活動4課堂回眸。
本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
一元二次方程數(shù)學(xué)教案篇三
今天,在教務(wù)處的組織下,我參加了柏老師的九年級數(shù)學(xué)課——《用因式分解法解一元二次方程》的公開課活動。
這節(jié)課,柏老師運(yùn)用了“先學(xué)后導(dǎo),分層推進(jìn)”的教學(xué)模式開展教學(xué)活動。教學(xué)設(shè)計(jì)科學(xué)、嚴(yán)謹(jǐn)、合理。能對教材內(nèi)容進(jìn)行取舍,不照本宣科。習(xí)題設(shè)計(jì)典型,有梯度。整個教學(xué)過程環(huán)環(huán)相扣,層層推進(jìn),最終教學(xué)效果理想。但是我個人認(rèn)為在具體細(xì)節(jié)上還有有待改進(jìn)的地方:。
1、知識性錯誤。因式分解是指把一個多項(xiàng)式分解成幾個整式相乘的形式。柏老師說成了分解成單項(xiàng)式相乘的形式。整式既包含單項(xiàng)式也有多項(xiàng)式。
2、整個教學(xué)過程中,還是沒有把學(xué)習(xí)的主動權(quán)交給學(xué)生,牽著學(xué)生走。不讓學(xué)生大膽的進(jìn)行自主嘗試。其實(shí),我們從后面的課堂檢測環(huán)節(jié)中可以看出學(xué)生的自主學(xué)習(xí)能力是非常強(qiáng)的。那幾個比較難的解方程學(xué)生都能用最簡單的方法求解。
3、從新課前的復(fù)習(xí)環(huán)節(jié)可以看出學(xué)生對已經(jīng)學(xué)過的概念記憶不清楚,對每節(jié)課所學(xué)的知識點(diǎn)不清。我們每節(jié)課的教學(xué)環(huán)節(jié)里基本都有“學(xué)習(xí)目標(biāo)”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細(xì)細(xì)推敲來,它們的作用就是讓學(xué)生清楚到底學(xué)什么和學(xué)到了什么,這兩個環(huán)節(jié)教學(xué)到位了,學(xué)生對所學(xué)知識也就是茶壺里煮餃子——心中有數(shù)了。
4、在“后導(dǎo)”環(huán)節(jié)要注重發(fā)揮學(xué)生的.自主、合作學(xué)習(xí)能力。因?yàn)閷W(xué)生在先學(xué)環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時(shí)候教師適時(shí)的放手,讓學(xué)生通過自主學(xué)習(xí),掌握知識,從而才能水到渠成的對知識進(jìn)行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時(shí)這么牽強(qiáng)。
5、教師對教材鉆研不透徹。后面的六個解方程練習(xí)題是本節(jié)課的課后練習(xí)題,必然是都可以因式分解法來求解的。但是老師在個別輔導(dǎo)時(shí)強(qiáng)調(diào)用其他解法。
一元二次方程數(shù)學(xué)教案篇四
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)。
九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點(diǎn)。
3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)。
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
二、教材處理。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法。
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。
四、教學(xué)手段。
采用投影儀。
五、教學(xué)程序。
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)。
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
一元二次方程數(shù)學(xué)教案篇五
1、教材的地位和作用。
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的`意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)。
九年義務(wù)教育大綱對這部分的要求是:使學(xué)生了解一元二次方程的概念,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點(diǎn)。
3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)。
一元二次方程有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
二、教材處理。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法。
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。
四、教學(xué)手段。
采用投影儀。
五、教學(xué)程序。
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)。
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
將本文的word文檔下載到電腦,方便收藏和打印。
一元二次方程數(shù)學(xué)教案篇六
第二步:將左端的二次三項(xiàng)式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實(shí)用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
一元二次方程數(shù)學(xué)教案篇七
一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實(shí)際背景,可以作為許多實(shí)際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點(diǎn)內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。
學(xué)情分析。
1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時(shí)初三學(xué)生觀察、類比、概括、歸納能力也都比較強(qiáng),不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強(qiáng)。
2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。
教學(xué)目標(biāo)。
一、知識目標(biāo)。
1、在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認(rèn)識.
3、掌握一元二次方程的一般形式,正確認(rèn)識二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
二、能力目標(biāo)。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.
2、由知識來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力.
