教案旨在明確教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法和評價方式,為教師提供教學(xué)的具體操作指導(dǎo)。教案以下是一些編寫教案的常見問題和解決方法,希望能夠幫助大家提高教學(xué)質(zhì)量。
三角函數(shù)的教案篇一
3、問題:由,你能否知道sin2100的值嗎?引如新課。
設(shè)計意圖。
自信的鼓勵是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會證明我能行,從而思考解決的辦法。
(二)新知探究。
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
3、sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖。
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化。
三角函數(shù)的教案篇二
《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個問題。
命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重數(shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強(qiáng)化主干知識;關(guān)注知識點的銜接,考察創(chuàng)新意識。
《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。
2.多維審視知識結(jié)構(gòu)。
高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質(zhì);體會數(shù)學(xué)思想和解題的方法。
3.把答案蓋住看例題。
參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
4.研究每題都考什么。
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。
與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。習(xí)題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
5.答題少費時多辦事。
解題上要抓好三個字:數(shù),式,形;閱讀、審題和表述上要實現(xiàn)數(shù)學(xué)的三種語言自如轉(zhuǎn)化(文字語言、符號語言、圖形語言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會優(yōu)化解題過程,追求解題質(zhì)量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗,盡可能小題小做,除直接法外,還要靈活運(yùn)用特殊值法、排除法、檢驗法、數(shù)形結(jié)合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。
6.錯一次反思一次。
每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。
因此平時要注意把錯題記下來,做錯題筆記包括三個方面:
(1)記下錯誤是什么,最好用紅筆劃出。
(2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。
(3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。
7.分析試卷總結(jié)經(jīng)驗。
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類。
(1)遺憾之錯。就是分明會做,反而做錯了的題。
(2)似非之錯。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。
(3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應(yīng)用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。
8.優(yōu)秀是一種習(xí)慣。
柏拉圖說:“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。
三角函數(shù)的教案篇三
本節(jié)課是在學(xué)習(xí)學(xué)習(xí)了第一章函數(shù)的應(yīng)用和三角函數(shù)的性質(zhì)和圖象的基礎(chǔ)上來習(xí)三角函數(shù)模型的簡單應(yīng)用,學(xué)生已經(jīng)有了數(shù)學(xué)建摸的基本思想和方法,應(yīng)用三角函數(shù)的基本知識來解決實際問題對學(xué)生來說應(yīng)該順理成章,所以對本節(jié)的學(xué)習(xí)應(yīng)讓學(xué)生能夠多參與多思考,培養(yǎng)他們的分析解決問題的能力,提高應(yīng)用所學(xué)知識的能力。
三角函數(shù)的教案篇四
(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。
2、過程與方法。
通過正弦函數(shù)在r上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價值觀。
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
三角函數(shù)的教案篇五
數(shù)學(xué)是一門培養(yǎng)人的思維在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四)教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求,為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
本節(jié)課的授課對象是本校高一(3)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
(1)、基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(4)、個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
1、教學(xué)重點。
理解并掌握誘導(dǎo)公式。
2、教學(xué)難點。
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析。
1、教法。
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
2、學(xué)法。
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題——共同探討——解決問題——簡單應(yīng)用——重現(xiàn)探索過程——練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
3、預(yù)期效果。
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
(一)創(chuàng)設(shè)情景。
1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;
2、復(fù)習(xí)任意角的三角函數(shù)定義;
設(shè)計意圖。
自信的鼓勵是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會證明我能行,從而思考解決的辦法。
(二)新知探究。
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2、讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標(biāo)有什么關(guān)系;
3、sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖。
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與特殊角的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化。
探究。
1、探究發(fā)現(xiàn)任意角a的終邊與—a的終邊關(guān)于原點對稱;
3、探究發(fā)現(xiàn)任意角a與角a+1800或a—1800的三角函數(shù)值的關(guān)系。
設(shè)計意圖。
首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二。同時也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)。
(四)練習(xí)。
利用誘導(dