亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        初中數(shù)學建模論文(實用21篇)

        字號:

            有時候,我們需要放慢腳步,停下來思考一下自己的人生方向??偨Y(jié)要客觀真實,不過分吹噓也不過分貶低。下面是一些精選的總結(jié)范文,供大家在寫作時參考和借鑒。
            初中數(shù)學建模論文篇一
            隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學院院校。就我校而言,絕大多數(shù)專業(yè)都開設了數(shù)學類課程。但在教學中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學生的學習興趣。并且,傳統(tǒng)教學忽視了學生用數(shù)學解決實際問題的能力,所以,進行數(shù)學教學改革勢在必行。數(shù)學建??膳囵B(yǎng)學生利用數(shù)學知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學生體會到數(shù)學不僅能傳播理論知識和求解一些數(shù)學問題,還可將其應用到實際問題中,讓學生看到一些實際模型的來龍去脈,提高學生的學習積極性。數(shù)學建模是培養(yǎng)學生綜合科學素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當代科技最新成果的能力等。學生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術的掌握和團隊合作精神對于獨立學院學生將來進入社會十分重要,這也是衡量獨立學院辦學成功與否的一個方面。因此,獨立學院的人才培養(yǎng)目標定位,既要達到本科生應具備的理論基礎,又要有相對突出的專業(yè)技能,應培養(yǎng)“應用型本科”人才。因而,獨立學院的數(shù)學課堂上應該多方面滲透數(shù)學模型的思想。
            (一)人才培養(yǎng)創(chuàng)新的需要。
            根據(jù)獨立學院人才培養(yǎng)目標和實際情況,有針對性的加大基礎課和實踐環(huán)節(jié)教學的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當增加實驗、實踐教學內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學生。數(shù)學建模是將一個實際問題,對其作出一些必要的簡化與假設,將其轉(zhuǎn)化成一個數(shù)學問題,借助數(shù)學工具和數(shù)學方法精確或近似地解決該問題,并用數(shù)學結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學建模能彌補傳統(tǒng)數(shù)學教學在實際應用方面的不足,促進數(shù)學教師在現(xiàn)代化教學手段、教學模式方面的更新。數(shù)學建模有助于調(diào)動學生的學習興趣,在計算機應用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學生將來能更好地適應工作崗位。
            (二)高校教學改革的需要。
            當今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應社會信息時代的要求。傳統(tǒng)的教學模式是以課堂理論講授為主,學生絕大部分時間都集中學習書本知識,很少有機會接觸社會,也難做到學以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學導致學生明顯缺乏學習的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學作為一門傳統(tǒng)基礎學科,對獨立學院的學生來說,學習上有一定的難度。我們的教學應以“必需,夠用”為度。數(shù)學建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學生通過自主的學習,把實際的問題轉(zhuǎn)化為數(shù)學理論解決,有助于學生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學院院校應用型本科人才培養(yǎng)的方向。
            (三)學生參加數(shù)學建模競賽的需要。
            獨立學院學生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學生愿意在學校參加一些競賽來提高自己。全國大學生數(shù)學建模競賽尤其受學生重視,但仍有很多大學生不了解這類競賽,因此,在數(shù)學課堂上引入數(shù)學建模思想,學生既了解了數(shù)學建模,又對數(shù)學公式提起了興趣,還有助于獨立學院學生在全國大學生數(shù)學建模競賽中取得優(yōu)異成績。
            高等數(shù)學的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學習提供必要的數(shù)學知識,培養(yǎng)各專業(yè)學生的數(shù)學思想與數(shù)學修養(yǎng),全面提高大學生創(chuàng)新思維和應用能力。只有把數(shù)學建模思想融入數(shù)學教學中,才能調(diào)動學生學習數(shù)學的積極性,培養(yǎng)學生的創(chuàng)新能力,實現(xiàn)提高學生綜合分析問題能力的最終目標。
            作者:崔瑋王文麗單位:中國地質(zhì)大學長城學院信息工程系。
            初中數(shù)學建模論文篇二
            摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。
            數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)碗s的數(shù)學問題利用簡單的方式找到解決方案,是提高小學數(shù)學課堂效率及課堂質(zhì)量的有效手段。小學數(shù)學是小學學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段??梢哉f,小學數(shù)學的學習是學生學習數(shù)學的關鍵,對今后的學習起到極大的影響。因此,對于小學數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓小學數(shù)學教學質(zhì)量也得到大幅度的提升。小學數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學建模運用在小學數(shù)學教學過程中,是每個小學數(shù)學教師都值得思考的問題。
            數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是小學數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。
            二、提高學生想象力,用數(shù)學建模簡化問題。
            對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
            三、選擇合適的題目作為建模案例。
            在數(shù)學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。
            四、引導學生主動進行數(shù)學建模。
            在教師經(jīng)過反復的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于小學數(shù)學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。
            初中數(shù)學建模論文篇三
            3.3增強選擇數(shù)學模型的能力。
            選擇數(shù)學模型是數(shù)學能力的反映。數(shù)學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學能力的強弱。建立數(shù)學模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學模型列表:
            一次函數(shù)成本、利潤、銷售收入等。
            二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等。
            冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細胞分裂、生物繁殖等。
            三角函數(shù)測量、交流量、力學問題等。
            3.4加強數(shù)學運算能力。
            數(shù)學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
            利用數(shù)學建模解數(shù)學應用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質(zhì),進行素質(zhì)教育的一條有效途徑。同時數(shù)學建模的`應用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
            初中數(shù)學建模論文篇四
            摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學建模已經(jīng)成為應用數(shù)學知識解決日常問題的一個重要手段。本文通過簡述數(shù)學建模的方法與過程,以及應用數(shù)學建模解決實際經(jīng)濟問題的應用,展現(xiàn)的了數(shù)學學習的重要意義,以及數(shù)學在經(jīng)濟問題解決中的重要作用。
            經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學知識、應用數(shù)學建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
            數(shù)學建模,其實就是建立數(shù)學模型的簡稱,實際上數(shù)學建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學工具應用已知的定理定義進行合理的運算,推導出一種理性的結(jié)果的過程。數(shù)學建模是可以聯(lián)系數(shù)學和外部世界的一個中介和橋梁,在工業(yè)設計、經(jīng)濟領域、工程建設等各個方面,運用數(shù)學的語言和方法進行問題的求解和推導,實際上,都是一種數(shù)學建模的過程。數(shù)學建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設:根據(jù)建模目的,結(jié)合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數(shù)學語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當?shù)臄?shù)學工具,建立各個量(變量、常量)間的數(shù)學關系,化實際問題為數(shù)學語言;4.模型求解:對上述數(shù)學關系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗模型的合理性和適用性。
            二、經(jīng)濟問題數(shù)學模型的建立。
            經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數(shù)學知識建立完整的數(shù)學經(jīng)濟模型。
            三、建模舉例。
            四、結(jié)語。
            綜上所述,我們可以看到,數(shù)學建模在經(jīng)濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W習和思考。
            初中數(shù)學建模論文篇五
            數(shù)學是在實際應用的需求中產(chǎn)生的,要描述一個實際現(xiàn)象可以有很多種方式,為了實際問題描述的更具邏輯性、科學性、客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學。數(shù)學建模則是架于數(shù)學理論和實際問題之間的橋梁,數(shù)學模型是對于現(xiàn)實生活中的特定對象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設,為了一個特定目的,運用數(shù)學工具,得到的一個數(shù)學結(jié)構,用來解釋現(xiàn)實現(xiàn)象,預測未來狀況。因此,數(shù)學建模就是用數(shù)學語言描述實際現(xiàn)象的過程。
            大部分的獨立院校的數(shù)學建模工作純在一定的問題,主要體現(xiàn)在以下幾個方面:(一)學生方面的問題。獨立院校的大部分學生的數(shù)學功底差,對數(shù)學的學習興趣不大,普遍認為數(shù)學的學習對自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學有關的數(shù)學建模,對數(shù)學建模競賽的興趣不大。在獨立院校中,參加數(shù)學建模競賽的大都是低年級的學生,而這些學生的數(shù)學知識結(jié)構還不完整,他們往往參加了一屆數(shù)學競賽并未獲得獎項后就不愿意再次參加。而高年級的同學忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學建模競賽的培訓。(二)教資方面的問題。首先。傳統(tǒng)的教學是知識為中心、以教師的講解為中心。數(shù)學建模的教學要求教師以學生為中心,培養(yǎng)學生學會學習的能力,發(fā)展學生的創(chuàng)新能力和創(chuàng)造能力。獨立院校外聘的老師常常對獨立院校的學生不夠了解,這直接影響到教學成果。其次,數(shù)學建模涉及的知識面廣,不但包括數(shù)學的各個分支,還包含了其他背景的專業(yè)知識。獨立院校的教師一部分是才從大學畢業(yè)不久的研究生,他們對于數(shù)學建模教學和競賽的培訓經(jīng)驗不足,科研能力不是很強,對數(shù)學的各個分支的把控能力不強,對其他專業(yè)的了解不夠全面。(三)教學實施方面的問題。大學生數(shù)學建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學生數(shù)學建模競賽活動,促進高校數(shù)學教學改革,起到培養(yǎng)全體學生能力、提高全體學生素質(zhì)的作用。獨立院校數(shù)學建模教學存在很多的問題。首先,大學數(shù)學建模教育在獨立院校中的普及性不夠。數(shù)學建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候?qū)W生的數(shù)學知識結(jié)構還不完整。其次就是教材的選取,數(shù)學建模的相關教材大都是為了數(shù)學建模競賽而編寫的,對于獨立院校的學生來說,這些教材的難度系數(shù)大,涉及的知識面廣,遠遠超過了學生的接受能力。
            (一)讓學生了解數(shù)學建模,培養(yǎng)學習數(shù)學建模的興趣。數(shù)學建模課程的開設有利于培養(yǎng)學生運用數(shù)學具體解決實際問題的能力,讓學生發(fā)現(xiàn)學習數(shù)學的用處,改變學生學習數(shù)學的態(tài)度,提高學習數(shù)學的能力,認識到數(shù)學的意義和價值。獨立院校學生的數(shù)學基礎雖然比較差,但是學生的動手能力強。學校可以在多開展數(shù)學建模的講座和課程,讓學生了解數(shù)學建模。同時多向?qū)W生宣傳數(shù)學建模的成果。(二)在教學內(nèi)容中滲透數(shù)學建模思想和方法。1.在日常數(shù)學教學中滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學教學重視的是知識的培養(yǎng)和傳輸,而忽視的是實際應用能力。教師的教學目標是使學生掌握數(shù)學理論知識。一般的教學方法是:教師引入相關的的基本概念,證明定理,推導公式,列舉例題,學生記住公式,套用公式,掌握解題方法與技巧。學生往往學習了不少的純粹的數(shù)學理論知識,卻不知道如何應用到實際問題中。數(shù)學建模課程與傳統(tǒng)數(shù)學課程相比差別較大,學校開設的數(shù)學建模跨選課及數(shù)學建模培訓班,對培養(yǎng)學生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學校開設的數(shù)學建模課程大多是選修課程,課時較少,參選的學生也有限,數(shù)學建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學中的很多內(nèi)容都與數(shù)學建模的思想有關,因此,在大學數(shù)學課程的教學過程中,教師應有意識地結(jié)合傳統(tǒng)的數(shù)學課程的特點,將數(shù)學建模的思想和內(nèi)容融入到數(shù)學課堂教學中。這樣既可以激發(fā)學生的學習興趣,又能很好的將突出數(shù)學建模的思想。2.數(shù)學建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學對專業(yè)知識的服務作用。數(shù)學建模與專業(yè)知識的結(jié)合,不僅可以讓學生認識到數(shù)學的重要作用,在專業(yè)知識學習中的地位,還可以培養(yǎng)學習數(shù)學知識的興趣,增強數(shù)學學習的凝聚力,同時加深對專業(yè)知識的理解。通過專業(yè)知識作為背景,學生更愿意嘗試問題的研究。在學習中遇到的專業(yè)問題也可以嘗試用數(shù)學建模的思想進行解決。這有利于提高學生的綜合能力的培養(yǎng)。3.分層次進行數(shù)學建模教育。大體說來獨立院校的數(shù)學建模課程的開設應該分成兩個階段:(1)第一階段:大學一年級,在這個階段,大部分學生對數(shù)學建模沒有了解,這時候適合開設一些數(shù)學建模的講座和活動,讓學生了解數(shù)學建模。同時,在日常的數(shù)學教學中選擇簡單的應用問題和改變后的數(shù)學建模題目,結(jié)合自身的專業(yè)知識進行講解,讓學生了解數(shù)學建模的一般含義?;痉椒ê筒襟E,讓學生具備初步的建模能力。(2)中級層次:大學二、三年級。在這個階段,學生基本具備了完整的數(shù)學結(jié)構,具有了基本的建模能力。這個時候應該開設數(shù)學建模專業(yè)課程,讓學生處理比較復雜的數(shù)學建模問題,讓學生自己去采集有用的信息,學會提出模型的假設,對數(shù)據(jù)和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。
            (一)提高數(shù)學教師自身水平。在數(shù)學建模教學過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學建模教學能否達到預期的目的。數(shù)學建模的教學,不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實際問題的能力和豐富的數(shù)學建模實踐經(jīng)驗。而獨立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實踐經(jīng)驗。這就對獨立院校的的數(shù)學建模教學工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業(yè)培訓學習和學術交流,參加各種學術會議、到名校去做訪問學者等等。同時可以多請著名的數(shù)學專家教授來到校園做建模學術報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態(tài)。青年教師還需要依據(jù)特定的教學內(nèi)容、教學對象和教學環(huán)境對自己的教學工作作出計劃、實施和調(diào)整以及反思和總結(jié)。青年數(shù)學教師還必須更新教育理念,改變傳統(tǒng)的教學理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應新的形勢,符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學建模教材使用也存在諸多不足之處。絕大部分高校教學建模課程采用的是理工類專業(yè)數(shù)學建模教材。這些教材主要涵蓋的數(shù)學模型的難度系數(shù)大。而獨立院校的學生的基礎薄弱,無法接收這些模型。在教學過程中,教師可以將具體的案例或是歷年的數(shù)學建模題目做為教學內(nèi)容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學生分組討論,提出對問題的新的理解和對魔性的認識,嘗試提出新的模型。(三)豐富建模活動。全面開展數(shù)學建?;顒邮菙?shù)學建模思想的最重要的形式,它既使課內(nèi)和課外知識相互結(jié)合,又可以普及建模知識與提高建模能力結(jié)合,可以培養(yǎng)學生利用數(shù)學知識分析和解決實際問題的能力,可以有效地提升了學生的數(shù)學綜合素質(zhì)。學??梢远ㄆ诘拈_展數(shù)學建模宣傳活動,擴大數(shù)學建模的知名度。學校還可以邀請有經(jīng)驗的專家和獲獎學生開展建模講座,提高對數(shù)學建模的重視,積極的組織建模活動。實踐證明,只有根據(jù)獨立院校的自身特點和培養(yǎng)目標,對數(shù)學建模課程的教學不斷進行改革,才能解決獨立院校數(shù)學建模課程教學的問題,才能真正的讓學生喜歡上數(shù)學,喜歡上數(shù)學建模。
            [1]李大潛.將數(shù)學建模思想融入數(shù)學主干課程[j].中國大學教育.20xx.
            [2]賈曉峰等.大學生數(shù)學建模競賽與高等學校數(shù)學改革[j].工科數(shù)學.20xx:162.
            [3]融入數(shù)學建模思想的高等數(shù)學教學研究[j].科技創(chuàng)新導報.20xx:162.
            作者:李雙單位:湖北文理學院理工學院。
            初中數(shù)學建模論文篇六
            高校數(shù)學教育是高等教育的基礎學科,占據(jù)重要的一席之地。如何改變學生對數(shù)學枯燥乏味的學習狀態(tài),讓學生輕松愉快地參與到數(shù)學學習中,是當前高校數(shù)學教學者面臨的一個重要課題。在高校數(shù)學教學中開展數(shù)學建模競賽,不僅能培養(yǎng)學生的創(chuàng)新思維,還能有效提高提高學生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學的應用能力。本文對高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)進行了分析闡述,并對此進行了一定的思考。
            數(shù)學建模是一種融合數(shù)學邏輯思想的思考方法,通過運用抽象性的數(shù)學語言和數(shù)學邏輯思考方法,創(chuàng)造性的解決數(shù)學問題。當前很多高校中開始引入數(shù)學建模思想來加強學生創(chuàng)新能力的培養(yǎng),可以使學生的邏輯思維能力和運用數(shù)學邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學建模教師組織學生開始參與美國的數(shù)學建模大賽,促進了數(shù)學建模思維的快速發(fā)展。直到1992中國首屆數(shù)學建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
            2.1數(shù)學建模競賽自主性較強。自主性首先體現(xiàn)在在數(shù)學建模過程中學生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學建模主要側(cè)重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學建模頗為重視,參賽隊伍、參賽學生的質(zhì)量一直處于上升狀態(tài),數(shù)學模型也日漸合理科學,學生團隊在國際數(shù)學建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓日益加強。數(shù)學建模競賽對學生數(shù)學知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓的時間很長,培訓內(nèi)容也很豐富,為數(shù)學建模競賽取得好成績奠定了堅實的基礎。
            3.1學生的團隊協(xié)作能力和意識得到增強。數(shù)學建模競賽的團隊組織形式活潑自由,通常采用學生組隊模式開展,數(shù)學建模競賽隊伍形成一個團結(jié)戰(zhàn)斗的整體,代表著不僅僅是學校的聲譽,還一定程度上展示著國家的形象。經(jīng)過長時間的培訓,對數(shù)學模型的研究和分析,根據(jù)學生訓練中的優(yōu)勢和特長,進行合理科學的小組分工,讓學生快速高效地完成整個數(shù)學建模,在建模過程中學生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學建模取得最大效用,學生的團隊協(xié)作能力和意識得到鍛煉,責任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數(shù)學建模方面的發(fā)展。
            3.2高校學生參賽積極性高漲。近年來大學生數(shù)學建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學的應用能力提升。
            3.3高校學生數(shù)學邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學建模競賽充滿著刺激性和挑戰(zhàn)性,是學生各方面綜合能力的一個展示。在數(shù)學建模競賽中,學生不僅要需要扎實豐厚的數(shù)學知識儲備,還需要具備清晰的數(shù)學邏輯思維和語言表達能力。同時要有機智的臨場發(fā)揮能力和應變能力,不怯場、不驚慌,有充分的思想準備,能輕松應對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數(shù)學模型的含義和設計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學生的數(shù)學邏輯思維和語言表達能力及靈活運用數(shù)學知識的能力有一個較大的提升。
            3.4學生的自學能力和意志力得到鍛。數(shù)學建模競賽對參賽學生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學建模過程中,有許多高深的知識難于理解,有的日常學習過程中根本接觸不到,需要數(shù)學建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數(shù)學建模所需要的基礎知識,無疑這對學生的自學能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學習數(shù)學建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。
            3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復雜的數(shù)學建模訓練,高校學生信息收集與處理復雜問題的能力得到培養(yǎng)鍛煉,學生數(shù)量觀念得到增強,能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學的嚴謹推導也使學生養(yǎng)成認真細心、一絲不茍的習慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復雜問題,有效解決數(shù)學疑難,數(shù)學理論能更好第應用于實踐,數(shù)學素養(yǎng)進一步得到提升。
            綜上所述,高校學生數(shù)學建模競賽的開展,能較高地提升學生的創(chuàng)新能力和綜合素養(yǎng),團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學建模競賽,使學生的綜合素質(zhì)得到發(fā)展和鍛煉。學校用重視和鼓勵全體學生參與數(shù)學建模競賽,通過競賽實現(xiàn)學生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
            [1]趙剛.高校數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
            [2]陳羽,徐小紅,房少梅.數(shù)學建模實踐及其對培養(yǎng)學生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
            [3]趙建英.數(shù)學建模競賽對高校創(chuàng)新人才培養(yǎng)的促進作用分析[j].科技展望,20xx(08)5.
            [4]畢波,杜輝.關于高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
            初中數(shù)學建模論文篇七
            使學生的綜合應用能力、實踐創(chuàng)新能力和綜合應用素質(zhì)等多方面均能得到提升和發(fā)展。
            對于醫(yī)學專業(yè)的學生來說,在校所學的數(shù)學基礎理論課程比較有限,并且學生對純粹的數(shù)學知識與復雜的理論推導已經(jīng)極為厭倦,如果數(shù)學建模還是以傳統(tǒng)的“灌輸式”和教師“主導型”為主、簡單的應用案例為主要教學內(nèi)容的話,其結(jié)果勢必會使學生有一種再講數(shù)學課和做應用題的感覺,既不能很好地激發(fā)學生的學習興趣,也不能體現(xiàn)數(shù)學建模的思想方法和本質(zhì)特色。
            因此,如何使學生擺脫這種尷尬的現(xiàn)狀已成為我們教學的一大難點。針對這種情況,在教學模式上,我們大膽嘗試研究型教學模式,即采用“從實踐中來,到實踐中去”的教學理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學話題出發(fā),從學生最感興趣的.問題入手,激發(fā)學生的學習興趣和進一步學習的主動性,使他們從一開始就能進入到學習的角色中去;另一方面,通過開展多種方式的實踐教學活動,使學生在實踐中掌握數(shù)學建模的常用方法和基本技能,忽略繁瑣的數(shù)學推導過程,讓學生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學生解決問題的創(chuàng)新能力。
            近些年來,我們開設的醫(yī)藥數(shù)學建模課受到了學生的一致好評,其關鍵之處在于我們一改傳統(tǒng)的教學模式,通過組織數(shù)學建模興趣研討班,讓每位同學都能充分地參與到研究中去并且使每位學生都有發(fā)言的機會。這些舉措旨在進一步激發(fā)學生的創(chuàng)新意識,提高學生的數(shù)學建模實踐能力。研討班面向全校各類醫(yī)學專業(yè)的學生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學生不僅對所學的醫(yī)學知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學習,為學生今后從事醫(yī)學科研工作打下了良好的基礎。
            為了有效的培養(yǎng)學生綜合應用能力和深層次學習的習慣與意識,我們在教學方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導,突出知識的應用思想和應用意識,讓學生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
            在課堂教學中,重點講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導學生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導學生解決問題;通過課后作業(yè),總結(jié)和鞏固所學知識,學習應用與拓展知識。這種完全以學生為主,教師為輔的做法,有利于培養(yǎng)學生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學生的綜合應用素質(zhì)。
            在現(xiàn)實生活中的實際問題是比較復雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應用方能解決。
            因此,以實際問題驅(qū)動的教學模式,主要是引導學生如何將復雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學生學習并掌握相關的數(shù)學知識與方法。這種在應用中學習的教學方法,在很大程度上解決了學生普遍存在的“學數(shù)學有什么用、學了數(shù)學不知怎么用”的困惑。
            在整個教學過程中,貫穿以學生為主體,通過案例分析引導學生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學生對所掌握的知識進行重組再現(xiàn)和優(yōu)化構建,讓學生在學習和問題的解決中學會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補不足,進一步學習相關知識和方法,再進行實踐,從而不斷增強自身的綜合應用能力和素質(zhì)。
            隨著醫(yī)學院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應科學技術迅速發(fā)展的創(chuàng)新型醫(yī)學人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學建模課程的開設對培養(yǎng)大學生實踐創(chuàng)新能力的幾點做法。教學實踐證明:數(shù)學建模課充分鍛煉了學生的各項能力,是提高醫(yī)學專業(yè)學生綜合應用素質(zhì)行之有效的方法。
            初中數(shù)學建模論文篇八
            大學數(shù)學具有高度抽象性和概括性等特點,知識本身難度大再加上學時少、內(nèi)容多等教學現(xiàn)狀常常造成學生的學習積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數(shù)學建模思想能激發(fā)學生的學習興趣,培養(yǎng)學生應用數(shù)學的意識,提高其解決實際問題的能力。數(shù)學建?;顒訛閷W生構建了一個由數(shù)學知識通向?qū)嶋H問題的橋梁,是學生的數(shù)學知識和應用能力共同提高的最佳結(jié)合方式。因此在大學數(shù)學教育中應加強數(shù)學建模教育和活動,讓學生積極主動學習建模思想,認真體驗和感知建模過程,以此啟迪創(chuàng)新意識和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
            數(shù)學建模即抓住問題的本質(zhì),抽取影響研究對象的主因素,將其轉(zhuǎn)化為數(shù)學問題,利用數(shù)學思維、數(shù)學邏輯進行分析,借助于數(shù)學方法及相關工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數(shù)學建模的全過程。一般來說",數(shù)學建模"包含五個階段。
            1.準備階段。
            主要分析問題背景,已知條件,建模目的等問題。
            2.假設階段。
            做出科學合理的假設,既能簡化問題,又能抓住問題的本質(zhì)。
            3.建立階段。
            從眾多影響研究對象的因素中適當?shù)厝∩幔槿≈饕蛩赜枰钥紤],建立能刻畫實際問題本質(zhì)的數(shù)學模型。
            4.求解階段。
            對已建立的數(shù)學模型,運用數(shù)學方法、數(shù)學軟件及相關的工具進行求解。
            5.驗證階段。
            用實際數(shù)據(jù)檢驗模型,如果偏差較大,就要分析假設中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實。如果建立的模型經(jīng)得起實踐的檢驗,那么此模型就是符合實際規(guī)律的,能解決實際問題或有效預測未來的,這樣的建模就是成功的,得到的模型必被推廣應用。
            二、加強數(shù)學建模教育的作用和意義。
            (一)加強數(shù)學建模教育有助于激發(fā)學生學習數(shù)學的興趣,提高數(shù)學修養(yǎng)和素質(zhì)。
            數(shù)學建模教育強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學問題,進而利用數(shù)學及其有關的工具解決這些問題,因此在大學數(shù)學的教學活動中融入數(shù)學建模思想,鼓勵學生參與數(shù)學建模實踐活動,不但可以使學生學以致用,做到理論聯(lián)系實際,而且還會使他們感受到數(shù)學的生機與活力,激發(fā)求知的興趣和探索的欲望,變被動學習為主動參與其效率就會大為改善。數(shù)學修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
            (二)加強數(shù)學建模教育有助于提高學生的分析解決問題能力、綜合應用能力。
            數(shù)學建模問題來源于社會生活的眾多領域,在建模過程中,學生首先需要閱讀相關的文獻資料,然后應用數(shù)學思維、數(shù)學邏輯及相關知識對實際問題進行深入剖析研究并經(jīng)過一系列復雜計算,得出反映實際問題的最佳數(shù)學模型及模型最優(yōu)解。因此通過數(shù)學建?;顒訉W生的視野將會得以拓寬,應用意識、解決復雜問題的能力也會得到增強和提高。
            (三)加強數(shù)學建模教育有助于培養(yǎng)學生的創(chuàng)造性思維和創(chuàng)新能力。
            所謂創(chuàng)造力是指"對已積累的知識和經(jīng)驗進行科學地加工和創(chuàng)造,產(chǎn)生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構成".現(xiàn)今教育界認為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關鍵,數(shù)學建模活動的各個環(huán)節(jié)無不充滿了創(chuàng)造性思維的挑戰(zhàn)。
            很多不同的實際問題,其數(shù)學模型可以是相同或相似的,這就要求學生在建模時觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對一個具體的建模問題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學問題,是完成建模過程的關鍵所在。同時建模題材有較大的靈活性,沒有統(tǒng)一的標準答案,因此數(shù)學建模過程是培養(yǎng)學生創(chuàng)造性思維,提高創(chuàng)新能力的過程.
            (四)加強數(shù)學建模教育有助于提高學生科技論文的撰寫能力。
            數(shù)學建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關鍵環(huán)節(jié)的處理在論文中清晰地表述出來,對本科生來說是一個挑戰(zhàn)。經(jīng)歷數(shù)學建模全過程的磨練,特別是數(shù)模論文的撰寫,學生的文字語言、數(shù)學表述能力及論文的撰寫能力無疑會得到前所未有的提高。
            (五)加強數(shù)學建模教育有助于增強學生的團結(jié)合作精神并提高協(xié)調(diào)組織能力建模問題通常較復雜,涉及的知識面也很廣,因此數(shù)學建模實踐活動一般效仿正規(guī)競賽的規(guī)則,三人為一隊在三天內(nèi)以論文形式完成建模題目。要較好地完成任務,離不開良好的組織與管理、分工與協(xié)作.
            三、開展數(shù)學建模教育及活動的具體途徑和有效方法。
            即在課堂教學中,教師以具體的案例作為主要的教學內(nèi)容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學法的關鍵在于把握兩個重要環(huán)節(jié):
            案例的選取和課堂教學的組織。
            教學案例一定要精心選取,才能達到預期的教學效果。其選取一般要遵循以下幾點。
            1.代表性:案例的選取要具有科學性,能拓寬學生的知識面,突出數(shù)學建?;顒又卦谂囵B(yǎng)興趣提高能力等特點。
            2.原始性:來自媒體的信息,企事業(yè)單位的報告,現(xiàn)實生活和各學科中的問題等等,都是數(shù)學建模問題原始資料的重要來源。
            3.創(chuàng)新性:案例應注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學生的創(chuàng)造性思維,培養(yǎng)學生的創(chuàng)新精神和提高創(chuàng)造能力。
            案例教學的課堂組織,一部分是教師講授,從實際問題出發(fā),講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設和簡化建立優(yōu)化的數(shù)學模型。還要強調(diào)如何用求解結(jié)果去解釋實際現(xiàn)象即檢驗模型。另一部分是課堂討論,讓學生自由發(fā)言各抒己見并提出新的模型,簡介關鍵環(huán)節(jié)的處理。最后教師做出點評,提供一些改進的方向,讓學生自己課外獨立探索和鉆研,這樣既突出了教學重點,又給學生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學生的課堂學習興趣和積極性,使傳授知識變?yōu)閷W習知識、應用知識,真正地達到提高素質(zhì)和培養(yǎng)能力的教學目的.
