讀書筆記是讀者在閱讀一本書后,通過記錄自己的思考、感悟和體會,總結(jié)書中內(nèi)容的產(chǎn)物。學(xué)會應(yīng)對壓力,保持心理健康是每個人需要重視的事情。我們?yōu)榇蠹覝?zhǔn)備了一些有關(guān)總結(jié)的名人名言,希望能夠激發(fā)大家的思考和靈感。
等比數(shù)列的概念說課稿篇一
2、從學(xué)生認(rèn)知角度看。
3、學(xué)情分析。
4、重點、難點。
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用、
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用、
知識與技能目標(biāo):
過程與方法目標(biāo):
情感與態(tài)度價值觀:
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題。
2、師生互動,探究問題。
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
3、類比聯(lián)想,解決問題。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)、
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)、)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
4、討論交流,延伸拓展。
等比數(shù)列的概念說課稿篇二
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認(rèn)識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進(jìn)一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
等比數(shù)列的概念說課稿篇三
等比數(shù)列前n項和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗修訂本第一冊第三章第五節(jié)的內(nèi)容,教學(xué)對象為高一學(xué)生,教學(xué)時數(shù)2課時。
第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來,這是由其在整個高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。
1、數(shù)列有著廣泛的實際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計、儲蓄、分期付款的有關(guān)計算等。
2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。
3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。
本節(jié)課既是本章的重點,同時也是教材的重點。等比數(shù)列前n項和前面承接了數(shù)列的定義、等差數(shù)列的知識內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。
本節(jié)的重點是等比數(shù)列前n項和公式及應(yīng)用,難點是公式的推導(dǎo)。
二、教學(xué)目標(biāo)。
1、知識目標(biāo):理解等比數(shù)列前n項和公式的推導(dǎo)方法,掌握等比數(shù)列前n項和公式及應(yīng)用。
2、能力目標(biāo):培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。
三、教學(xué)程序設(shè)計。
1、導(dǎo)言:
這樣引入課題有以下三點好處:
(1)利用學(xué)生求知好奇心理,以一個小故事為切入點,便于調(diào)動學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
(2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點。
(3)有利于知識的遷移,使學(xué)生明確知識的現(xiàn)實應(yīng)用性。
2、講授新課:
本節(jié)課有兩項主要內(nèi)容,等比數(shù)列的前n項和公式的推導(dǎo)和等比數(shù)列的前n項和公式及應(yīng)用。
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
等比數(shù)列前n項和公式及應(yīng)用是本節(jié)課的重點內(nèi)容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
四、習(xí)題訓(xùn)練。
本節(jié)課設(shè)置如下兩種類型的習(xí)題:
1.中知三求二的解答題;。
2.實際應(yīng)用題.
這樣設(shè)置主要依據(jù):
(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點、難點有相對應(yīng)的匹配關(guān)系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
(3)應(yīng)用題比較切合對智力技能進(jìn)行檢測,有利于數(shù)學(xué)能力的提高。同時,它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動性。
五、策略、方法與手段。
根據(jù)高一學(xué)生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡稱“例—規(guī)”法。
案例為淺層次要求,使學(xué)生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。
應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節(jié)教學(xué)目標(biāo)的落實。
其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識,舉一反三。
在這三步教學(xué)中,以啟發(fā)性強的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實好教學(xué)任務(wù)。
六、個人見解。
在提倡教育改革的今天,對學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國范圍內(nèi)展開,等比數(shù)列就是一個進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)校可以按照intel未來教育計劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團(tuán)結(jié)協(xié)作的精神。
等比數(shù)列的概念說課稿篇四
《等比數(shù)列前n項和》選自北師大版高中數(shù)學(xué)必修5第一章第3節(jié)的內(nèi)容。等比數(shù)列的前n項和是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),也是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);公式推導(dǎo)中蘊涵的數(shù)學(xué)思想方法如分類討論等在各種數(shù)學(xué)問題中有著廣泛的應(yīng)用,如在“分期付款”等實際問題中也經(jīng)常涉及到.具有一定的探究性。
二、學(xué)情分析。
在認(rèn)知結(jié)構(gòu)上已經(jīng)掌握等差數(shù)列和等比數(shù)列的有關(guān)知識。在能力方面已經(jīng)初步具備運。
用等差數(shù)列和等比數(shù)列解決問題的能力;但學(xué)生從特殊到一般、分類討論的數(shù)學(xué)思想還需要進(jìn)一步培養(yǎng)和提高。在情感態(tài)度上學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強,但合作交流的意識等方面尚有待加強。并且讓學(xué)生在探究等比數(shù)列前n項和的過程中體會合作交流的重要性。
三、教學(xué)目標(biāo)分析:
知識與技能目標(biāo):
(1)能夠推導(dǎo)出等比數(shù)列的前n項和公式;
(2)能夠運用等比數(shù)列的前n項和公式解決一些簡單問題。
過程與方法目標(biāo):提高學(xué)生的建模意識及探究問題、分析與解決問題的能力。體會公式探求。
過程中從特殊到一般的思維方法、錯位相減法和分類討論思想。
情感與態(tài)度目標(biāo):培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,磨練思維品質(zhì),從中獲得成功的體驗。
四、重難點的確立。
《等比數(shù)列的前n項和》是這一章的重點,其中公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了多種重要的數(shù)學(xué)思想,因此,本節(jié)課的教學(xué)重點為等比數(shù)列的前n項和公式的推導(dǎo)及其簡單應(yīng)用.而等比數(shù)列的前n項和公式的推導(dǎo)過程中用到的方法學(xué)生難以想到,因此本節(jié)課的難點為等比數(shù)列的前n項和公式的推導(dǎo)。
五、教學(xué)方法。
為突出重點和突破難點,我將采用的教學(xué)策略為啟發(fā)式和探究式相結(jié)合的教學(xué)方法,教學(xué)手段采用計算機進(jìn)行輔助教學(xué)。
六、教學(xué)過程。
為達(dá)到本節(jié)課的教學(xué)目標(biāo),我把教學(xué)過程分為如下6個階段:
1、創(chuàng)設(shè)情境:
2、探究問題,講授新課:
根據(jù)創(chuàng)設(shè)的情景,在教師的誘導(dǎo)下,學(xué)生根據(jù)自己掌握的知識和經(jīng)驗,很快建立起兩個等比數(shù)列的數(shù)學(xué)模型。提出如何求等比數(shù)列前n項和的問題,從而引出課題。通過回顧等差數(shù)列前n項和公式的推導(dǎo)過程,類比觀察等比數(shù)列的特點,引導(dǎo)學(xué)生思考,如果我們把每一項都乘以2,則每一項就變成了它的后一項,引導(dǎo)學(xué)生比較這兩個式子有許多相同的項的特點,學(xué)生自然就會想到把兩式相減,進(jìn)而突破了用錯位相減法推到公式的難點。教師再由特殊到一般、具體到抽象的啟示,正式引入本節(jié)課的重點等比數(shù)列的前n項和,請學(xué)生用錯位相減法推導(dǎo)出等比數(shù)列前n項和公式。得出公式后,學(xué)生一起探討兩個問題,一是當(dāng)q=1時sn又等于什么,引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出完整的等比數(shù)列前n項和公式,二是結(jié)合等比數(shù)列的通項公式,引導(dǎo)學(xué)生得出公式的另一形式。
3、例題講解:
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。本節(jié)課設(shè)置如下兩種類型的例題:
1)例1是公式的直接應(yīng)用,目的是讓學(xué)生熟悉公式會合理的選用公式。
2)等比數(shù)列中知三求二的填空題,通過公式的正用和逆用進(jìn)一步提高學(xué)生運用等比數(shù)列前n項和的能力.4.形成性練習(xí):
練習(xí)基本上是直接運用公式求和,三個練習(xí)是按由易到難、由簡單到復(fù)雜的認(rèn)識規(guī)律和心理特征設(shè)計的,有利于提高學(xué)生的積極性。學(xué)生練習(xí)時,教師巡查,觀察學(xué)情,及時從中獲取反饋信息。對學(xué)生練習(xí)中出現(xiàn)的獨到解法提出表揚和鼓勵,對其中偶發(fā)性錯誤進(jìn)行辨析、指正。通過形成性練習(xí),培養(yǎng)學(xué)生的應(yīng)變和舉一反三的能力,逐步形成技能。
5.課堂小結(jié)。
本節(jié)課的小結(jié)從以下幾個方面進(jìn)行:(1)等比數(shù)列的前n項和公式。
(2)推導(dǎo)公式的所用方法——從特殊到一般的思維方法、錯位相減法和分類討論思想。通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識,也能培養(yǎng)學(xué)生的歸納和概括能力。進(jìn)一步完成認(rèn)知目標(biāo)和素質(zhì)目標(biāo)。
6.作業(yè)布置。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的`目的。并可布置相應(yīng)的研究作業(yè),思考如何用其他方法來推導(dǎo)等比數(shù)列的前n項和公式,來加深學(xué)生對這一知識點的理解程度。
等比數(shù)列的概念說課稿篇五
大家好,今天我說課的題目是函數(shù)的概念,將從以下七個方面來進(jìn)行說課。
函數(shù)的概念是人教a版實驗教科書必修一第三章第一節(jié)的內(nèi)容,我們在初中階段學(xué)過的一次函數(shù)反比例函數(shù)二次函數(shù)為我們在高中學(xué)習(xí)函數(shù)的概念,這一內(nèi)容進(jìn)行了鋪墊,而函數(shù)的概念又為后續(xù)學(xué)習(xí)函數(shù)的性質(zhì)做了鋪墊,因此,本節(jié)課的內(nèi)容在整個教科書中起著承上啟下的作用。
在學(xué)琴方面,從知識和能力兩方面入手,目前學(xué)生處于高一階段,在中學(xué)已經(jīng)初步探討了函數(shù)的相關(guān)問題,為重新定義函數(shù)提供了理論基礎(chǔ),并且通過以前的學(xué)習(xí),同學(xué)們已經(jīng)具備了分析,推理和概括的能力,并具備了學(xué)習(xí)函數(shù)概念的基本能力。
根據(jù)課程標(biāo)準(zhǔn),
教學(xué)。
內(nèi)容,及學(xué)生學(xué)情,我制定了如下三維教學(xué)目標(biāo),知識與技能方面,理解函數(shù)的概念能對具體函數(shù)指出定義域值域?qū)?yīng)法則能夠正確,使用區(qū)間符號表示,某些函數(shù)的定義域和值域,過程與方法方面,通過實例進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上,用集合與對應(yīng)語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的進(jìn)步作用,加深數(shù)學(xué)思想方法,情感態(tài)度,價值觀方面,在自主探究中感受到成功的喜悅,激發(fā)數(shù)學(xué)學(xué)習(xí)興趣。
根據(jù)課程標(biāo)準(zhǔn),教學(xué)內(nèi)容教學(xué)重點為,函數(shù)的模型化思想函數(shù)的三要素,根據(jù)教學(xué)內(nèi)容,學(xué)生學(xué)情,教學(xué)難點為函數(shù)符號fx的含義,函數(shù)的定義,域值域和區(qū)間表示,從具體實例中抽象出函數(shù)概念。
多樣化的教學(xué)方法是突破重難點的關(guān)鍵,我們因此本節(jié)課我將采用,領(lǐng)導(dǎo)發(fā)現(xiàn)練習(xí)鞏固分組討論的教學(xué)方法,充分調(diào)動學(xué)生學(xué)習(xí)的積極性,主動性,使課堂氣氛更加活躍,培養(yǎng)學(xué)生自主學(xué)習(xí),動手探究的能力,培養(yǎng)學(xué)生對數(shù)學(xué)知識的應(yīng)用能力和意識,提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生對數(shù)學(xué)知識的探索精神和團(tuán)隊協(xié)作精神,更能讓學(xué)生體驗成功的樂趣。
根據(jù)上面的教學(xué)方法以及新課程倡導(dǎo)的自主合作探究的學(xué)習(xí)方式,在本節(jié)課的教學(xué)中,教會學(xué)生動手嘗試,仔細(xì)觀察開動腦筋分析問題,這樣有利于學(xué)生發(fā)揮學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為教師引導(dǎo)下再創(chuàng)造過程,并使學(xué)生從中體會到學(xué)習(xí)的樂趣,下面我將著重談一談我對教學(xué)過程的設(shè)計,首先,創(chuàng)設(shè)情境引入課題,例如,正方形的周長也要與邊長x的對應(yīng)關(guān)系是l=4x,而且對于每一個x都有唯一的l與之對應(yīng),所以l是x的函數(shù),這個函數(shù)與y=4x相同嗎?又如你能用已有的知識判斷y=x與y=x/x^2是否相同嗎?要解決這些問題,就需要進(jìn)一步學(xué)習(xí)函數(shù)的概念,此部分我設(shè)計的意圖是利用初中所學(xué)知識引入課題,由熟悉到陌生,便于學(xué)生理解與接受,符合學(xué)生邏輯思維,接下來,引導(dǎo)探求以書上的四個實例高速列車時間與路程關(guān)系,電器維修工人工作天數(shù)與工資的關(guān)系,時間與空氣質(zhì)量指數(shù)之間的關(guān)系,以及八五計劃以來,我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系,這四個實力為例,讓同學(xué)們探究其對應(yīng)變量之間的關(guān)系,以及變量的變化范圍,目的是讓學(xué)生體會函數(shù),是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想,第三部分,歸納。
總結(jié)。
形成知識,讓學(xué)生總結(jié)第一到第四中的函數(shù)有哪些共同特征,由此概括出函數(shù)概念的本質(zhì)特征,設(shè)計意圖為使學(xué)生進(jìn)行分組討論,學(xué)會分析歸納共同點,在分組討論的過程中,體會到團(tuán)隊協(xié)作的精神,第四部分變式訓(xùn)練鞏固知識,思考反比例,函數(shù)y=k/x的定義域值域和對應(yīng)關(guān)系各是什么?請用函數(shù)定義描述這個函數(shù),這是為了通過變式使同學(xué)們靈活運用所學(xué)知識,有舉一反三的,能更加使學(xué)生鞏固所學(xué)知識,第五部分,深化知識習(xí)題訓(xùn)練,為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置三道不同類型,不同難度的做作業(yè),以滿足不同層次的學(xué)生需求,第一題,第二題為基礎(chǔ)題,第三題為選做題,習(xí)題訓(xùn)練復(fù)習(xí)鞏固很重要,樹立夯實基礎(chǔ)目標(biāo),堅持事求是,腳踏實地。
基于以上教學(xué)過程,我設(shè)計了如下板書,我的說課到此完畢,謝謝大家,敬請各位老師批評指正。
等比數(shù)列的概念說課稿篇六
(2)過程與方法:在定積分概念形成的過程中,培養(yǎng)學(xué)生的抽象概括能力和探索提升能力。
【教學(xué)重點】:
理解定積分的概念及其幾何意義,定積分的性質(zhì)【教學(xué)難點】:
3.教學(xué)用具。
多媒體。
4.標(biāo)簽。
教學(xué)過程。
課堂小結(jié)。
定積分的定義,計算定積分的“四步曲”,定積分的幾何意義,定積分的性質(zhì)。
等比數(shù)列的概念說課稿篇七
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
等比數(shù)列的概念說課稿篇八
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看。
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學(xué)情分析。
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4、重點、難點。
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。
公式推導(dǎo)所使用的"錯位相減法"是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。
二、目標(biāo)分析。
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)。
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
三、過程分析。
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題。
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學(xué)生看來卻是"不可思議"的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展。
首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來幻燈演示他們的解答,其它同學(xué)進(jìn)行評價,然后師生共同進(jìn)行總結(jié)。
設(shè)計意圖:采用變式教學(xué)設(shè)計題組,深化學(xué)生對公式的認(rèn)識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識和競爭意識。
6、例題講解,形成技能。
設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進(jìn)行分類討論的數(shù)學(xué)思想。
7、總結(jié)歸納,加深理解。
以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。
設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
8、故事結(jié)束,首尾呼應(yīng)。
最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。
設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。
9、課后作業(yè),分層練習(xí)。
必做:p129練習(xí)1、2、3、4。
選作:
設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
四、教法分析。
對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用"問題――探究"的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。
利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。
五、評價分析。
本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
等比數(shù)列的概念說課稿篇九
本節(jié)課是高中數(shù)學(xué)(北師大版必修5)第一章第3節(jié)第二課時,是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),與函數(shù)等知識有著密切的聯(lián)系,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊。而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng),如在“分期付款”等實際問題中也經(jīng)常涉及到。本節(jié)以數(shù)學(xué)文化背境引入課題有助于提升學(xué)生的創(chuàng)新思維和探索精神,是提高數(shù)學(xué)文化素養(yǎng)和培養(yǎng)學(xué)生應(yīng)用意識的良好載體。
2.學(xué)情分析。
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是,本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。教學(xué)對象是高二理科班的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不完全。
二.教學(xué)目標(biāo)。
依據(jù)新課程標(biāo)準(zhǔn)及教材內(nèi)容,結(jié)合學(xué)生的認(rèn)知發(fā)展水平和心理特點,確定本節(jié)課的教學(xué)目標(biāo)如下:
1、知識與技能目標(biāo):理解等比數(shù)列前n項和公式推導(dǎo)方法;掌握等比數(shù)列前n項和公式并能運用公式解決一些簡單問題。
2.過程與方法目標(biāo):感悟并理解公式的推導(dǎo)過程,感受公式探求過程所蘊涵的從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì),初步提高學(xué)生的建模意識和探究、分析與解決問題的能力。
3、情感與態(tài)度目標(biāo):通過經(jīng)歷對公式的探索過程,對學(xué)生進(jìn)行思維嚴(yán)謹(jǐn)性的訓(xùn)練,激發(fā)學(xué)生的求知欲,鼓勵學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗,感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美和數(shù)學(xué)的嚴(yán)謹(jǐn)美。
三.重點,難點。
教學(xué)重點:等比數(shù)列前“等比數(shù)列的前n項和”項和公式的推導(dǎo)及其簡單應(yīng)用。
教學(xué)難點:公式的推導(dǎo)思想方法及公式應(yīng)用中q與1的關(guān)系。
四.教學(xué)方法。
啟發(fā)引導(dǎo),探索發(fā)現(xiàn),類比。
五.教學(xué)過程。
(一)借助數(shù)學(xué)文化背境提出問題。
等比數(shù)列的概念說課稿篇十
教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
等比數(shù)列的概念說課稿篇十一
(1)通過教學(xué)使學(xué)生掌握等比數(shù)列前項和公式的推導(dǎo)過程,并能初步運用這一方法求一些數(shù)列的前項和。
(2)通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的素質(zhì)。
(3)通過教學(xué)進(jìn)一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膽B(tài)度。
等比數(shù)列的概念說課稿篇十二
1、知識目標(biāo):理解等比數(shù)列前n項和公式的推導(dǎo)方法,掌握等比數(shù)列前n項和公式及應(yīng)用。
2、能力目標(biāo):培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的。積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。
等比數(shù)列的概念說課稿篇十三
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析。
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析。
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析。
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法。
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
六、教學(xué)過程。
(一)創(chuàng)設(shè)情景,引入新課。
情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學(xué)生提供分?jǐn)?shù)。
名次(得分)。
情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)。
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)。
提問(2):當(dāng)其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)。
提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題。
[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運動會成績統(tǒng)計單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點。
(二)探索新知,形成概念。
1、引導(dǎo)分析,探求特征。
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設(shè)計意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進(jìn)入本節(jié)課的重點。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進(jìn)行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)。
[設(shè)計意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))。
及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。
提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?
[設(shè)計意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點。
3、探求定義,提出注意。
提問(7):你覺得這個定義中應(yīng)注意哪些問題?
[設(shè)計意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
4、例題剖析,強化概念。
例1、判斷下列對應(yīng)是否為函數(shù):
[設(shè)計意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
例2、(1);(2)y=x-1;(3);[設(shè)計意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
[設(shè)計意圖]讓學(xué)體會理解函數(shù)的三要素。
5、鞏固練習(xí),運用概念。
書本練習(xí)p24:1,2,3,4。
6、課堂小結(jié),提升思想。
引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。
七、教學(xué)評價。
1、我通過對一系列問題情景的設(shè)計,讓學(xué)生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。
2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
等比數(shù)列的概念說課稿篇十四
“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認(rèn)知特點,我把本節(jié)課的教學(xué)目的確定為:
(1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識遷移的'能力及數(shù)學(xué)表達(dá)能力;
(2)領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題;
(4)進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識正棱錐的線線,線面垂直關(guān)系。
類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。
由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)。
將現(xiàn)實生活的實例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)。
請同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點加以描述)。
結(jié)論:(1)有一個面是多邊形;
(2)其余各面是三角形且有一個公共頂點。
由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。
(設(shè)計意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)。
――棱錐的頂點。
――棱錐的側(cè)棱。
――棱錐的底面。
棱錐的高――――。
觀察圖1:依次逐個介紹棱錐各個部分。
名稱及表示法。表示法:棱錐s-abcde。
或棱錐s-ac。與棱柱相似,棱錐可以按。
底面多邊形的邊數(shù)分為三棱錐,四棱錐、
五棱錐,···,n棱錐。
(設(shè)計意圖:從簡處理棱錐的表示法,
分類等,為后面重點解決正棱錐的性質(zhì)問。
題節(jié)省時間。)。
由于實際生活中,遇到的往往是一種。
特殊的棱錐――正棱錐,它的性質(zhì)用處較多。
通過對比正棱柱的定義,讓學(xué)生描述正棱錐。
(拿出各式各樣的棱錐模型讓學(xué)生辨認(rèn))。
討論:底面是正多邊形的棱錐對嗎?聯(lián)想正棱柱的定義,棱柱補充幾點后才是正棱柱?
結(jié)論:底面是正多邊形,并且頂點在底面射影是底面中心。為什么?
(設(shè)計意圖:采用觀察、聯(lián)想、類比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)。
正棱錐的頂點在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請同學(xué)們說出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)。
結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。
為什么?
(學(xué)生口答證明)(略)。
如果我們把等腰三角形底邊上的高叫做正棱錐。
的斜高,請在圖2中作出兩條斜高。(學(xué)生作出。)(略)。
結(jié)論:兩條斜高相等。為什么?(學(xué)生回答)。
想一想:正棱錐的斜高與高有什么關(guān)系?
結(jié)論:斜高大于高,為什么?(可啟發(fā)學(xué)生聯(lián)系。
垂線段,斜線段的有關(guān)知識,然后回答)。
小結(jié):對于一般棱錐其側(cè)面不一定是等腰三角形。棱錐的高是指頂點到底面的距離,垂足可以在底面多邊形內(nèi),也可以在底面多邊形外,我們剛才所得到的性質(zhì)都是對正棱錐而言的。
(設(shè)計意圖:再次讓學(xué)生領(lǐng)會類比、觀察、猜想等合情合理得到正棱錐的性質(zhì)之一并加以證明,培養(yǎng)學(xué)生的直覺思維能力的同時,訓(xùn)練學(xué)生數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。)。
等比數(shù)列的概念說課稿篇十五
在職人才引進(jìn):
業(yè)務(wù)定義。
在職人才引進(jìn)申報:符合當(dāng)在職人才引進(jìn)申報政策的人員,可辦理在職人才引進(jìn)申報。具體參看當(dāng)政策。
政策依據(jù):
深圳市人才引進(jìn)實施辦法(深府辦函[2013]37號)《深圳市人才引進(jìn)綜合評價指標(biāo)及分值表》(深人社規(guī)〔2013〕5號)。
在職人才引進(jìn)的條件:
(一)符合以下基本條件,且人才引進(jìn)積分分值達(dá)到100分的,可以申請辦理人才引進(jìn)手續(xù):
1.年齡在18周歲以上,48周歲以下;
2.身體健康;
3.已在我市辦理居住證和繳納社保;
4.符合《深圳經(jīng)濟(jì)特區(qū)人口與計劃生育條例》的規(guī)定;
5.未參加國家禁止的組織及活動,無刑事犯罪記錄。
(二)符合上款基本條件的第2、4、5項,且符合以下條件之一,可直接申請辦理人才引進(jìn)手續(xù):
1.兩院院士;
6.取得《深圳市出國留學(xué)人員資格證明》,且年齡不超過48周歲的留學(xué)回國人員。
(三)根據(jù)我市戶籍遷入規(guī)定,以下人員申請人才引進(jìn)年齡上限可放寬:
本款第2至5項所規(guī)定人員,須在最近連續(xù)3個納稅內(nèi)具備與申請事由相適應(yīng)的身份資格;納稅額超過以上規(guī)定納稅額一倍以上的,其年齡可放寬至55周歲。
(四)市政府對高層次專業(yè)人才及其配偶、獲得特殊獎項或表彰人員、投資納稅人員、隨軍家屬、機關(guān)事業(yè)單位或駐深單位人員等引進(jìn)另有規(guī)定的,按其規(guī)定執(zhí)行。
等比數(shù)列的概念說課稿篇十六
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4.重點、難點。
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。
公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。
知識與技能目標(biāo):
上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)。
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之。
間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為。
1q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
等比數(shù)列的概念說課稿篇十七
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
等比數(shù)列前n項和公式及應(yīng)用是本節(jié)課的重點內(nèi)容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
四、習(xí)題訓(xùn)練。
本節(jié)課設(shè)置如下兩種類型的習(xí)題:
1.中知三求二的解答題;。
2.實際應(yīng)用題.
這樣設(shè)置主要依據(jù):
(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點、難點有相對應(yīng)的匹配關(guān)系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
(3)應(yīng)用題比較切合對智力技能進(jìn)行檢測,有利于數(shù)學(xué)能力的提高。同時,它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動性,。
五、策略、方法與手段。
根據(jù)高一學(xué)生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡稱“例—規(guī)”法。
案例為淺層次要求,使學(xué)生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。
應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節(jié)教學(xué)目標(biāo)的落實。
其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識,舉一反三。
在這三步教學(xué)中,以啟發(fā)性強的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實好教學(xué)任務(wù)。
六、個人見解。
在提倡教育改革的今天,對學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國范圍內(nèi)展開,等比數(shù)列就是一個進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)??梢园凑読ntel未來教育計劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團(tuán)結(jié)協(xié)作的精神。
等比數(shù)列的概念說課稿篇十八
1、導(dǎo)言:
這樣引入課題有以下三點好處:
(1)利用學(xué)生求知好奇心理,以一個小故事為切入點,便于調(diào)動學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
(2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點。
(3)有利于知識的遷移,使學(xué)生明確知識的現(xiàn)實應(yīng)用性。
2、講授新課:
本節(jié)課有兩項主要內(nèi)容,等比數(shù)列的前n項和公式的推導(dǎo)和等比數(shù)列的前n項和公式及應(yīng)用。
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
等比數(shù)列的概念說課稿篇一
2、從學(xué)生認(rèn)知角度看。
3、學(xué)情分析。
4、重點、難點。
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用、
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用、
知識與技能目標(biāo):
過程與方法目標(biāo):
情感與態(tài)度價值觀:
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題。
2、師生互動,探究問題。
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
3、類比聯(lián)想,解決問題。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)、
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)、)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
4、討論交流,延伸拓展。
等比數(shù)列的概念說課稿篇二
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認(rèn)識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進(jìn)一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
等比數(shù)列的概念說課稿篇三
等比數(shù)列前n項和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗修訂本第一冊第三章第五節(jié)的內(nèi)容,教學(xué)對象為高一學(xué)生,教學(xué)時數(shù)2課時。
第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來,這是由其在整個高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。
1、數(shù)列有著廣泛的實際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計、儲蓄、分期付款的有關(guān)計算等。
2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。
3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。
本節(jié)課既是本章的重點,同時也是教材的重點。等比數(shù)列前n項和前面承接了數(shù)列的定義、等差數(shù)列的知識內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。
本節(jié)的重點是等比數(shù)列前n項和公式及應(yīng)用,難點是公式的推導(dǎo)。
二、教學(xué)目標(biāo)。
1、知識目標(biāo):理解等比數(shù)列前n項和公式的推導(dǎo)方法,掌握等比數(shù)列前n項和公式及應(yīng)用。
2、能力目標(biāo):培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。
三、教學(xué)程序設(shè)計。
1、導(dǎo)言:
這樣引入課題有以下三點好處:
(1)利用學(xué)生求知好奇心理,以一個小故事為切入點,便于調(diào)動學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
(2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點。
(3)有利于知識的遷移,使學(xué)生明確知識的現(xiàn)實應(yīng)用性。
2、講授新課:
本節(jié)課有兩項主要內(nèi)容,等比數(shù)列的前n項和公式的推導(dǎo)和等比數(shù)列的前n項和公式及應(yīng)用。
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
等比數(shù)列前n項和公式及應(yīng)用是本節(jié)課的重點內(nèi)容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
四、習(xí)題訓(xùn)練。
本節(jié)課設(shè)置如下兩種類型的習(xí)題:
1.中知三求二的解答題;。
2.實際應(yīng)用題.
這樣設(shè)置主要依據(jù):
(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點、難點有相對應(yīng)的匹配關(guān)系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
(3)應(yīng)用題比較切合對智力技能進(jìn)行檢測,有利于數(shù)學(xué)能力的提高。同時,它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動性。
五、策略、方法與手段。
根據(jù)高一學(xué)生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡稱“例—規(guī)”法。
案例為淺層次要求,使學(xué)生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。
應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節(jié)教學(xué)目標(biāo)的落實。
其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識,舉一反三。
在這三步教學(xué)中,以啟發(fā)性強的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實好教學(xué)任務(wù)。
六、個人見解。
在提倡教育改革的今天,對學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國范圍內(nèi)展開,等比數(shù)列就是一個進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)校可以按照intel未來教育計劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團(tuán)結(jié)協(xié)作的精神。
等比數(shù)列的概念說課稿篇四
《等比數(shù)列前n項和》選自北師大版高中數(shù)學(xué)必修5第一章第3節(jié)的內(nèi)容。等比數(shù)列的前n項和是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),也是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);公式推導(dǎo)中蘊涵的數(shù)學(xué)思想方法如分類討論等在各種數(shù)學(xué)問題中有著廣泛的應(yīng)用,如在“分期付款”等實際問題中也經(jīng)常涉及到.具有一定的探究性。
二、學(xué)情分析。
在認(rèn)知結(jié)構(gòu)上已經(jīng)掌握等差數(shù)列和等比數(shù)列的有關(guān)知識。在能力方面已經(jīng)初步具備運。
用等差數(shù)列和等比數(shù)列解決問題的能力;但學(xué)生從特殊到一般、分類討論的數(shù)學(xué)思想還需要進(jìn)一步培養(yǎng)和提高。在情感態(tài)度上學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強,但合作交流的意識等方面尚有待加強。并且讓學(xué)生在探究等比數(shù)列前n項和的過程中體會合作交流的重要性。
三、教學(xué)目標(biāo)分析:
知識與技能目標(biāo):
(1)能夠推導(dǎo)出等比數(shù)列的前n項和公式;
(2)能夠運用等比數(shù)列的前n項和公式解決一些簡單問題。
過程與方法目標(biāo):提高學(xué)生的建模意識及探究問題、分析與解決問題的能力。體會公式探求。
過程中從特殊到一般的思維方法、錯位相減法和分類討論思想。
情感與態(tài)度目標(biāo):培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,磨練思維品質(zhì),從中獲得成功的體驗。
四、重難點的確立。
《等比數(shù)列的前n項和》是這一章的重點,其中公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了多種重要的數(shù)學(xué)思想,因此,本節(jié)課的教學(xué)重點為等比數(shù)列的前n項和公式的推導(dǎo)及其簡單應(yīng)用.而等比數(shù)列的前n項和公式的推導(dǎo)過程中用到的方法學(xué)生難以想到,因此本節(jié)課的難點為等比數(shù)列的前n項和公式的推導(dǎo)。
五、教學(xué)方法。
為突出重點和突破難點,我將采用的教學(xué)策略為啟發(fā)式和探究式相結(jié)合的教學(xué)方法,教學(xué)手段采用計算機進(jìn)行輔助教學(xué)。
六、教學(xué)過程。
為達(dá)到本節(jié)課的教學(xué)目標(biāo),我把教學(xué)過程分為如下6個階段:
1、創(chuàng)設(shè)情境:
2、探究問題,講授新課:
根據(jù)創(chuàng)設(shè)的情景,在教師的誘導(dǎo)下,學(xué)生根據(jù)自己掌握的知識和經(jīng)驗,很快建立起兩個等比數(shù)列的數(shù)學(xué)模型。提出如何求等比數(shù)列前n項和的問題,從而引出課題。通過回顧等差數(shù)列前n項和公式的推導(dǎo)過程,類比觀察等比數(shù)列的特點,引導(dǎo)學(xué)生思考,如果我們把每一項都乘以2,則每一項就變成了它的后一項,引導(dǎo)學(xué)生比較這兩個式子有許多相同的項的特點,學(xué)生自然就會想到把兩式相減,進(jìn)而突破了用錯位相減法推到公式的難點。教師再由特殊到一般、具體到抽象的啟示,正式引入本節(jié)課的重點等比數(shù)列的前n項和,請學(xué)生用錯位相減法推導(dǎo)出等比數(shù)列前n項和公式。得出公式后,學(xué)生一起探討兩個問題,一是當(dāng)q=1時sn又等于什么,引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出完整的等比數(shù)列前n項和公式,二是結(jié)合等比數(shù)列的通項公式,引導(dǎo)學(xué)生得出公式的另一形式。
3、例題講解:
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。本節(jié)課設(shè)置如下兩種類型的例題:
1)例1是公式的直接應(yīng)用,目的是讓學(xué)生熟悉公式會合理的選用公式。
2)等比數(shù)列中知三求二的填空題,通過公式的正用和逆用進(jìn)一步提高學(xué)生運用等比數(shù)列前n項和的能力.4.形成性練習(xí):
練習(xí)基本上是直接運用公式求和,三個練習(xí)是按由易到難、由簡單到復(fù)雜的認(rèn)識規(guī)律和心理特征設(shè)計的,有利于提高學(xué)生的積極性。學(xué)生練習(xí)時,教師巡查,觀察學(xué)情,及時從中獲取反饋信息。對學(xué)生練習(xí)中出現(xiàn)的獨到解法提出表揚和鼓勵,對其中偶發(fā)性錯誤進(jìn)行辨析、指正。通過形成性練習(xí),培養(yǎng)學(xué)生的應(yīng)變和舉一反三的能力,逐步形成技能。
5.課堂小結(jié)。
本節(jié)課的小結(jié)從以下幾個方面進(jìn)行:(1)等比數(shù)列的前n項和公式。
(2)推導(dǎo)公式的所用方法——從特殊到一般的思維方法、錯位相減法和分類討論思想。通過師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識,也能培養(yǎng)學(xué)生的歸納和概括能力。進(jìn)一步完成認(rèn)知目標(biāo)和素質(zhì)目標(biāo)。
6.作業(yè)布置。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的`目的。并可布置相應(yīng)的研究作業(yè),思考如何用其他方法來推導(dǎo)等比數(shù)列的前n項和公式,來加深學(xué)生對這一知識點的理解程度。
等比數(shù)列的概念說課稿篇五
大家好,今天我說課的題目是函數(shù)的概念,將從以下七個方面來進(jìn)行說課。
函數(shù)的概念是人教a版實驗教科書必修一第三章第一節(jié)的內(nèi)容,我們在初中階段學(xué)過的一次函數(shù)反比例函數(shù)二次函數(shù)為我們在高中學(xué)習(xí)函數(shù)的概念,這一內(nèi)容進(jìn)行了鋪墊,而函數(shù)的概念又為后續(xù)學(xué)習(xí)函數(shù)的性質(zhì)做了鋪墊,因此,本節(jié)課的內(nèi)容在整個教科書中起著承上啟下的作用。
在學(xué)琴方面,從知識和能力兩方面入手,目前學(xué)生處于高一階段,在中學(xué)已經(jīng)初步探討了函數(shù)的相關(guān)問題,為重新定義函數(shù)提供了理論基礎(chǔ),并且通過以前的學(xué)習(xí),同學(xué)們已經(jīng)具備了分析,推理和概括的能力,并具備了學(xué)習(xí)函數(shù)概念的基本能力。
根據(jù)課程標(biāo)準(zhǔn),
教學(xué)。
內(nèi)容,及學(xué)生學(xué)情,我制定了如下三維教學(xué)目標(biāo),知識與技能方面,理解函數(shù)的概念能對具體函數(shù)指出定義域值域?qū)?yīng)法則能夠正確,使用區(qū)間符號表示,某些函數(shù)的定義域和值域,過程與方法方面,通過實例進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上,用集合與對應(yīng)語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的進(jìn)步作用,加深數(shù)學(xué)思想方法,情感態(tài)度,價值觀方面,在自主探究中感受到成功的喜悅,激發(fā)數(shù)學(xué)學(xué)習(xí)興趣。
根據(jù)課程標(biāo)準(zhǔn),教學(xué)內(nèi)容教學(xué)重點為,函數(shù)的模型化思想函數(shù)的三要素,根據(jù)教學(xué)內(nèi)容,學(xué)生學(xué)情,教學(xué)難點為函數(shù)符號fx的含義,函數(shù)的定義,域值域和區(qū)間表示,從具體實例中抽象出函數(shù)概念。
多樣化的教學(xué)方法是突破重難點的關(guān)鍵,我們因此本節(jié)課我將采用,領(lǐng)導(dǎo)發(fā)現(xiàn)練習(xí)鞏固分組討論的教學(xué)方法,充分調(diào)動學(xué)生學(xué)習(xí)的積極性,主動性,使課堂氣氛更加活躍,培養(yǎng)學(xué)生自主學(xué)習(xí),動手探究的能力,培養(yǎng)學(xué)生對數(shù)學(xué)知識的應(yīng)用能力和意識,提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生對數(shù)學(xué)知識的探索精神和團(tuán)隊協(xié)作精神,更能讓學(xué)生體驗成功的樂趣。
根據(jù)上面的教學(xué)方法以及新課程倡導(dǎo)的自主合作探究的學(xué)習(xí)方式,在本節(jié)課的教學(xué)中,教會學(xué)生動手嘗試,仔細(xì)觀察開動腦筋分析問題,這樣有利于學(xué)生發(fā)揮學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為教師引導(dǎo)下再創(chuàng)造過程,并使學(xué)生從中體會到學(xué)習(xí)的樂趣,下面我將著重談一談我對教學(xué)過程的設(shè)計,首先,創(chuàng)設(shè)情境引入課題,例如,正方形的周長也要與邊長x的對應(yīng)關(guān)系是l=4x,而且對于每一個x都有唯一的l與之對應(yīng),所以l是x的函數(shù),這個函數(shù)與y=4x相同嗎?又如你能用已有的知識判斷y=x與y=x/x^2是否相同嗎?要解決這些問題,就需要進(jìn)一步學(xué)習(xí)函數(shù)的概念,此部分我設(shè)計的意圖是利用初中所學(xué)知識引入課題,由熟悉到陌生,便于學(xué)生理解與接受,符合學(xué)生邏輯思維,接下來,引導(dǎo)探求以書上的四個實例高速列車時間與路程關(guān)系,電器維修工人工作天數(shù)與工資的關(guān)系,時間與空氣質(zhì)量指數(shù)之間的關(guān)系,以及八五計劃以來,我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系,這四個實力為例,讓同學(xué)們探究其對應(yīng)變量之間的關(guān)系,以及變量的變化范圍,目的是讓學(xué)生體會函數(shù),是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想,第三部分,歸納。
總結(jié)。
形成知識,讓學(xué)生總結(jié)第一到第四中的函數(shù)有哪些共同特征,由此概括出函數(shù)概念的本質(zhì)特征,設(shè)計意圖為使學(xué)生進(jìn)行分組討論,學(xué)會分析歸納共同點,在分組討論的過程中,體會到團(tuán)隊協(xié)作的精神,第四部分變式訓(xùn)練鞏固知識,思考反比例,函數(shù)y=k/x的定義域值域和對應(yīng)關(guān)系各是什么?請用函數(shù)定義描述這個函數(shù),這是為了通過變式使同學(xué)們靈活運用所學(xué)知識,有舉一反三的,能更加使學(xué)生鞏固所學(xué)知識,第五部分,深化知識習(xí)題訓(xùn)練,為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置三道不同類型,不同難度的做作業(yè),以滿足不同層次的學(xué)生需求,第一題,第二題為基礎(chǔ)題,第三題為選做題,習(xí)題訓(xùn)練復(fù)習(xí)鞏固很重要,樹立夯實基礎(chǔ)目標(biāo),堅持事求是,腳踏實地。
基于以上教學(xué)過程,我設(shè)計了如下板書,我的說課到此完畢,謝謝大家,敬請各位老師批評指正。
等比數(shù)列的概念說課稿篇六
(2)過程與方法:在定積分概念形成的過程中,培養(yǎng)學(xué)生的抽象概括能力和探索提升能力。
【教學(xué)重點】:
理解定積分的概念及其幾何意義,定積分的性質(zhì)【教學(xué)難點】:
3.教學(xué)用具。
多媒體。
4.標(biāo)簽。
教學(xué)過程。
課堂小結(jié)。
定積分的定義,計算定積分的“四步曲”,定積分的幾何意義,定積分的性質(zhì)。
等比數(shù)列的概念說課稿篇七
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
等比數(shù)列的概念說課稿篇八
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看。
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學(xué)情分析。
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4、重點、難點。
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。
公式推導(dǎo)所使用的"錯位相減法"是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。
二、目標(biāo)分析。
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)。
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
三、過程分析。
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題。
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學(xué)生看來卻是"不可思議"的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展。
首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來幻燈演示他們的解答,其它同學(xué)進(jìn)行評價,然后師生共同進(jìn)行總結(jié)。
設(shè)計意圖:采用變式教學(xué)設(shè)計題組,深化學(xué)生對公式的認(rèn)識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識和競爭意識。
6、例題講解,形成技能。
設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進(jìn)行分類討論的數(shù)學(xué)思想。
7、總結(jié)歸納,加深理解。
以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。
設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
8、故事結(jié)束,首尾呼應(yīng)。
最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。
設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。
9、課后作業(yè),分層練習(xí)。
必做:p129練習(xí)1、2、3、4。
選作:
設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
四、教法分析。
對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用"問題――探究"的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。
利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。
五、評價分析。
本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
等比數(shù)列的概念說課稿篇九
本節(jié)課是高中數(shù)學(xué)(北師大版必修5)第一章第3節(jié)第二課時,是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),與函數(shù)等知識有著密切的聯(lián)系,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊。而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng),如在“分期付款”等實際問題中也經(jīng)常涉及到。本節(jié)以數(shù)學(xué)文化背境引入課題有助于提升學(xué)生的創(chuàng)新思維和探索精神,是提高數(shù)學(xué)文化素養(yǎng)和培養(yǎng)學(xué)生應(yīng)用意識的良好載體。
2.學(xué)情分析。
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是,本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。教學(xué)對象是高二理科班的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不完全。
二.教學(xué)目標(biāo)。
依據(jù)新課程標(biāo)準(zhǔn)及教材內(nèi)容,結(jié)合學(xué)生的認(rèn)知發(fā)展水平和心理特點,確定本節(jié)課的教學(xué)目標(biāo)如下:
1、知識與技能目標(biāo):理解等比數(shù)列前n項和公式推導(dǎo)方法;掌握等比數(shù)列前n項和公式并能運用公式解決一些簡單問題。
2.過程與方法目標(biāo):感悟并理解公式的推導(dǎo)過程,感受公式探求過程所蘊涵的從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì),初步提高學(xué)生的建模意識和探究、分析與解決問題的能力。
3、情感與態(tài)度目標(biāo):通過經(jīng)歷對公式的探索過程,對學(xué)生進(jìn)行思維嚴(yán)謹(jǐn)性的訓(xùn)練,激發(fā)學(xué)生的求知欲,鼓勵學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗,感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美和數(shù)學(xué)的嚴(yán)謹(jǐn)美。
三.重點,難點。
教學(xué)重點:等比數(shù)列前“等比數(shù)列的前n項和”項和公式的推導(dǎo)及其簡單應(yīng)用。
教學(xué)難點:公式的推導(dǎo)思想方法及公式應(yīng)用中q與1的關(guān)系。
四.教學(xué)方法。
啟發(fā)引導(dǎo),探索發(fā)現(xiàn),類比。
五.教學(xué)過程。
(一)借助數(shù)學(xué)文化背境提出問題。
等比數(shù)列的概念說課稿篇十
教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
二、教學(xué)目標(biāo)。
理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
三、重難點分析確定。
一、教學(xué)基本思路及過程。
本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、學(xué)情分析。
一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力等參差不齊等。
三、教法、學(xué)法。
1、本節(jié)課采用的方法有:
直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
2、采用這些方法的理論依據(jù):
我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
等比數(shù)列的概念說課稿篇十一
(1)通過教學(xué)使學(xué)生掌握等比數(shù)列前項和公式的推導(dǎo)過程,并能初步運用這一方法求一些數(shù)列的前項和。
(2)通過公式的推導(dǎo)過程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的素質(zhì)。
(3)通過教學(xué)進(jìn)一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膽B(tài)度。
等比數(shù)列的概念說課稿篇十二
1、知識目標(biāo):理解等比數(shù)列前n項和公式的推導(dǎo)方法,掌握等比數(shù)列前n項和公式及應(yīng)用。
2、能力目標(biāo):培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。
3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的。積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。
等比數(shù)列的概念說課稿篇十三
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識,也是學(xué)生認(rèn)識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析。
根據(jù)對上述對教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析。
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認(rèn)識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析。
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法。
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認(rèn)知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
六、教學(xué)過程。
(一)創(chuàng)設(shè)情景,引入新課。
情景1:提供一張表格,把上次運動會得分前10的情況填入表格,我報名次,學(xué)生提供分?jǐn)?shù)。
名次(得分)。
情景3:某市一天24小時內(nèi)的氣溫變化圖:(圖略)。
提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)。
提問(2):當(dāng)其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)。
提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題。
[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學(xué)生一張運動會成績統(tǒng)計單。是為了創(chuàng)設(shè)和學(xué)生或者生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學(xué)生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點。
(二)探索新知,形成概念。
1、引導(dǎo)分析,探求特征。
思考:如何用集合的語言來闡述上述三個問題的共同特征?
[設(shè)計意圖]并不急著讓學(xué)生回答此問,為引導(dǎo)學(xué)生改變思路,換個角度思考問題,進(jìn)入本節(jié)課的重點。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時對學(xué)生進(jìn)行指引。
提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)。
[設(shè)計意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問題,分析問題的能力。
提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))。
及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達(dá)這種對應(yīng)。
提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?
[設(shè)計意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。
上述一系列問題,始終在學(xué)生知識的“最近發(fā)展區(qū)”,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點。
3、探求定義,提出注意。
提問(7):你覺得這個定義中應(yīng)注意哪些問題?
[設(shè)計意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。
4、例題剖析,強化概念。
例1、判斷下列對應(yīng)是否為函數(shù):
[設(shè)計意圖]通過例1的教學(xué),使學(xué)生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。
例2、(1);(2)y=x-1;(3);[設(shè)計意圖]首先對求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進(jìn)一步理解函數(shù)符號的本質(zhì)內(nèi)涵。
例3、試求下列函數(shù)的定義域與值域:
[設(shè)計意圖]讓學(xué)體會理解函數(shù)的三要素。
5、鞏固練習(xí),運用概念。
書本練習(xí)p24:1,2,3,4。
6、課堂小結(jié),提升思想。
引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對本節(jié)課有一個整體把握,將對學(xué)生形成的知識系統(tǒng)產(chǎn)生積極的影響。
七、教學(xué)評價。
1、我通過對一系列問題情景的設(shè)計,讓學(xué)生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破。
2、為使課堂形式更加豐富,也可將某些問題改成判斷題。
4。本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景。
等比數(shù)列的概念說課稿篇十四
“棱錐”這節(jié)教材是《立體幾何》的第2.2節(jié)它是在學(xué)生學(xué)習(xí)了直線和平面的基礎(chǔ)知識,掌握若干基本圖形以及棱柱的概念和性質(zhì)的基礎(chǔ)上進(jìn)一步研究多面體的又一常見幾何體。它既是線面關(guān)系的具體化,又為以后進(jìn)一步學(xué)習(xí)棱臺的概念和性質(zhì)奠定了基礎(chǔ)。因此掌握好棱錐的概念和性質(zhì)尤其是正棱錐的概念和性質(zhì)意義非常重要,同時,這節(jié)課也是進(jìn)一步培養(yǎng)高一學(xué)生的空間想象能力和邏輯思維能力的重要內(nèi)容。
本節(jié)課的主要教學(xué)內(nèi)容是棱錐、正棱錐的概念和性質(zhì)以及運用正棱錐的性質(zhì)解決有關(guān)計算和證明問題。通過觀察具體幾何體模型引出棱錐的概念;通過棱柱與棱錐類比引入正棱錐的概念;通過對具體問題的研究,逐步探索和發(fā)現(xiàn)正棱錐的性質(zhì),從而找到解決正棱錐問題的一般數(shù)學(xué)思想方法,這樣做,學(xué)生會感到自然,好接受。對教材的內(nèi)容則有所增減,處理方式也有適當(dāng)改變。
根據(jù)教學(xué)大綱的要求,本節(jié)教材的特點和高一學(xué)生對空間圖形的認(rèn)知特點,我把本節(jié)課的教學(xué)目的確定為:
(1)通過棱錐,正棱錐概念的教學(xué),培養(yǎng)學(xué)生知識遷移的'能力及數(shù)學(xué)表達(dá)能力;
(2)領(lǐng)會應(yīng)用正棱錐的性質(zhì)解題的一般方法,初步學(xué)會應(yīng)用性質(zhì)解決相關(guān)問題;
(4)進(jìn)行辯證唯物主義思想教育,數(shù)學(xué)審美教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
對于高一學(xué)生來說,空間觀念正逐步形成。而實際生活中,遇到的往往是正棱錐,它的性質(zhì)用處較多。因此,本節(jié)課的教學(xué)重點是通過對具體問題的分析和探索,自然而然地引出正棱錐的最重要性質(zhì)及其實質(zhì);而如何將空間問題轉(zhuǎn)化為平面問題來解決?本節(jié)課則通過抓住正棱錐中的基本圖形這一難點實現(xiàn)突破,教學(xué)的關(guān)鍵是正確認(rèn)識正棱錐的線線,線面垂直關(guān)系。
類比聯(lián)想、研究探討、直觀想象、啟發(fā)誘導(dǎo)、建立模型、學(xué)會應(yīng)用、發(fā)展?jié)撃?、形成能力、提高素質(zhì)。
由于本節(jié)課安排在立體幾何學(xué)習(xí)的中期,正是進(jìn)一步培養(yǎng)學(xué)生形成空間觀念和提高學(xué)生邏輯思維能力的最佳時機,因此,在教學(xué)中,一方面通過電教手段,把某些概念,性質(zhì)或知識關(guān)鍵點制成了投影片,既節(jié)省時間,又增加其直觀性和趣味性,起到事半功倍的作用;另一方面,在教學(xué)中并沒有采取把正棱錐性質(zhì)同時全部講授給學(xué)生的做法,而是通過具體問題的分析與處理,將正棱錐最重要的性質(zhì)這一知識點發(fā)現(xiàn)的全過程逐步展現(xiàn)給學(xué)生,讓學(xué)生體會知識發(fā)生、發(fā)展的過程及其規(guī)律,從而提高學(xué)生分析和解決實際問題的能力。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)立體幾何教學(xué)的特點,這節(jié)課主要是教給學(xué)生“動手做,動腦想;嚴(yán)格證,多訓(xùn)練,勤鉆研?!钡难杏懯綄W(xué)習(xí)方法。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑;思考問題的方法。使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,“練”有所“獲”。學(xué)生才會逐步感到數(shù)學(xué)美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(可將金字塔,帳篷的圖片以及不同棱錐的模型依次出示給學(xué)生)。
將現(xiàn)實生活的實例抽象成數(shù)學(xué)模型,獲得新的幾何體――棱錐。(板書課題)。
請同學(xué)們描述一下棱錐的本質(zhì)特征?(學(xué)生觀察模型,提示學(xué)生可以從底面,側(cè)面的形狀特點加以描述)。
結(jié)論:(1)有一個面是多邊形;
(2)其余各面是三角形且有一個公共頂點。
由滿足(1)、(2)的面所圍成的幾何體叫做棱錐。
(設(shè)計意圖:由觀察具體事物,經(jīng)過積極思維,歸納、抽象出事的本質(zhì)屬性,形成概念,培養(yǎng)學(xué)生抽象思維能力,提高學(xué)習(xí)效果。)。
――棱錐的頂點。
――棱錐的側(cè)棱。
――棱錐的底面。
棱錐的高――――。
觀察圖1:依次逐個介紹棱錐各個部分。
名稱及表示法。表示法:棱錐s-abcde。
或棱錐s-ac。與棱柱相似,棱錐可以按。
底面多邊形的邊數(shù)分為三棱錐,四棱錐、
五棱錐,···,n棱錐。
(設(shè)計意圖:從簡處理棱錐的表示法,
分類等,為后面重點解決正棱錐的性質(zhì)問。
題節(jié)省時間。)。
由于實際生活中,遇到的往往是一種。
特殊的棱錐――正棱錐,它的性質(zhì)用處較多。
通過對比正棱柱的定義,讓學(xué)生描述正棱錐。
(拿出各式各樣的棱錐模型讓學(xué)生辨認(rèn))。
討論:底面是正多邊形的棱錐對嗎?聯(lián)想正棱柱的定義,棱柱補充幾點后才是正棱柱?
結(jié)論:底面是正多邊形,并且頂點在底面射影是底面中心。為什么?
(設(shè)計意圖:采用觀察、聯(lián)想、類比、猜想、發(fā)現(xiàn)的方法引出正棱錐的定義比課本直接給出顯得自然,學(xué)生好接受)。
正棱錐的頂點在底面的射影是底面下多邊形中心,這是正棱錐的本質(zhì)特征。它決定了正棱錐的其他性質(zhì)。下面以正五棱錐為例,請同學(xué)們說出其側(cè)棱,各側(cè)面有何性質(zhì)?(將圖2出示給學(xué)生)。
結(jié)論:各棱相等,各側(cè)面是全等的等腰三角形。
為什么?
(學(xué)生口答證明)(略)。
如果我們把等腰三角形底邊上的高叫做正棱錐。
的斜高,請在圖2中作出兩條斜高。(學(xué)生作出。)(略)。
結(jié)論:兩條斜高相等。為什么?(學(xué)生回答)。
想一想:正棱錐的斜高與高有什么關(guān)系?
結(jié)論:斜高大于高,為什么?(可啟發(fā)學(xué)生聯(lián)系。
垂線段,斜線段的有關(guān)知識,然后回答)。
小結(jié):對于一般棱錐其側(cè)面不一定是等腰三角形。棱錐的高是指頂點到底面的距離,垂足可以在底面多邊形內(nèi),也可以在底面多邊形外,我們剛才所得到的性質(zhì)都是對正棱錐而言的。
(設(shè)計意圖:再次讓學(xué)生領(lǐng)會類比、觀察、猜想等合情合理得到正棱錐的性質(zhì)之一并加以證明,培養(yǎng)學(xué)生的直覺思維能力的同時,訓(xùn)練學(xué)生數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。)。
等比數(shù)列的概念說課稿篇十五
在職人才引進(jìn):
業(yè)務(wù)定義。
在職人才引進(jìn)申報:符合當(dāng)在職人才引進(jìn)申報政策的人員,可辦理在職人才引進(jìn)申報。具體參看當(dāng)政策。
政策依據(jù):
深圳市人才引進(jìn)實施辦法(深府辦函[2013]37號)《深圳市人才引進(jìn)綜合評價指標(biāo)及分值表》(深人社規(guī)〔2013〕5號)。
在職人才引進(jìn)的條件:
(一)符合以下基本條件,且人才引進(jìn)積分分值達(dá)到100分的,可以申請辦理人才引進(jìn)手續(xù):
1.年齡在18周歲以上,48周歲以下;
2.身體健康;
3.已在我市辦理居住證和繳納社保;
4.符合《深圳經(jīng)濟(jì)特區(qū)人口與計劃生育條例》的規(guī)定;
5.未參加國家禁止的組織及活動,無刑事犯罪記錄。
(二)符合上款基本條件的第2、4、5項,且符合以下條件之一,可直接申請辦理人才引進(jìn)手續(xù):
1.兩院院士;
6.取得《深圳市出國留學(xué)人員資格證明》,且年齡不超過48周歲的留學(xué)回國人員。
(三)根據(jù)我市戶籍遷入規(guī)定,以下人員申請人才引進(jìn)年齡上限可放寬:
本款第2至5項所規(guī)定人員,須在最近連續(xù)3個納稅內(nèi)具備與申請事由相適應(yīng)的身份資格;納稅額超過以上規(guī)定納稅額一倍以上的,其年齡可放寬至55周歲。
(四)市政府對高層次專業(yè)人才及其配偶、獲得特殊獎項或表彰人員、投資納稅人員、隨軍家屬、機關(guān)事業(yè)單位或駐深單位人員等引進(jìn)另有規(guī)定的,按其規(guī)定執(zhí)行。
等比數(shù)列的概念說課稿篇十六
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4.重點、難點。
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。
公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。
知識與技能目標(biāo):
上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)。
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之。
間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)。
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為。
1q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)。
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)。
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
等比數(shù)列的概念說課稿篇十七
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
等比數(shù)列前n項和公式及應(yīng)用是本節(jié)課的重點內(nèi)容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
四、習(xí)題訓(xùn)練。
本節(jié)課設(shè)置如下兩種類型的習(xí)題:
1.中知三求二的解答題;。
2.實際應(yīng)用題.
這樣設(shè)置主要依據(jù):
(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點、難點有相對應(yīng)的匹配關(guān)系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
(3)應(yīng)用題比較切合對智力技能進(jìn)行檢測,有利于數(shù)學(xué)能力的提高。同時,它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動性,。
五、策略、方法與手段。
根據(jù)高一學(xué)生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡稱“例—規(guī)”法。
案例為淺層次要求,使學(xué)生有概括印象。
公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。
應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節(jié)教學(xué)目標(biāo)的落實。
其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識,舉一反三。
在這三步教學(xué)中,以啟發(fā)性強的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實好教學(xué)任務(wù)。
六、個人見解。
在提倡教育改革的今天,對學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國范圍內(nèi)展開,等比數(shù)列就是一個進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)??梢园凑読ntel未來教育計劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團(tuán)結(jié)協(xié)作的精神。
等比數(shù)列的概念說課稿篇十八
1、導(dǎo)言:
這樣引入課題有以下三點好處:
(1)利用學(xué)生求知好奇心理,以一個小故事為切入點,便于調(diào)動學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
(2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點。
(3)有利于知識的遷移,使學(xué)生明確知識的現(xiàn)實應(yīng)用性。
2、講授新課:
本節(jié)課有兩項主要內(nèi)容,等比數(shù)列的前n項和公式的推導(dǎo)和等比數(shù)列的前n項和公式及應(yīng)用。
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。
(2)從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。
突破難點方法:
(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
方法二:由等比數(shù)列的定義得:運用連比定理,
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點方法:
(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件,以精練的語言給予強調(diào),并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。