四、情感目標(biāo)。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):1、從實(shí)際問題中抽象出一元二次方程。2、正確識別一般式中的“項(xiàng)”及“系數(shù)”
一元二次方程數(shù)學(xué)教案篇八
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會有不同的結(jié)果。
一元二次方程數(shù)學(xué)教案篇九
九年級的學(xué)生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學(xué)習(xí)了一元一次方程及相關(guān)概念,學(xué)習(xí)了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學(xué)生自主探究和合作交流的能力很強(qiáng),并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強(qiáng)烈的求知欲,當(dāng)遇到新的問題時(shí),會自然的產(chǎn)生進(jìn)一步探究的欲望。而我所教(11)班是年級中一個普通班,學(xué)生數(shù)學(xué)底子薄,基礎(chǔ)差,學(xué)生由于學(xué)習(xí)困難,基礎(chǔ)差,沒有自信,也就對數(shù)學(xué)的學(xué)習(xí)興趣越來越弱,有人甚至要放棄對數(shù)學(xué)的學(xué)習(xí),作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學(xué)的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學(xué)基本概念、基本運(yùn)算方法悄然走進(jìn)學(xué)生的生活、走進(jìn)他們對知識的運(yùn)用中去。
教學(xué)目標(biāo)。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項(xiàng)與系數(shù);。
3.通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價(jià)值觀。
2.通過本節(jié)知識的學(xué)習(xí),使學(xué)生認(rèn)識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項(xiàng)”及“系數(shù)”。
一元二次方程數(shù)學(xué)教案篇十
據(jù)題意,得。
整理后,得。
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得。
整理后,得。
解這個方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
第12頁。
一元二次方程數(shù)學(xué)教案篇十一
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(2)會用因式分解法解一元二次方程
【教學(xué)重點(diǎn)】一元二次方程的概念、一元二次方程的一般形式
【教學(xué)難點(diǎn)】因式分解法解一元二次方程
【教學(xué)過程】
(一)創(chuàng)設(shè)情景,引入新課
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
一元二次方程數(shù)學(xué)教案篇十二
理解并掌握一元二次方程求根公式的推導(dǎo)過程,能正確、熟練地運(yùn)用公式法解一元二次方程。
【過程與方法】。
經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運(yùn)算能力并養(yǎng)成良好的運(yùn)算習(xí)慣。
【情感、態(tài)度與價(jià)值觀】。
通過公式法解一元二次方程,感受解法的多樣性,在學(xué)習(xí)活動中獲取成功的體驗(yàn)。
【教學(xué)重點(diǎn)】。
【教學(xué)難點(diǎn)】。
(一)引入新課。
配方,得。
(四)小結(jié)作業(yè)。
作業(yè):課后練習(xí)題,試著用多種方法解答。
四、板書設(shè)計(jì)。
略
一元二次方程數(shù)學(xué)教案篇十三
教材分析:1.本節(jié)以生活中的實(shí)際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點(diǎn),歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。
學(xué)情分析:1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時(shí)間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。
2.該班級學(xué)生在平時(shí)訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。
3.作為該班的班主任,同時(shí)又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時(shí)候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計(jì)上要針對學(xué)生的差異采取分層設(shè)計(jì)的方法,著重加強(qiáng)對學(xué)生的雙基訓(xùn)練。
教學(xué)目標(biāo):
一知識與技能:。
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認(rèn)識二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
二過程與方法:
1.引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念。
2.培養(yǎng)獨(dú)立思考,合作交流學(xué),分析問題,解決問題的能力。
三情感態(tài)度與價(jià)值觀:
1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識到數(shù)學(xué)在生活中的作用。
教學(xué)重點(diǎn):一元二次方程的概念及一般形式,利用概念解決實(shí)際問題。
教學(xué)難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項(xiàng)”及“系數(shù)”.
3.一元二次方程的特點(diǎn),如何判斷一個方程是一元二次方程。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課。
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計(jì)劃無公害蔬菜的產(chǎn)量比翻一番,要實(shí)現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)。
(1)用代數(shù)式表示20的產(chǎn)量;。
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學(xué)生思考交流得出方程a(1+x)2=2a。
整理得,x2+2x-1=0…………①。
2.通過幻燈片引入情境,提出問題:
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000。
整理得x2-36x+35=0。
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000。
整理得x2-36x+35=0…………②。
比較一下,哪種方法更巧妙?
一元二次方程數(shù)學(xué)教案篇十四
1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
(一)導(dǎo)入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)。
師:我們來看到這個題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
(下去巡視)。
(三)小結(jié)作業(yè)。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
xx。
xx。
一元二次方程數(shù)學(xué)教案篇十五
(2)掌握一元二次方程的.一般形式,會判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結(jié)。
(四)布置作業(yè)。
一元二次方程數(shù)學(xué)教案篇十六
4、態(tài)度、情感、價(jià)值觀。
4、通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情、
一、復(fù)習(xí)引入。
學(xué)生活動:列方程、
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________、
問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn)、
整理,得:________、
二、探索新知。
學(xué)生活動:請口答下面問題、
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的'多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項(xiàng)式一樣只有式子?
解:去括號,得:
移項(xiàng),得:4x2-26x+22=0。
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22、
解:去括號,得:
x2+2x+1+x2-4=1。
移項(xiàng),合并得:2x2+2x-4=0。
其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4、
三、鞏固練習(xí)。
教材p32練習(xí)1、2。
四、應(yīng)用拓展。
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、
證明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)。
本節(jié)課要掌握:
六、布置作業(yè)。
一元二次方程數(shù)學(xué)教案篇十七
1.教學(xué)計(jì)劃中,原是考慮把探究1和探究2作為一個課時(shí)的,但是在學(xué)習(xí)了探究1后,發(fā)現(xiàn)我們的學(xué)生對應(yīng)用題的解題分析,依然是個難點(diǎn),很多同學(xué)分析題意不清,也有不少同學(xué)解方程需要花大量的時(shí)間,而這類“平均變化率”的問題聯(lián)系生活又非常密切,是一元二次方程在生活中最典型的應(yīng)用,考慮到學(xué)生的實(shí)際情況和教學(xué)內(nèi)容的重要性,決定把探究2問題作為一個課時(shí)來探究。
2、在教法、學(xué)法上我采用“探索、歸納與合作交流”相結(jié)合的方法,采用嘗試法、討論法、先學(xué)后教引導(dǎo)式講授法等方法培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的學(xué)習(xí)習(xí)慣。讓學(xué)生在自主探究合作交流中加深理解,分析實(shí)際問題中的數(shù)量關(guān)系,不但讓學(xué)生“學(xué)會”還要讓學(xué)生“會學(xué)”
3、以導(dǎo)學(xué)案的形式,創(chuàng)設(shè)由特殊性到一般性的實(shí)際問題為情境,讓學(xué)生感受知識在生活中的應(yīng)用,習(xí)題緊扣生活,難度不大,增加學(xué)生的自信及探究的積極性。通過學(xué)生討論交流,歸納出一般的規(guī)律。
4、學(xué)生通過由特殊到一般的實(shí)際問題的探究后,及時(shí)讓學(xué)生歸納,形成知識與方法。
5、鼓勵學(xué)生自主學(xué)習(xí),理解教材。采用學(xué)案問題設(shè)置的方式對問題進(jìn)行分解,最后師生共同完成。由于是例題,所以注重板書格式。
6、學(xué)案的設(shè)置,具有層次性,以問題為主線,引導(dǎo)學(xué)生自主探究,小結(jié)歸納。有梯度的設(shè)置習(xí)題,讓學(xué)生去挑戰(zhàn)中考題,感受中考的難度,體會成功的喜悅。并且注重問題及考察需要,體現(xiàn)先學(xué)后教、合作探究,自主學(xué)習(xí)的課改精神。
7、在時(shí)間的安排上,教學(xué)環(huán)節(jié)(一)、(二)部分計(jì)劃讓學(xué)生展示后簡單點(diǎn)評,但是考慮到學(xué)生的實(shí)際情況和學(xué)生知識的形成過程,不光是要結(jié)果,囫圇吞棗,所以做了詳細(xì)的推導(dǎo),用了不少的時(shí)間,這樣導(dǎo)致了教學(xué)程序的不完整,挑戰(zhàn)中考題沒能在課堂上完成。環(huán)節(jié)(一)、(二)的習(xí)題設(shè)置有點(diǎn)多和重復(fù),使得環(huán)節(jié)(五)中的綜合練習(xí)沒有在課堂中探究和展示,所以在習(xí)題的選擇上還要多加精選,力求做到精選精煉。
8、生生交流活動少,學(xué)生大多數(shù)都是各自為陣,沒有發(fā)揮小組的作用,在教學(xué)環(huán)節(jié)(三)的自主學(xué)習(xí)中,如果能發(fā)揮小組的帶動作用,充分調(diào)動學(xué)生的能動性,真正發(fā)揮學(xué)生的主體地位,我想會更好一些,在引導(dǎo)學(xué)生討論上做得不夠,不能兼顧全體。
一元二次方程數(shù)學(xué)教案篇十八