            (二)開展數(shù)模競賽的專題培訓指導工作。
            建立數(shù)學建模競賽指導團隊,分專題實行教師負責制。每位教師根據(jù)自己的專長,負責講授某一方面的數(shù)學建模知識與技巧,并選取相應地建模案例進行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計回歸模型及數(shù)學軟件的使用等。學生根據(jù)自己的薄弱點,選擇適合的專題培訓班進行學習,以彌補自己的不足。這種針對性的數(shù)模教學,會極大地提高教學效率。
            以現(xiàn)代網(wǎng)絡技術為依托,建立數(shù)學建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學實驗,教學錄像,網(wǎng)上答疑等;還可以增加一些有關欄目,如歷年國內(nèi)外數(shù)模競賽介紹,校內(nèi)競賽,專家點評,獲獎心得交流;同時提供數(shù)模學習資源下載如講義,背景材料,歷年國內(nèi)外競賽題,優(yōu)秀論文等。以此為學生提供良好的自主學習網(wǎng)絡平臺,實現(xiàn)課堂教學與網(wǎng)絡教學的有機結(jié)合,達到有效地提高學生數(shù)學建模綜合應用能力的目的。
            完全模擬全國大學生數(shù)模競賽的形式規(guī)則:定時公布賽題,三人一組,只能隊內(nèi)討論,按時提交論文,之后指導教師、參賽同學集中討論,進一步完善。筆者負責數(shù)學建模競賽培訓近20年,多年的實踐證明,每進行一次這樣的訓練,學生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓練之后,學生的建模水平更是突飛猛進,效果甚佳。
            如20xx年我指導的隊榮獲全國高教社杯大學生數(shù)學建模競賽的最高獎---高教社杯獎,這是此賽設置的唯一一個名額,也是當年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學生數(shù)學建模競賽,43隊獲獎,獲獎比例達75%,創(chuàng)歷年之最。
            (五)鼓勵學生積極參加全國大學生數(shù)學建模競賽、國際數(shù)學建模競賽。
            全國大學生數(shù)學建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎性學科競賽,國際大學生數(shù)學建模競賽是世界上影響范圍最大的高水平大學生學術賽事。參加數(shù)學建模大賽可以激勵學生學習數(shù)學的積極性,提高運用數(shù)學及相關工具分析問題解決問題的綜合能力,開拓知識面,培養(yǎng)創(chuàng)造精神及合作意識。
            四、結(jié)束語。
            數(shù)學建模本身是一個創(chuàng)造性的思維過程,它是對數(shù)學知識的綜合應用,具有較強的創(chuàng)新性,而高校數(shù)學教學改革的目的之一是要著力培養(yǎng)學生的創(chuàng)造性思維,提高學生的創(chuàng)新能力。因此應將數(shù)學建模思想融入教學活動中,通過不斷的數(shù)學建模教育和實踐培養(yǎng)學生的創(chuàng)新能力和應用能力從而提高學生的基本素質(zhì)以適應社會發(fā)展的要求。
            初中數(shù)學建模論文篇九
            為了培養(yǎng)小學生良好的數(shù)學學習興趣,激發(fā)他們的數(shù)學潛能,教師需要采取必要的措施注重數(shù)學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數(shù)學建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對小學生數(shù)學建模思想的培養(yǎng)策略進行初步的探討。
            作為小學數(shù)學教學中的重要組成部分,數(shù)學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數(shù)學問題的處理效率,保持數(shù)學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數(shù)學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數(shù)學建模思想的有效培養(yǎng),促使小學生能夠在數(shù)學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續(xù)教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發(fā)出學生們在數(shù)學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數(shù)學建模能力。
            通過對小學階段各種數(shù)學實踐教學活動實際概況的深入分析,可知構建良好的數(shù)學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數(shù)學建模教學活動的積極性。因此,為了使小學生數(shù)學建模思想培養(yǎng)能夠達到預期的效果,教師需要結(jié)合實際的教學內(nèi)容,建立必要的數(shù)學參考模型,提升學生對數(shù)學建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學模型的構建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數(shù)學建模思想的有效培養(yǎng)。
            加強小學生數(shù)學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數(shù)學思想的靈活運用,增強相關模型構建的可靠性,促使學生在長期的數(shù)學學習中能夠不斷提高自身的數(shù)學能力,運用各種數(shù)學知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應注重小學生數(shù)學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數(shù)學建模教學水平。
            總之,加強小學生數(shù)學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學生數(shù)學能力的有效鍛煉,確保相關的教學計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當前小學數(shù)學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數(shù)學建模思想培養(yǎng)策略,有利于滿足學生數(shù)學建模學習中的多樣化需求,為相關教學目標的順利實現(xiàn)提供可靠的保障。
            [1]童小艷.小學數(shù)學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).
            [2]白寧.先學而后教——小學生數(shù)學建模思想培養(yǎng)的捷徑[j].數(shù)學學習與研究,20xx(16).
            初中數(shù)學建模論文篇十
            就當前高等數(shù)學的教育教學而言,高數(shù)老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。
            (二)教學方法傳統(tǒng)化。
            教學方法的優(yōu)秀與否在學生學習的過程中發(fā)揮著重要的作用,也直接影響著學生的學習成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規(guī)的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。
            二、建模在高等數(shù)學教學中的作用。
            對學生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發(fā)學生主動學習的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學教學中引入數(shù)學建模還能培養(yǎng)學生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學生學習的知識、實際應用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設了數(shù)學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質(zhì)進行培養(yǎng),提升學生的創(chuàng)新精神以及創(chuàng)造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數(shù)學。
            高等數(shù)學作為工科類學生的一門基礎課,由于其必修課的性質(zhì),把數(shù)學建模引入高等數(shù)學課堂中具有較廣的影響力。把數(shù)學建模思想滲入高等數(shù)學教學中,不僅能讓數(shù)學知識的本來面貌得以還原,更讓學生在日常中應用數(shù)學知識的能力得到很好的培養(yǎng)。數(shù)學建模要求學生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學生的表達能力。在實際的學習數(shù)學建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學方法,最終得出解決問題的最好方法。因此,在高等數(shù)學教學中引入數(shù)學建模思想具有重要的意義。
            三、將建模思想應用在高等數(shù)學教學中的具體措施。
            (一)在公式中使用建模思想。
            在高數(shù)教材中占有重要位置的是公式,也是要求學生必須掌握的內(nèi)容之一。為了讓教師的'教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結(jié)合實例開展教學。
            (二)講解習題的時候使用數(shù)學模型的方式。
            課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數(shù)學建模。完成每章學習的內(nèi)容之后,充分的利用時間為學生解疑答惑,以學生所學的專業(yè)情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。
            (三)組織學生積極參加數(shù)學建模競賽。
            一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數(shù)學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。
            四、結(jié)束語。
            高等數(shù)學主要對學生從理論學習走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學中應用建模思想,促使學生對高數(shù)知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質(zhì)量。
            參考文獻。
            [1]謝鳳艷,楊永艷。高等數(shù)學教學中融入數(shù)學建模思想[j]。齊齊哈爾師范高等??茖W校學報,20xx(02):119—120。
            [2]李薇。在高等數(shù)學教學中融入數(shù)學建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
            [3]楊四香。淺析高等數(shù)學教學中數(shù)學建模思想的滲透[j]。長春教育學院學報,20xx(30):89,95。
            [4]劉合財。在高等數(shù)學教學中融入數(shù)學建模思想[j]。貴陽學院學報,20xx(03):63—65。
            初中數(shù)學建模論文篇十一
            將建模的思想有效的滲透到應用數(shù)學的教學過程中去,是我們當前開展應用數(shù)學教育的未來發(fā)展趨勢,怎樣才能夠使應用數(shù)學更好的服務社會經(jīng)濟的發(fā)展,充分發(fā)揮數(shù)學工具在實際問題解決中的重要作用,是我們當前進行應用數(shù)學研究的核心問題,而建模思想在應用數(shù)學中的運用則能夠很好的解決這一問題。
            數(shù)學教育至少應該涵蓋純粹數(shù)學和應用數(shù)學兩方面內(nèi)容,目前我國數(shù)學教育內(nèi)容以純粹數(shù)學為主,極少包括應用數(shù)學內(nèi)容,這割裂了數(shù)學與外部世界的血肉聯(lián)系,使數(shù)學變成了多數(shù)學生眼中的抽象、枯燥、無用的思維游戲,而厭學成風。因此,大家對現(xiàn)行的數(shù)學教育不滿意,期望改革,期望找到方法激發(fā)學生的學習興趣、培養(yǎng)學生利用數(shù)學解決各種實際問題的能力。在不改變傳統(tǒng)的教學體系的前提下,有機地融入應用數(shù)學內(nèi)容,應是解決現(xiàn)存問題的有效方法。事實上,數(shù)學發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學教學中理應突出數(shù)學思想的來龍去脈,揭示數(shù)學概念和公式的實際來源和應用,恢復并暢通數(shù)學與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學科交叉發(fā)展,使得應用數(shù)學逐漸發(fā)展成擁有眾多發(fā)展方向的學科,應用數(shù)學所運用的領域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學科以及高新技術領域發(fā)展,應用數(shù)學目前已經(jīng)滲透到社會經(jīng)濟發(fā)展的各個行業(yè),在這一大背景下,應用數(shù)學的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應用數(shù)學發(fā)展的新機遇。
            數(shù)學這一學科不僅具有概念抽象性、邏輯嚴密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應用廣泛性,伴隨著計算機網(wǎng)絡在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應用數(shù)學的廣泛運用帶來了前所未有的機遇。應用數(shù)學在這一背景下也已經(jīng)成為當前高科技水平的一個重要內(nèi)容,應用數(shù)學建模思想的引入與使用能夠極大的提升自身應用數(shù)學的綜合水平以及思維意識,開展應用數(shù)學建模不僅能夠有效的提升自己的學習熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。
            3.1充分重視建模的橋梁作用。
            建模是實現(xiàn)數(shù)學知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉(zhuǎn)化的過程中,應當深入實際進行調(diào)查、收集相關數(shù)據(jù)信息,認真分析對象的獨特特征及規(guī)律,構建起反映實際問題的數(shù)學關系,運用數(shù)學理論進行問題的解決。這正是各個學科之間進行有效聯(lián)系的結(jié)合點,通過引進建模思想,不僅能夠使我們有效掌握數(shù)學理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應當充分重視建模的作用。
            3.2將建模的方法以及相關理論引入到數(shù)學教學中來。
            我國當前數(shù)學課程教學體系的現(xiàn)狀包括高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當前應用數(shù)學的發(fā)展,滿足這一學科的建設以及其他學科對這一學科的需要,教師在教學中應當將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學生進行討論并構建數(shù)學模型。學生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調(diào)動學生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎的數(shù)學建模教學特色。
            3.3積極參加數(shù)學模型課等相關課程與活動。
            數(shù)學應用綜合性的實驗,要求我們掌握數(shù)學知識的綜合性運用,做法是老師先講一些數(shù)學建模的一些應用實例,然后學生上機實踐,強調(diào)學生的動手實踐。數(shù)學實驗課應該說是數(shù)學模型的輔助課程,主要培養(yǎng)我們的數(shù)學思維和創(chuàng)新能力,還應當組織一些建模比賽,不斷提升數(shù)學建模的綜合水平。
            上述幾個部分的論述與分析,我們看到,在應用數(shù)學中加強建模思想具有非常重要的意義,不僅需要在課堂學習過程中認真掌握數(shù)學理論知識,還應當深入了解數(shù)學理論在實際生活中的可用之處,盡可能的使應用數(shù)學與自身所學專業(yè)相聯(lián)系,這樣,才能夠使應用數(shù)學的能力與水平在日常實踐過程中得到提升。就當前高等數(shù)學的現(xiàn)狀來看,加強創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
            [1]余荷香,趙益民.數(shù)學建模在高職數(shù)學教學中的應用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).
            [2]關淮海.培養(yǎng)數(shù)學建模思想與方法高職高專數(shù)學教改之趨勢[j].職大學報,20xx(02).
            [3]李傳欣.數(shù)學建模在工程類專業(yè)數(shù)學教學中的應用研究[j].中國科教創(chuàng)新導刊,20xx(35).
            [4]李秀林.高等數(shù)學教學中滲透數(shù)學建模的探討[j].吉林省教育學院學報(學科版),20xx(08).
            [5]吳健輝,黃志堅,汪龍虎.對數(shù)學建模思想融入高等數(shù)學教.學中的探討[j].景德鎮(zhèn)高專學報,20xx(04).
            初中數(shù)學建模論文篇十二
            在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學質(zhì)量,新時期對大學數(shù)學教學提出了更高的要求。大學數(shù)學作為課堂教學的主體,教師在傳授知識的同時,要注重學生學習能力和解決問題能力的培養(yǎng)。
            數(shù)學知識來源于生活,應用于生活,如微積分作為高等數(shù)學知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學數(shù)學教學中培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學生利用所學知識來解決實際問題。一般情況下,教師著重介紹相關數(shù)學概念和原理,推導常用公式,促使學生能夠記住公式,學會公式的應用過程,逐漸掌握解題技巧。
            因此,如何能夠在傳授知識的同時,促使學生掌握數(shù)學學習方法,將所學知識應用到實踐中來解決數(shù)學問題是一個首要問題。從大量教學實踐中可以了解到,在大學數(shù)學教學中滲透數(shù)學建模思想十分重要,有助于激發(fā)學生的學習興趣,促使學生積極投入其中,切實提升學生的數(shù)學專業(yè)水平。
            在大學數(shù)學教學中滲透數(shù)學建模思想,應該結(jié)合實際情況,深入挖掘數(shù)學知識。在教學中,教師應該充分發(fā)揮自身引導作用,聯(lián)系學生數(shù)學知識實際學習情況,有針對性地整合數(shù)學知識,了解相關數(shù)學內(nèi)容,這樣不僅可以豐富教學內(nèi)容,還可以為課堂教學注入新的活力,有效激發(fā)學生的學習興趣,提升學習成效。具體表現(xiàn)在以下方面:
            (一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
            閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學數(shù)學教學中的重要組成部分,由于知識理論性較強,知識較為抽象,學習難度較大,在講解完相關理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學模型,提問學生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學生可以了解到這一問題同所學知識相關聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學生整合所學知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學模型,學生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學習成效,為后續(xù)知識學習打下了堅實的基礎。
            (二)定積分。
            定積分是高等數(shù)學教學中的重要組成部分,在解決幾何問題時均有所應用,并且被廣泛應用在實際生活中。如,在一道全國大學生數(shù)學建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計劃和經(jīng)費如何堆放煤矸石?題目中的關鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內(nèi)容涉及定積分中的變力做功知識點。學生掌握這些內(nèi)容后就可以建立數(shù)學模型,更加高效地了解如何根據(jù)預期開采量來堆放煤矸石。通過數(shù)學模型,學生也可以了解到定積分內(nèi)容同實際生活之間的聯(lián)系,學習積極性就會大大提升。
            (三)最值問題。
            在高等數(shù)學中,最值問題占比比較大,同時在實際生活中應用較為普遍,導數(shù)知識可以解決實際生活中的最值問題,這就需要提高對導數(shù)知識實際應用的重視程度。教師在為學生講解完導數(shù)的相關概念知識后,通過建立關于天空的采空模型,提問學生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學的導數(shù)知識來計算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實際學習的問題,加深對知識的理解和記憶,提升數(shù)學知識學習成效。
            (四)微分方程。
            微分方程知識同實際生活之間息息相關,建立微分方程可以有效解決實際生活中的問題。這就需要學生在了解微分方程知識的基礎上,進一步建立數(shù)學模型來解決問題。如,在當前社會進步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關注和重視。通過問題精簡化和假設,可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
            (五)矩陣。
            在高等數(shù)學教學中,矩陣的概念較為抽象和復雜,在講解問題之前,應該根據(jù)知識點來創(chuàng)設教學情境,輔助教學活動。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學習成效,同時幫助學生深入理解和記憶,鍛煉學生的數(shù)學解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學生的數(shù)學建模意識。
            綜上所述,在大學數(shù)學教學中,可以通過數(shù)學建模思想來引導學生養(yǎng)成良好的自主學習能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學生解決問題的能力,將所學知識靈活運用到實際生活中,養(yǎng)成良好的數(shù)學素養(yǎng)。
            初中數(shù)學建模論文篇十三
            數(shù)學,源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關系與空間結(jié)構發(fā)展而成的.近年來,信息技術飛速發(fā)展,推動了應用數(shù)學的發(fā)展,使數(shù)學日益滲透到社會各個領域.中考實際應用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學課程標準指出,教師在教學中應引導學生從實際背景中理清數(shù)學關系、把握變化規(guī)律,能從實際問題中建立數(shù)學模型.教師要為學生創(chuàng)造用數(shù)學的氛圍,引導學生參與自主學習、自主探索、自主提問、自主解決,體驗做數(shù)學的過程,從而提高解決實際問題的能力.
            一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學離不開學生“做”數(shù)學的過程,因而教師在教學中要留有讓學生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學生缺乏信任,由“引導者”變?yōu)椤肮噍斦摺保瑢⒔忸}過程直接教給學生,影響了學生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學,需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學,激發(fā)學生的興趣,啟發(fā)學生進行思考,誘發(fā)學生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認為建模就是解應用題,或重生活味輕數(shù)學味,或使討論活動流于形式.三是學生的抽象能力較差.在建模教學中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學生經(jīng)歷閱讀提取有用的信息,但是部分學生感悟能力差,不能明析已知與未知之間的關系,影響了學生成功建模.
            1.自主探索原則.
            學生長期處于師講、生聽的教學模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學中,教師要為學生創(chuàng)設輕松愉悅的探究氛圍,讓學生手腦并用,在探索、交流、操作中提高解決問題的`能力.
            2.因材施教原則.
            教師要著眼于學生原有的認知結(jié)構,要貼近學生的最近發(fā)展區(qū),引導他們從舊知的角度思考,找出問題的解決方法。
            3.可接受性原則.
            數(shù)學建模內(nèi)容的設計,要符合學生的年齡特點和認知能力,能讓學生理解所探究的內(nèi)容.若設計的問題不切實際,往往會扼殺學生的興趣,教師要密切聯(lián)系教學內(nèi)容、生活實際,讓學生有能力解決問題.
            初中數(shù)學建模論文篇十四
            眾所周知,高等數(shù)學是所有自然學科的基礎,一個大學生要想在以后的工作、學習中大展宏圖,那么就一定少不了堅實的高等數(shù)學基礎。如何解決大學生在學習高等數(shù)學時碰到的問題?如何調(diào)動大學生學習高等數(shù)學的積極性?讓學生們了解高等數(shù)學的用途,真正愿意靜下心來好好學習高等數(shù)學,努力為以后的發(fā)展打好數(shù)學基礎。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學方法和基于pbl的教學方法等。筆者從所在學校的學生實際學習情況出發(fā),根據(jù)幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數(shù)學建模的思想調(diào)動大學生學習高等數(shù)學的積極性。該方法在筆者所教授的班級中已經(jīng)實際應用過幾屆,學生普遍反映效果較好,任課老師也認為該方法確實能極大地調(diào)動學生的學習積極性。
            提到高等數(shù)學,學生們的第一反應往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導可積一個涵蓋另一個[1]。和高中數(shù)學相比,記憶的負擔輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學生來說,每一次的高數(shù)課,都是一次大腦的思維訓練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時間可以達到,長久下去學生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應對。怪學生嗎?誠然學生有責任,但任課老師也該負很大的責任。作為高等數(shù)學的老師我們經(jīng)常要面對學生提的這些問題:(1)我學的專業(yè)和高等數(shù)學相差甚遠,有可能這一輩子都不會用到高等數(shù)學的知識,那我學高等數(shù)學的目的何在?(2)老師您天天鼓吹高等數(shù)學的強大功能和廣泛用途,但是通過一學期的學習,我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學可以用在何處?這些問題不及時解決,時間長了一定會影響到大學生對高等數(shù)學的學習積極性,甚至有可能會產(chǎn)生厭學的情緒和氛圍。有些極端的學生,期末考試之后,一聽到自己高等數(shù)學考過了,立馬將高等數(shù)學的課本給撕了,可想而知高等數(shù)學對其造成的壓力有多大[2]。如何解決大學生在學習高等數(shù)學時碰到的問題?如何調(diào)動大學生學習高等數(shù)學的積極性?讓學生們了解高等數(shù)學的用途,真正愿意靜下心來好好學習高等數(shù)學,努力地為以后的發(fā)展打好數(shù)學基礎。筆者從所在學校的學生實際學習情況出發(fā),根據(jù)幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數(shù)學建模的思想調(diào)動大學生學習高等數(shù)學的積極性。
            一、以實際問題反推解決問題時我們需要的高等數(shù)學知識。
            有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進的報紙?zhí)?,那么會賣不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進的報紙份數(shù),以獲得最大的收入[3]。
            現(xiàn)在我們來反推該問題涉及到的高等數(shù)學的知識:首先,通過分析題目可知,問題解決的關鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學中的定積分[4]。
            二、利用高等數(shù)學的解決實際問題。
            f(r)[4]。如果求出了f(r),那么。
            g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。
            現(xiàn)在我們來求f(r),假定報童已經(jīng)通過自己的經(jīng)驗和其他渠道掌握了一年(365天)中每天報紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報紙日需求量r的概率f(r)為:
            f(r)=,r=(0,1,2,3,…)。
            其中k表示為賣出r份的天數(shù)。
            g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。
            通過上面的分析,可知實際問題歸結(jié)為,在p(r)和a,b,c已知時,求n使得g(n)最大。
            =-(b-c)p(r)dr+(a-b)p(r)dr.(3)。
            令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。
            在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數(shù),使報童每天獲得最大的收入。
            三、利用現(xiàn)實問題,讓學生學會思考,給他們提供創(chuàng)造成就感的機會。
            通過上面碰到的實際問題,可以很容易地說服同學們靜下心來好好學習高等數(shù)學。因為通過實際問題的求解,學生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數(shù)學知識的儲備;學生們也大概領略到了高等數(shù)學的用途與功能。這樣的教學方法簡單、直接,勝過老師課堂上反復的嘮叨與強調(diào)。有了這樣的一些實際問題,老師們就可以大膽地將數(shù)學建模思想引入高等數(shù)學的教學當中,讓學生們在解決實際問題中學會思考,掌握知識,提高能力。
            通過訓練后,碰到實際問題,同學們會自然的想到我們的教學方法:(1)這些實際問題涉及到的高等數(shù)學知識?那些自己掌握了,那些還沒有弄明白,學要加強學習。(2)知識點找到后,如何建立起數(shù)學與實際問題求解之間的關系?也即如何建立數(shù)學模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數(shù)學的知識去解決?通過思考、分析、解決這些問題,學生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學習,自然而然其學習高等數(shù)學的積極性也會大大提高了。
            初中數(shù)學建模論文篇十五
            2.1、建立引導機制,激發(fā)學習動力。
            2.2、建立轉(zhuǎn)化機制,促進知識向能力的轉(zhuǎn)化。
            2.3、建立協(xié)作機制,增強團隊意識。
            高校學生在平時的學習過程中,絕大多數(shù)情況下,基本上都是獨自學習,與他人合作研究和解決問題機會很少.而在各種層次級別的數(shù)學建模競賽中,參賽學生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經(jīng)常是來自不同專業(yè),知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協(xié)調(diào),合理分工,團結(jié)協(xié)作共同完成整個比賽.為了比賽,在發(fā)生矛盾時,要學會忍耐和妥協(xié),而不能意氣用事.在整個比賽期間,求同存異,取長補短,優(yōu)勢互補,最終合作完成任務.這個過程,無形中就培養(yǎng)了學生的合作意識和團隊精神,使學生親身感受到現(xiàn)代社會與人合作是大多數(shù)人成功的必要選擇.依托數(shù)學建模競賽,培養(yǎng)創(chuàng)新型人才的團隊協(xié)作意識,建立培養(yǎng)人才的.合作交流機制,這是適應社會和時代需要的人才培養(yǎng)過程中的重要環(huán)節(jié)之一。
            2.4、建立溝通表達機制,提高學生的語言及文字表達能力。
            2.5、建立問題導向機制,培養(yǎng)學生主動式學習的自主學習能力。
            3.1、促進了學生全面發(fā)展。
            3.2、提高了學生的就業(yè)質(zhì)量。
            初中數(shù)學建模論文篇十六
            隨著社會的不斷發(fā)展和科學技術的進步,數(shù)學在現(xiàn)實生活中的應用越來越廣泛,尤其是計算機技術的發(fā)展及廣泛應用,使數(shù)學建模思想在解決社會各個領域中的實際問題的應用越來越深入。本文筆者簡要談談數(shù)學建模思想融入大學數(shù)學類課程的意義和方法。
            所謂數(shù)學建模就是指構造數(shù)學模型的過程,也就是說用公式、符號和圖表等數(shù)學語言來刻畫和描述一個實際問題,再經(jīng)過計算、迭代等數(shù)學處理得到定量的結(jié)果,從而供人們分析、預報、決策與控制。那么數(shù)學模型就是利用數(shù)學術語對一部分現(xiàn)實世界的描述。數(shù)學建模思想是指理論聯(lián)系實際,將實際的事物抽象成數(shù)學模型,然后利用所學的理論來解決問題的一種思想。
            在新形勢下,傳統(tǒng)的數(shù)學教學方法已經(jīng)無法適應現(xiàn)在大學數(shù)學教育改革的需求,數(shù)學建模思想與大學數(shù)學類課程教育融合成為目前高等院校數(shù)學教學改革的突破口。
            (1)數(shù)學知識在各個領域的應用越來越廣泛。如今數(shù)學知識在各個領域的應用越來越廣泛,尤其是在經(jīng)濟學中的應用最為顯著。自從1969年創(chuàng)設諾貝爾經(jīng)濟學獎以來,就有不少理論成果來自利用數(shù)學工具分析經(jīng)濟問題。事實上,從1969年到20xx年這35年中,一共產(chǎn)生了53位獲獎者,其中擁有數(shù)學學位的共有19人,所占比例為35.8%;其中擁有理工學位的有9人,所占比例為17%;二者共計占52.8%;其中共有29位諾貝爾經(jīng)濟學獎的獲得者是以數(shù)學方法為主要的研究方法,約占總?cè)藬?shù)的63.1%。然而幾乎所有的諾貝爾經(jīng)濟學獎獲得者都運用了數(shù)學方法來研究經(jīng)濟學理論。除了在經(jīng)濟領域,數(shù)學建模思想也廣泛應用于生物醫(yī)學,包括超聲波、電磁診斷等方面。同時數(shù)學建模還將數(shù)學與生物學融合進了基因科學,例如基因表達的定型、基因組測序、基因分類等等,在生物學領域需要建立大規(guī)模的模擬以及復雜的數(shù)學模型。可見數(shù)學建模思想的應用是非常廣泛的,并對其他領域的發(fā)展起著重要的推動作用。
            (2)有利于激發(fā)學生的學習熱情,豐富大學數(shù)學課程。一般的數(shù)學課,通常只是重視理論知識的講解和傳授,對知識點的推理和思想方法的分析較少。而且多數(shù)學生為了應付考試,也只是以“類型題”的方式去復習知識點。這樣的方式雖然能夠讓學生掌握一部分數(shù)學知識,可是卻不能提高學生的數(shù)學素質(zhì),不能提高學生對大學數(shù)學的學習興趣。而數(shù)學建模思想運用數(shù)學知識來解決生活中的實際問題,這樣就使數(shù)學活了起來,而不是死的理論知識。運用數(shù)學建模思想能夠讓學生在數(shù)學中感悟生活,在生活中體會數(shù)學的價值,更容易吸引學生的學習興趣。而興趣是學習最有效的動力,讓學生主動參與學習而非被動學習,取得的教學效果會更好。
            (3)是加強數(shù)學教學改革,適應時代發(fā)展的需要。在大學數(shù)學教學活動中,許多學生常常陷入這樣的困惑之中:花費了大量的精力,做了很多習題,但是卻感受不到數(shù)學的作用和價值。而教師在教學中也總是告訴學生數(shù)學是一門很有用的課程,但是卻舉不出現(xiàn)實的例子。并且傳統(tǒng)的教學方式也只是教會學生掌握簡單的理論知識,并不能提高學生的數(shù)學素養(yǎng)和數(shù)學意識。而將數(shù)學建模思想融入到大學的數(shù)學類課程之中就能很好地解決這些問題。因為將數(shù)學建模思想運用到數(shù)學類課程中,就能夠讓學生在獨立思考和探索中感受到數(shù)學在現(xiàn)實生活中的實用價值,提高學生運用數(shù)學的眼光去觀察、分析以及表示各種事物的空間關系、數(shù)量關系和數(shù)學信息的能力,提高學生的創(chuàng)造能力和創(chuàng)新意識。
            (1)教師在教學過程中較少滲入數(shù)學建模思想。目前在高校數(shù)學教學中數(shù)學建模的思想應用得仍然較少,重視程度不夠。不少高校的教師在開展大學數(shù)學類課程時,仍然只是停留在數(shù)學知識的教學方面,并沒有對學生進行研究性學習探索。據(jù)調(diào)查,大多數(shù)高校教師對日常的教學工作能夠認真完成規(guī)定的教學任務,但能夠真正創(chuàng)造性地把數(shù)學建模思想融入到數(shù)學教學任務中的教師較少。大多數(shù)高校數(shù)學老師都意識到探索式的數(shù)學建模教學很重要,但真正將數(shù)學建模思想與數(shù)學教學融合的嘗試和探索卻很少??梢姸鄶?shù)高校教師雖然明白數(shù)學建模思想的重要性,但是由于缺乏足夠的數(shù)學建模教學的相關知識及經(jīng)驗,在實際教學中數(shù)學建模思想仍未得到充分的運用。