課標(biāo)要求熟練掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推導(dǎo)是建立在直接開平方法的基礎(chǔ)上,又是推導(dǎo)求根公式和一元二次方程根與系數(shù)的關(guān)系的基礎(chǔ),更是為今后學(xué)生能學(xué)好二次函數(shù)打基礎(chǔ),二次函數(shù)的頂點(diǎn)坐標(biāo)的確定和二次函數(shù)與一元二次方程的關(guān)系息息相關(guān)。再者列一元二次方程解應(yīng)用題和壓軸題----二次函數(shù)的綜合題是中考試題中常見的題型。一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)占有重要的地位。
2、過程與方法。
(1)理解并掌握配方法。
(2)通過探索配方法的過程,體會轉(zhuǎn)化,降次的數(shù)學(xué)思想方法,培養(yǎng)觀察、比較、分析、概括、歸納的能力。
3、情感態(tài)度與價(jià)值觀。
通過分析實(shí)際問題中的數(shù)量關(guān)系,建立一元二次方程模型解決問題,進(jìn)一步認(rèn)識方程模型的重要性,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識與能力。
難點(diǎn):配方的過程。
一元二次方程數(shù)學(xué)教案篇十九
第二步:將左端的二次三項(xiàng)式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實(shí)用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
一元二次方程數(shù)學(xué)教案篇一
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會有不同的結(jié)果。
教學(xué)目的。
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):。
重點(diǎn):。
一元二次方程數(shù)學(xué)教案篇二
1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實(shí)際問題。本節(jié)仍是進(jìn)一步討論如何建立和利用一元二次方程模型來解決實(shí)際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。
2、教學(xué)目標(biāo)要求:
(2)能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理;
(4)通過用一元二次方程解決身邊的問題,體會數(shù)學(xué)知識應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用。
3、教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):列一元二次方程解與面積有關(guān)問題的應(yīng)用題。
難點(diǎn):發(fā)現(xiàn)問題中的等量關(guān)系。
1、本節(jié)課的設(shè)計(jì)中除了探究3教師參與多一些外,其余時(shí)間都堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,教師只注重點(diǎn)、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動都由生生交流,兵教兵從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
本節(jié)課是新授課,根據(jù)學(xué)生的知識結(jié)構(gòu),整個課堂教學(xué)流程大致可分為:
活動1復(fù)習(xí)回顧解決課前參與。
活動2封面設(shè)計(jì)問題的探究。
活動3草坪規(guī)劃問題的延伸。
活動4課堂回眸。
這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
活動1復(fù)習(xí)回顧解決課前參與。
由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。
活動2封面設(shè)計(jì)問題的探究。
通過學(xué)生自己獨(dú)立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進(jìn)一步突破難點(diǎn):上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價(jià)。
活動3草坪規(guī)劃問題的延伸。
放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。
活動4課堂回眸。
本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
一元二次方程數(shù)學(xué)教案篇三
今天,在教務(wù)處的組織下,我參加了柏老師的九年級數(shù)學(xué)課——《用因式分解法解一元二次方程》的公開課活動。
這節(jié)課,柏老師運(yùn)用了“先學(xué)后導(dǎo),分層推進(jìn)”的教學(xué)模式開展教學(xué)活動。教學(xué)設(shè)計(jì)科學(xué)、嚴(yán)謹(jǐn)、合理。能對教材內(nèi)容進(jìn)行取舍,不照本宣科。習(xí)題設(shè)計(jì)典型,有梯度。整個教學(xué)過程環(huán)環(huán)相扣,層層推進(jìn),最終教學(xué)效果理想。但是我個人認(rèn)為在具體細(xì)節(jié)上還有有待改進(jìn)的地方:。
1、知識性錯誤。因式分解是指把一個多項(xiàng)式分解成幾個整式相乘的形式。柏老師說成了分解成單項(xiàng)式相乘的形式。整式既包含單項(xiàng)式也有多項(xiàng)式。
2、整個教學(xué)過程中,還是沒有把學(xué)習(xí)的主動權(quán)交給學(xué)生,牽著學(xué)生走。不讓學(xué)生大膽的進(jìn)行自主嘗試。其實(shí),我們從后面的課堂檢測環(huán)節(jié)中可以看出學(xué)生的自主學(xué)習(xí)能力是非常強(qiáng)的。那幾個比較難的解方程學(xué)生都能用最簡單的方法求解。