            (2)開設的有關數(shù)學建模的課程和活動較少。雖然數(shù)學建模思想得到了越來越廣泛的應用,但是在高校中實際開設的有關數(shù)學建模的課程并不多,尤其是應用數(shù)學、數(shù)學實驗以及計算機應用等一些需要滲入數(shù)學建模思想的課程在實際的教學過程中并沒有創(chuàng)造性地運用數(shù)學建模思想。另一方面,校內(nèi)自主開展的有關數(shù)學建模競賽和活動并不多,宣傳力度也不夠,無法讓更多的學生了解數(shù)學建模的意義和價值,更無法參與到數(shù)學建?;顒又腥ァ?BR>    (3)學生對數(shù)學的態(tài)度和觀念還未改變,對數(shù)學建模缺乏深入的了解。大學數(shù)學是一門較為抽象的學科,其概念、定理和性質(zhì)都不容易掌握,由于其具有一定的難度,所以不少學生對大學數(shù)學類課程以及數(shù)學建模沒有興趣。并且這些學生在初中和高中階段也學習數(shù)學,但是不少學生是為了應付考試,并沒有見識到數(shù)學的應用性,覺得數(shù)學是一門純理論的課程,沒有實用價值。同時很多學生對數(shù)學建模思想的運用并不夠了解,不知道如何將數(shù)學知識和數(shù)學方法應用到實際的生活中去,覺得數(shù)學沒有用,也沒有深入學習的意義。
            (1)提高課堂教學質(zhì)量,創(chuàng)造性地運用數(shù)學建模思想。大學的數(shù)學類課程主要有“線性代數(shù)”、“高等數(shù)學”、“運籌學”、“數(shù)學建?!薄ⅰ案怕收撆c數(shù)理統(tǒng)計”等,這些課程的核心部分都跟高等數(shù)學有關,所以要注重提高數(shù)學類課程的教學質(zhì)量關鍵就在于高等數(shù)學,而要提高高等數(shù)學的教學質(zhì)量就必須在教學過程中創(chuàng)造性地應用數(shù)學建模思想。對于主修數(shù)學的學生,要加強對計算機軟件和語言的學習,系統(tǒng)性地對數(shù)學原理進行剖解和分析,合理運用數(shù)學知識和數(shù)學方法解決社會實際問題。在教學中多引導、啟發(fā)學生利用對生活問題和科學問題的深入研究,主動結(jié)合自己的課程理論知識和數(shù)學建模,使數(shù)學建模思想融入到學生的整個學習過程中去。對于非數(shù)學領域的問題,要啟發(fā)學生運用計算機軟件建模,從而解決不同領域中的數(shù)學建模問題。
            (2)多開設跟數(shù)學建模有關的數(shù)學類課程。例如除了開設跟數(shù)學建模有關的必修課,還可以開設一些跟數(shù)學建模有關的選修課,為其他專業(yè)的學生提供接觸和了解數(shù)學建模思想的機會,為學生拓展知識領域,為其解決該領域的問題提供有效的方法。例如,經(jīng)濟學有關專業(yè)的學生就可以通過選修跟數(shù)學建模有關的課程,解決其在經(jīng)濟學中遇到的問題,因為很多跟經(jīng)濟學有關的問題僅僅靠經(jīng)濟學的知識是無法解決的,像貸款計算這樣的問題就要將數(shù)學與經(jīng)濟學聯(lián)系起來才能解決實際問題。
            (3)廣泛宣傳,讓學生了解數(shù)學建模的意義和價值。學生是教學過程中的主體,目前,大學數(shù)學建模課程開設效果不佳,學生參與度低的主要原因就是學生缺乏對數(shù)學建模的深入了解。那么,要提高學生的參與性,促進數(shù)學建模思想與大學數(shù)學類課程的融合就必須加強宣傳,讓學生深入了解什么是數(shù)學建模。同時,在課堂上就是也要轉(zhuǎn)變傳統(tǒng)枯燥的教學方式,多使用啟發(fā)式教學和探索式教學,吸引學生的學習興趣,讓他們發(fā)現(xiàn)數(shù)學對社會實際生活的重要作用,轉(zhuǎn)變他們對數(shù)學的態(tài)度,并引導學生對數(shù)學建模和數(shù)學課程感興趣。
            (4)轉(zhuǎn)變數(shù)學教育理念及教育方式。要轉(zhuǎn)變傳統(tǒng)的教育方式,將教學的重點放在數(shù)學知識在生活中的應用問題上,而不是將知識與實際生活割裂開來。同時在教學中要注重證明和推理,加強學生對數(shù)學方法的掌握注重培養(yǎng)學生對實際問題的邏輯分析、簡化、抽象并運用數(shù)學語言表達的能力。也就是說教學的重點在于提高學生的數(shù)學學習能力和加強數(shù)學意識和數(shù)學方法的應用,這樣才能夠培養(yǎng)出具有創(chuàng)新能力和創(chuàng)新意識的人才。
            (5)多開展數(shù)學建?;顒雍透傎悾岣邔W生參與性。在高校內(nèi)部要多開展跟數(shù)學有關的活動和競賽以及專家講座等,一方面加強學生對數(shù)學建模的認識,另一方面也提高了學生的參與性。通過專家講座,不僅可以讓學生更深入地了解數(shù)學建模的價值,也加強了學術交流,提高學生的數(shù)學建模應用能力。通過數(shù)學建模競賽,為學生提供展示自己智慧、充分發(fā)揮其能力的平臺。同時,競賽也可以讓學生在競賽中發(fā)現(xiàn)自己的不足,在交流中不斷完善自己的缺陷,拓展學生的思維。而且,在數(shù)學建模比賽中,通過讓學生探究跟生活實際有關的例子,提高學生對數(shù)學建模的興趣,加強學生對模型應用的直觀性認識,促進學校應用型人才的培養(yǎng)。
            總之,數(shù)學建模思想和高校數(shù)學類課程的融合,對于高等數(shù)學教學改革具有非常重要的意義。把數(shù)學建模思想融入到高等數(shù)學教學中,可以更好地提高學生的數(shù)學學習能力,提高他們運用數(shù)學思想和數(shù)學方法分析問題、解決問題和抽象思維的能力。高校教師要加強數(shù)學建模思想的應用,讓學生初步掌握從實際問題中總結(jié)數(shù)學內(nèi)涵的方法,提高學生的數(shù)學學習興趣,為高校學生專業(yè)課的學習奠定堅實的數(shù)學基礎。
            初中數(shù)學建模論文篇十七
            對于高職院校的學生來講,數(shù)學在其教學過程中起著基礎性的作用,對于學生后續(xù)的學習相當關鍵。但是從現(xiàn)階段高職院校數(shù)學教學的基本情況來看,數(shù)學教師的教學方法以及教學策略都相當落后,對于學生數(shù)學興趣的提升造成了不同程度的影響。在這樣的背景下,相關專家提出了數(shù)學建模的方式,希望以此提升高職院校高等數(shù)學的教學效率。本文結(jié)合數(shù)學建模在高職高專人才培養(yǎng)當中的意義和作用入手,對于其中的應用策略進行全面的分析,希望為相關單位提供一個全面的參考。
            隨著我國社會的發(fā)展,經(jīng)濟產(chǎn)業(yè)結(jié)構日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發(fā)展提供了前所未有的契機。在這樣的背景下,從數(shù)學建模入手,將其思想融入到高等教育的數(shù)學教學當中,對于其中的策略和方法進行全面的研究應該是一項具有普遍現(xiàn)實意義的工作。
            從近些年的發(fā)展來看,參加過數(shù)學競賽的學生在科研能力等方面都具有比其他同學更強的優(yōu)勢,因此數(shù)學建模在提升學生創(chuàng)新能力、提高學生知識水平以及調(diào)動學生的.學習興趣都具有十分重要的意義。比如在解決實際問題的時候,數(shù)學建模通過利用各種技巧,可以使得學生分析問題、創(chuàng)造能力得以全面的提升,進而使得學生在摒棄原始思考問題方式的基礎上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學生的綜合能力的全面提升相當關鍵。其次,數(shù)學知識本就源于生活,因此在建模的基礎上學生就可以帶著問題去思考,這對于數(shù)學知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學的解決方式,很多學生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學建模方式,學生會發(fā)現(xiàn)數(shù)學方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
            3.1制定切實可行的教學大綱,從而使得教學進度得以保障。教學大綱在高職教學當中起著十分重要的作用,這對于教學內(nèi)容的合理性以及提升學生學習的針對性都具有十分重要的意義[1]。比如在教學高等數(shù)學(一)的選修模塊時,教學大綱的制定應該結(jié)合學生的專業(yè),從而使得學生的數(shù)學學習真正取得實效。比如可以為理工類的學生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機械類的學生選擇線性代數(shù)以及解析幾何作為教學內(nèi)容,從而使得學生的綜合能力得以全面的提升。3.2開展“三段式”的教學模式。數(shù)學建模在以解決實際問題為核心的過程中,使得學生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學模式分割開來,這就需要相關部門開展“三段式”的教學模式,使得學生的數(shù)學興趣得以全面的提升。其中,第一段需要還原數(shù)學知識的原創(chuàng)過程,使得學生明確數(shù)學知識的產(chǎn)生過程,進而讓學生從生活案例當中發(fā)現(xiàn)數(shù)學的價值,比如知道極限是由人影的長度變化引起的,導數(shù)是由于駕車的速度引入的,使得學生發(fā)現(xiàn)知識的價值,進而就會大大提升自己的學習興趣和探究意識。第二段:講解數(shù)學知識。數(shù)學建模是在實際問題當中引入的,因此要通過具體數(shù)學知識的講解使得學生明確數(shù)學建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學生對于數(shù)學的分析能力真正得以提升[2]。然后在為學生積極引入大量數(shù)學圖表的基礎上,為增強學生的感性認識,進而提升學生的綜合能力奠定堅實的基礎。第三段:數(shù)學知識的運用。隨著社會的發(fā)展,數(shù)學的應用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學在實際生活當中發(fā)揮出來的作用進行全面的探究是實現(xiàn)這種知識價值的真正途徑。在這樣的背景下,高等數(shù)學教師要將每個知識點的運用真正灌輸給學生,比如指數(shù)增長在銀行計息當中的應用、定積分在學習曲線當中的應用、再生資源在數(shù)學開發(fā)以及管理當中的應用等等。從而使得學生數(shù)學學習中的創(chuàng)新意識以及應用能力得以全面的提升。3.3開設數(shù)學實驗,提升學生的綜合素質(zhì)。數(shù)學建模為學生提供了一種真正的“數(shù)學實驗”,在這種實驗的過程中,學生對于數(shù)學知識的發(fā)展以及由來過程都會得到進行全面的考慮,這對于他們數(shù)學探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學生的動腦能力也會得到全面的提升,這對于學生主動的學習數(shù)學相當關鍵。因此在教學過程中,教師要積極利用這種方式對于學生進行全面的培養(yǎng)。
            總之,隨著我國經(jīng)濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當中數(shù)學建模思想在高等數(shù)學教學當中的應用進行全面的分析是實現(xiàn)學生綜合素質(zhì)得以全面提升的關鍵措施,這對于學生的長遠發(fā)展也相當關鍵,相關教育工作者要加大在這方面的研究力度,力求將高職院校的學生培養(yǎng)成為新時代所需要的人才。
            [1]吳健輝,黃志堅,汪龍虎.對數(shù)學建模思想融入高等數(shù)學教學中的探討[j].景德鎮(zhèn)高專學報,20xx,(4).
            [2]張卓飛.將數(shù)學建模思想融入大學數(shù)學教學的探討[j].湘潭師范學院學報(自然科學版),20xx,(1).