3、從新課前的復(fù)習(xí)環(huán)節(jié)可以看出學(xué)生對已經(jīng)學(xué)過的概念記憶不清楚,對每節(jié)課所學(xué)的知識點(diǎn)不清。我們每節(jié)課的教學(xué)環(huán)節(jié)里基本都有“學(xué)習(xí)目標(biāo)”出示和“歸納小結(jié)”的環(huán)節(jié)。這兩個環(huán)節(jié)看似不起眼,但細(xì)細(xì)推敲來,它們的作用就是讓學(xué)生清楚到底學(xué)什么和學(xué)到了什么,這兩個環(huán)節(jié)教學(xué)到位了,學(xué)生對所學(xué)知識也就是茶壺里煮餃子——心中有數(shù)了。
4、在“后導(dǎo)”環(huán)節(jié)要注重發(fā)揮學(xué)生的.自主、合作學(xué)習(xí)能力。因?yàn)閷W(xué)生在先學(xué)環(huán)節(jié)已經(jīng)掌握的一定的知識和能力,這時(shí)候教師適時(shí)的放手,讓學(xué)生通過自主學(xué)習(xí),掌握知識,從而才能水到渠成的對知識進(jìn)行歸納總結(jié)。就不會像本節(jié)課在歸納小結(jié)時(shí)這么牽強(qiáng)。
5、教師對教材鉆研不透徹。后面的六個解方程練習(xí)題是本節(jié)課的課后練習(xí)題,必然是都可以因式分解法來求解的。但是老師在個別輔導(dǎo)時(shí)強(qiáng)調(diào)用其他解法。
一元二次方程數(shù)學(xué)教案篇四
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)。
九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點(diǎn)。
3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)。
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
二、教材處理。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法。
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。
四、教學(xué)手段。
采用投影儀。
五、教學(xué)程序。
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)。
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
一元二次方程數(shù)學(xué)教案篇五
1、教材的地位和作用。
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的`意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)。
九年義務(wù)教育大綱對這部分的要求是:使學(xué)生了解一元二次方程的概念,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點(diǎn)。
3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)。
一元二次方程有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
二、教材處理。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法。
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。
四、教學(xué)手段。
采用投影儀。
五、教學(xué)程序。
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)。
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))。
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)。
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程。
將本文的word文檔下載到電腦,方便收藏和打印。
一元二次方程數(shù)學(xué)教案篇六
第二步:將左端的二次三項(xiàng)式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實(shí)用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.
一元二次方程數(shù)學(xué)教案篇七
一元二次方程是一種數(shù)學(xué)建模的方法,它有著廣泛的實(shí)際背景,可以作為許多實(shí)際問題的數(shù)學(xué)模型。它體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,一元二次方程是高中數(shù)學(xué)的奠基工程。是本書的重點(diǎn)內(nèi)容,為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ)。
學(xué)情分析。
1、經(jīng)過兩年的合作,我們班的學(xué)生已比較配合我上課,同時(shí)初三學(xué)生觀察、類比、概括、歸納能力也都比較強(qiáng),不過對應(yīng)用題的分析他們還是覺得很頭疼,在今后應(yīng)用題的教學(xué)中需進(jìn)一步加強(qiáng)。
2、一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,一元二次方程是一次方程向二次方程的轉(zhuǎn)化,是低次方程轉(zhuǎn)向高次方程求解方法的階梯。一元二次方程又是二次函數(shù)的特例。
教學(xué)目標(biāo)。
一、知識目標(biāo)。
1、在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中,使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,,增加對一元二次方程的感性認(rèn)識.
3、掌握一元二次方程的一般形式,正確認(rèn)識二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
二、能力目標(biāo)。
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.
2、由知識來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力.
四、情感目標(biāo)。
1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):1、從實(shí)際問題中抽象出一元二次方程。2、正確識別一般式中的“項(xiàng)”及“系數(shù)”
一元二次方程數(shù)學(xué)教案篇八
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
2)重點(diǎn)、難點(diǎn)分析。
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會有不同的結(jié)果。
一元二次方程數(shù)學(xué)教案篇九
九年級的學(xué)生,在講本節(jié)課之前,已經(jīng)系統(tǒng)的學(xué)習(xí)了一元一次方程及相關(guān)概念,學(xué)習(xí)了整式、分式和二次根式,從知識結(jié)構(gòu)上看他們已經(jīng)具備了繼續(xù)探究一元二次方程的基礎(chǔ)。這個階段的學(xué)生自主探究和合作交流的能力很強(qiáng),并且他們比較、分析、抽象和概括的能力也有很大提高。由于他們有強(qiáng)烈的求知欲,當(dāng)遇到新的問題時(shí),會自然的產(chǎn)生進(jìn)一步探究的欲望。而我所教(11)班是年級中一個普通班,學(xué)生數(shù)學(xué)底子薄,基礎(chǔ)差,學(xué)生由于學(xué)習(xí)困難,基礎(chǔ)差,沒有自信,也就對數(shù)學(xué)的學(xué)習(xí)興趣越來越弱,有人甚至要放棄對數(shù)學(xué)的學(xué)習(xí),作為他們的老師,首先培養(yǎng)他們自信心,啟發(fā)他們對數(shù)學(xué)的喜愛,慢慢培養(yǎng)他們的自信心,使數(shù)學(xué)基本概念、基本運(yùn)算方法悄然走進(jìn)學(xué)生的生活、走進(jìn)他們對知識的運(yùn)用中去。
教學(xué)目標(biāo)。
一、知識與技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;。
2.會把一個一元二次方程化為一般形式,會正確地判斷一元二次方程的項(xiàng)與系數(shù);。
3.通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、探究和歸納的能力。
二、過程與方法。
三、情感態(tài)度與價(jià)值觀。
2.通過本節(jié)知識的學(xué)習(xí),使學(xué)生認(rèn)識到知識的產(chǎn)生、變化和發(fā)展的過程。
教學(xué)重點(diǎn)和難點(diǎn)。
難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程。2.正確識別一般式中的“項(xiàng)”及“系數(shù)”。
一元二次方程數(shù)學(xué)教案篇十
據(jù)題意,得。
整理后,得。
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得。
整理后,得。
解這個方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
第12頁。
一元二次方程數(shù)學(xué)教案篇十一
(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(2)會用因式分解法解一元二次方程
【教學(xué)重點(diǎn)】一元二次方程的概念、一元二次方程的一般形式
【教學(xué)難點(diǎn)】因式分解法解一元二次方程
【教學(xué)過程】
(一)創(chuàng)設(shè)情景,引入新課
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
(三)小結(jié)
(四)布置作業(yè)
一元二次方程數(shù)學(xué)教案篇十二
理解并掌握一元二次方程求根公式的推導(dǎo)過程,能正確、熟練地運(yùn)用公式法解一元二次方程。
【過程與方法】。
經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運(yùn)算能力并養(yǎng)成良好的運(yùn)算習(xí)慣。
【情感、態(tài)度與價(jià)值觀】。
通過公式法解一元二次方程,感受解法的多樣性,在學(xué)習(xí)活動中獲取成功的體驗(yàn)。
【教學(xué)重點(diǎn)】。
【教學(xué)難點(diǎn)】。
(一)引入新課。
配方,得。
(四)小結(jié)作業(yè)。
作業(yè):課后練習(xí)題,試著用多種方法解答。
四、板書設(shè)計(jì)。
略
一元二次方程數(shù)學(xué)教案篇十三
教材分析:1.本節(jié)以生活中的實(shí)際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點(diǎn),歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。
學(xué)情分析:1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時(shí)間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。
2.該班級學(xué)生在平時(shí)訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。
3.作為該班的班主任,同時(shí)又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時(shí)候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計(jì)上要針對學(xué)生的差異采取分層設(shè)計(jì)的方法,著重加強(qiáng)對學(xué)生的雙基訓(xùn)練。
教學(xué)目標(biāo):
一知識與技能:。
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認(rèn)識二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
二過程與方法:
1.引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念。
2.培養(yǎng)獨(dú)立思考,合作交流學(xué),分析問題,解決問題的能力。
三情感態(tài)度與價(jià)值觀:
1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.
2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.
3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識到數(shù)學(xué)在生活中的作用。
教學(xué)重點(diǎn):一元二次方程的概念及一般形式,利用概念解決實(shí)際問題。
教學(xué)難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項(xiàng)”及“系數(shù)”.
3.一元二次方程的特點(diǎn),如何判斷一個方程是一元二次方程。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課。
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計(jì)劃無公害蔬菜的產(chǎn)量比翻一番,要實(shí)現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)。
(1)用代數(shù)式表示20的產(chǎn)量;。
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學(xué)生思考交流得出方程a(1+x)2=2a。
整理得,x2+2x-1=0…………①。
2.通過幻燈片引入情境,提出問題:
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000。
整理得x2-36x+35=0。
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000。
整理得x2-36x+35=0…………②。
比較一下,哪種方法更巧妙?
一元二次方程數(shù)學(xué)教案篇十四
1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
(一)導(dǎo)入新課。
生:老師,這是雷鋒叔叔。
生:是的老師。
生:想。
師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
(二)新課教學(xué)。
師:我們來看到這個題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
(下去巡視)。
(三)小結(jié)作業(yè)。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
xx。
xx。
一元二次方程數(shù)學(xué)教案篇十五
(2)掌握一元二次方程的.一般形式,會判斷一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
(一)創(chuàng)設(shè)情景,引入新課。
由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)。
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項(xiàng)系數(shù)不為零。
3:講解例子。
5:講解例子。
6:一般步驟。
(三)小結(jié)。
(四)布置作業(yè)。
一元二次方程數(shù)學(xué)教案篇十六
4、態(tài)度、情感、價(jià)值觀。
4、通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情、
一、復(fù)習(xí)引入。
學(xué)生活動:列方程、
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
整理、化簡,得:__________、
問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn)、
整理,得:________、
二、探索新知。
學(xué)生活動:請口答下面問題、
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的'多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項(xiàng)式一樣只有式子?
解:去括號,得:
移項(xiàng),得:4x2-26x+22=0。
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22、
解:去括號,得:
x2+2x+1+x2-4=1。
移項(xiàng),合并得:2x2+2x-4=0。
其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4、
三、鞏固練習(xí)。
教材p32練習(xí)1、2。
四、應(yīng)用拓展。
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、
證明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)。
本節(jié)課要掌握:
六、布置作業(yè)。
一元二次方程數(shù)學(xué)教案篇十七
1.教學(xué)計(jì)劃中,原是考慮把探究1和探究2作為一個課時(shí)的,但是在學(xué)習(xí)了探究1后,發(fā)現(xiàn)我們的學(xué)生對應(yīng)用題的解題分析,依然是個難點(diǎn),很多同學(xué)分析題意不清,也有不少同學(xué)解方程需要花大量的時(shí)間,而這類“平均變化率”的問題聯(lián)系生活又非常密切,是一元二次方程在生活中最典型的應(yīng)用,考慮到學(xué)生的實(shí)際情況和教學(xué)內(nèi)容的重要性,決定把探究2問題作為一個課時(shí)來探究。
2、在教法、學(xué)法上我采用“探索、歸納與合作交流”相結(jié)合的方法,采用嘗試法、討論法、先學(xué)后教引導(dǎo)式講授法等方法培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的學(xué)習(xí)習(xí)慣。讓學(xué)生在自主探究合作交流中加深理解,分析實(shí)際問題中的數(shù)量關(guān)系,不但讓學(xué)生“學(xué)會”還要讓學(xué)生“會學(xué)”
3、以導(dǎo)學(xué)案的形式,創(chuàng)設(shè)由特殊性到一般性的實(shí)際問題為情境,讓學(xué)生感受知識在生活中的應(yīng)用,習(xí)題緊扣生活,難度不大,增加學(xué)生的自信及探究的積極性。通過學(xué)生討論交流,歸納出一般的規(guī)律。
4、學(xué)生通過由特殊到一般的實(shí)際問題的探究后,及時(shí)讓學(xué)生歸納,形成知識與方法。
5、鼓勵學(xué)生自主學(xué)習(xí),理解教材。采用學(xué)案問題設(shè)置的方式對問題進(jìn)行分解,最后師生共同完成。由于是例題,所以注重板書格式。
6、學(xué)案的設(shè)置,具有層次性,以問題為主線,引導(dǎo)學(xué)生自主探究,小結(jié)歸納。有梯度的設(shè)置習(xí)題,讓學(xué)生去挑戰(zhàn)中考題,感受中考的難度,體會成功的喜悅。并且注重問題及考察需要,體現(xiàn)先學(xué)后教、合作探究,自主學(xué)習(xí)的課改精神。
7、在時(shí)間的安排上,教學(xué)環(huán)節(jié)(一)、(二)部分計(jì)劃讓學(xué)生展示后簡單點(diǎn)評,但是考慮到學(xué)生的實(shí)際情況和學(xué)生知識的形成過程,不光是要結(jié)果,囫圇吞棗,所以做了詳細(xì)的推導(dǎo),用了不少的時(shí)間,這樣導(dǎo)致了教學(xué)程序的不完整,挑戰(zhàn)中考題沒能在課堂上完成。環(huán)節(jié)(一)、(二)的習(xí)題設(shè)置有點(diǎn)多和重復(fù),使得環(huán)節(jié)(五)中的綜合練習(xí)沒有在課堂中探究和展示,所以在習(xí)題的選擇上還要多加精選,力求做到精選精煉。
8、生生交流活動少,學(xué)生大多數(shù)都是各自為陣,沒有發(fā)揮小組的作用,在教學(xué)環(huán)節(jié)(三)的自主學(xué)習(xí)中,如果能發(fā)揮小組的帶動作用,充分調(diào)動學(xué)生的能動性,真正發(fā)揮學(xué)生的主體地位,我想會更好一些,在引導(dǎo)學(xué)生討論上做得不夠,不能兼顧全體。
一元二次方程數(shù)學(xué)教案篇十八
課標(biāo)要求熟練掌握用配方法解一元二次方程。配方法和公式法是解一元二次方程的通用方法,它的推導(dǎo)是建立在直接開平方法的基礎(chǔ)上,又是推導(dǎo)求根公式和一元二次方程根與系數(shù)的關(guān)系的基礎(chǔ),更是為今后學(xué)生能學(xué)好二次函數(shù)打基礎(chǔ),二次函數(shù)的頂點(diǎn)坐標(biāo)的確定和二次函數(shù)與一元二次方程的關(guān)系息息相關(guān)。再者列一元二次方程解應(yīng)用題和壓軸題----二次函數(shù)的綜合題是中考試題中常見的題型。一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)占有重要的地位。
2、過程與方法。
(1)理解并掌握配方法。
(2)通過探索配方法的過程,體會轉(zhuǎn)化,降次的數(shù)學(xué)思想方法,培養(yǎng)觀察、比較、分析、概括、歸納的能力。
3、情感態(tài)度與價(jià)值觀。
通過分析實(shí)際問題中的數(shù)量關(guān)系,建立一元二次方程模型解決問題,進(jìn)一步認(rèn)識方程模型的重要性,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識與能力。
難點(diǎn):配方的過程。
一元二次方程數(shù)學(xué)教案篇十九
第二步:將左端的二次三項(xiàng)式分解為兩個一次因式的積;。
第三步:方程左邊兩個因式分別為0,得到兩個一次方程,它們的解就是原方程的解.
解法二:配方法。
x^2-4x+3=x^2-4x+4-1=(x-2)^2-1=0。
即(x-2)^2=1。
于是x=3或x=1。
一般來說,一元二次方程往往可以用這樣2種方法解答,特別是對配方來說,它可能更實(shí)用,普遍。
比如x^2+x-1=0。
我們可能分解不出它的因式來,不過我們可以采用配方法。
x^2+x-1=(x+1/2)^2-5/4=0。
于是得到x=(根號5-1)/2或x=(-根號5-1)/2。
小練習(xí)。
1.分解因式:
(4)(x+1)2-16=________。
2.方程(2x+1)(x-5)=0的解是_________。
3.方程2x(x-2)=3(x-2)的解是___________。
5.已知y=x2+x-6,當(dāng)x=________時(shí),y的值為0;當(dāng)x=________時(shí),y的值等于24.6.方程x2+2ax-b2+a2=0的解為__________.