            初中數(shù)學建模論文篇十八
            第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側(cè)裝訂。
            第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內(nèi)容見本規(guī)范第3、4頁。
            第三條,論文第三頁為摘要專用頁(含標題和關鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數(shù)字從“1”開始連續(xù)編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
            第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內(nèi));正文之后是論文附錄(頁數(shù)不限)。
            第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
            第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。
            第七條,引用別人的成果或其他公開的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻,并在正文引用處予以標注。
            第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對論文增加其他要求。
            第九條,參賽隊應按照《全國大學生數(shù)學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關的支撐材料。
            第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
            第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開渠道找到的相關資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
            第十二條,不符合本格式規(guī)范的論文將被視為違反競賽規(guī)則,可能被取消評獎資格。
            第十三條,本規(guī)范的解釋權屬于全國大學生數(shù)學建模競賽組委會。
            說明:
            (1)本科組參賽隊從a、b題中任選一題,??平M參賽隊從c、d題中任選一題。
            (2)賽區(qū)可自行決定是否在競賽結(jié)束時收集參賽論文的紙質(zhì)版,但對于送全國評閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會保存,不必提交給全國組委會)。
            (3)賽區(qū)評閱前將紙質(zhì)版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區(qū)評閱編號”(由各賽區(qū)規(guī)定編號方式),“賽區(qū)評閱紀錄”表格可供賽區(qū)評閱時使用(由各賽區(qū)自行決定是否使用)。評閱后,賽區(qū)對送全國評閱的論文在第二頁建立“送全國評閱統(tǒng)一編號”(編號方式由全國組委會規(guī)定),然后送全國評閱。
            初中數(shù)學建模論文篇十九
            信息化時代,數(shù)學科學與其他學科交叉融合,使得數(shù)學技術變成了一種普適性的關鍵技術。大學加強數(shù)學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學生應用數(shù)學科學進行定量化、精確化思維的意識,學會創(chuàng)造性地解決問題的應用能力。數(shù)學建模課程將數(shù)學的基本原理、現(xiàn)代優(yōu)化算法以及程序設計知識很好地融合在一起,有助于培養(yǎng)學生綜合應用數(shù)學知識將現(xiàn)實問題化為數(shù)學問題,并進行求解運算的能力,激發(fā)學生對解決現(xiàn)實問題的探索欲望,強化數(shù)學課程本身的應用功能,凸顯數(shù)學課程的教育價值,適應大學數(shù)學課程以培養(yǎng)學生創(chuàng)新意識為宗旨的教育改革需要。
            大學傳統(tǒng)的數(shù)學主干課程,如高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學生的數(shù)學基礎、培養(yǎng)自學能力以及為后續(xù)課程的學習在基礎方面發(fā)揮奠基作用。但是,這種原有的教學模式重在突出培養(yǎng)學生嚴格的邏輯思維能力,而對數(shù)學的應用重視不夠,這使得學生即使掌握了較為高深的數(shù)學理論,卻并不能將其靈活應用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學應用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學教學模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學建模的思想方法融入到數(shù)學主干課程之中,在教學過程中引導學生將數(shù)學知識內(nèi)化為學生的應用能力,充分發(fā)揮數(shù)學建模思想在數(shù)學教學過程中的引領作用。數(shù)學課程教學改革要適應這一教學模式轉(zhuǎn)型需要,深入探究融入式教學模式的理論與方式,是推進數(shù)學教育改革的重要舉措。
            2.1理清數(shù)學建模思想方法與數(shù)學主干課程的關系。數(shù)學主干課程提供了大學數(shù)學的基礎理論與基本原理,將數(shù)學建模的思想方法有機地融入到數(shù)學主干課程中,不但可以有效地提升數(shù)學課程的應用功能,而且有利于深化學生對數(shù)學本原知識的理解,培養(yǎng)學生的綜合應用能力。深入研究數(shù)學主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學習形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學建模本身所承載的思想、方法與數(shù)學主干課程的內(nèi)容與邏輯關系,闡述數(shù)學建模思想方法對提高學生創(chuàng)新能力和對數(shù)學教育改革的重要意義,探索開展融入式教學及創(chuàng)新數(shù)學課程教學模式的有效途徑。
            2.2探索融入式教學模式提升數(shù)學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學建模的思想與方法。以學生能力訓練為主導,在培養(yǎng)深厚的數(shù)學基礎和嚴格的邏輯思維能力的基礎上,充分發(fā)揮數(shù)學建模思想方法對學生思維方式的培養(yǎng)功能和引導作用,培養(yǎng)學生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學知識應用于工程問題的創(chuàng)新能力。
            2.3建立數(shù)學建模思想方法融入數(shù)學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數(shù)學建模思想方法融入主干課程進行教學效果實踐驗證。設計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
            3.1改革課程教學內(nèi)容,滲透數(shù)學建模的思想方法。傳統(tǒng)的數(shù)學主干課程教學內(nèi)容,將數(shù)學看作嚴謹?shù)难堇[體系,教學過程中著力于對學生傳授大學數(shù)學的基礎知識,而對應用能力的培養(yǎng)卻重視不夠。使得本應能夠發(fā)揮應用功能的數(shù)學知識則淪為僵死的教條性數(shù)學原理,這失去了教學的活力。學生即使掌握了再高深的數(shù)學知識,仍難以學會用數(shù)學的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學數(shù)學課程教學內(nèi)容中,適當?shù)貪B透一些應用性比較廣泛的數(shù)學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數(shù)學基礎知識的掌握,同時理解數(shù)學原理所蘊涵的思想與方法。
            這樣,在解決實際問題的時候,學生就會有意識地從數(shù)學的角度進行思考,嘗試建立相應的數(shù)學模型并進行求解,拓展了數(shù)學知識的深度與廣度,提升了學生的數(shù)學應用能力四、結(jié)語數(shù)學建模是數(shù)學科學在科技、經(jīng)濟、軍事等領域廣泛應用的接口,是數(shù)學科學轉(zhuǎn)化成科學技術的重要途徑。在數(shù)學主干課程中融入數(shù)學建模的思想與方法,可以推動大學數(shù)學教育改革的深入發(fā)展,加深學生對相關知識的理解和掌握,有助于從思維方式上培養(yǎng)學生的創(chuàng)新意識與創(chuàng)新能力。
            此外,數(shù)學建模思想方法融入教學主干課程還涉及到許多問題,比如數(shù)學建模與計算技術如何有效結(jié)合以進行模擬仿真、融入式教學模式的基本理論、構建新的課程體系等問題,仍將有待于更深入的研究。
            初中數(shù)學建模論文篇二十
            摘要:數(shù)學作為很多學科的計算工具,可以說是現(xiàn)代科學的基礎,要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,本文在數(shù)學建模思想概念和特點的基礎上,從計算機軟件、實際生活中的應用等方面,對其應用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數(shù)學建模的方法,進行了深入的研究。
            引言。
            隨著自然科學的發(fā)展,利用數(shù)學等思想來解決實際問題,越來越受到人們的重視,數(shù)學作為一門歷史悠久的自然科學,是在實際應用的基礎上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,將實際的問題轉(zhuǎn)化成數(shù)學符號的表達方式,這樣才能夠通過數(shù)學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應用的需要,建立了一個相應的數(shù)學模型,這樣才能夠讓計算機來解決。
            數(shù)學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經(jīng)開始使用數(shù)學來解決實際問題,但是受到當時技術條件的限制,數(shù)學理論的水平比較低,只是利用數(shù)學來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學得到了極大的發(fā)展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學理論的基礎上,將電路的通和不通兩種狀態(tài),與數(shù)學的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學建模的理論還沒有形成,隨著計算機軟件技術的發(fā)展,人們逐漸的意識到數(shù)學建模的重要性,發(fā)現(xiàn)利用數(shù)學建模思想,可以解決很多實際的問題,而數(shù)學建模的概念,就是將遇到的實際問題,利用特定的數(shù)學符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學問題,可以利用數(shù)學的計算方法來解決。
            如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發(fā)展,出現(xiàn)了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數(shù)學就是其中最重要的一門學科,而且是其他學科的基礎,如物理學科中,數(shù)學就是一個計算的工具,由此可以看出數(shù)學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學建模顯然更加科學,現(xiàn)在數(shù)學建模已經(jīng)成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養(yǎng)學生們利用數(shù)學解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學建模大賽,采用開放式的參賽方式,對學生們的數(shù)學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
            2.1計算機軟件中數(shù)學建模思想的應用。
            通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學模型,如在早期的計算機程序設計中,受到當時計算機技術水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學模型,然后將這個模型轉(zhuǎn)化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
            經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數(shù)學理論,來解決實際問題,在學習數(shù)學知識的過程中,很多學生會認為,數(shù)學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關的學科相比,選擇數(shù)學專業(yè)的學生很少,而數(shù)學建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學,并利用數(shù)學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學建模等現(xiàn)代科學,研究的時間比較短,導致目前我國很少會利用數(shù)學建模來解決實際問題,相比之下,發(fā)達國家在很多領域中,經(jīng)常會用到數(shù)學建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學模型,然后按照這個建立的模型來處理。
            從本質(zhì)上來說,數(shù)學是在實際應用的基礎上,逐漸形成的一門學科,但是受到當時技術水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學知識,隨著自然科學的發(fā)展,對數(shù)學的應用越來越多,而數(shù)學自身理論的發(fā)展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發(fā)展,數(shù)學變成了一種計算的工具,因此數(shù)學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學的應用達到了一個極限,人們在數(shù)學和物理的基礎上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學計算,還不能解決實際的問題,但是計算機語言和軟件技術的.發(fā)展,使其在很多領域得到了應用,在計算的基礎上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學模型的過程,由此可以看出,數(shù)學建模思想應用的第二階段中,主要是以現(xiàn)代計算機等電子設備的方式,來解決實際的問題。
            3.1分析問題。
            數(shù)學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學符號,如果能夠直接用數(shù)學語言來進行描述,那么就可以容易的建立相應的數(shù)學模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復雜,其中很多都無法直接用數(shù)學語言來描述,這就增加了數(shù)學建模的難度。由此可以看出,分析問題作為數(shù)學建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學模型,同時對數(shù)學模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學模型協(xié)同來解決一個問題。
            在分析實際問題后,就要用數(shù)學符號來描述要解決的問題,這是建立數(shù)學模型的準備環(huán)節(jié),要想利用數(shù)學來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學語言,然后才能夠通過計算的方式解決,而數(shù)學模型的過程,就是在描述完成后,建立相應的數(shù)學表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學建模的基礎。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學知識外,也可以結(jié)合其他學科的知識,尤其是現(xiàn)在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學建模的難度越來越大,從近些年全國數(shù)學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
            在數(shù)學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數(shù)學模型的建立,具有非常重要的意義。
            4結(jié)語。
            通過全文的分析可以知道,對于數(shù)學理論的應用,從很久之前就已經(jīng)開始了,但是數(shù)學建模思想的出現(xiàn),卻是隨著計算機技術的發(fā)展,逐漸形成的一門學科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學模型完成的任務,只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。
            初中數(shù)學建模論文篇二十一
            運籌學與數(shù)學建模2門課程聯(lián)系密切,在運籌學教學中,適當融入數(shù)學建模思想,能大幅度提高學生應用數(shù)學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數(shù)學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.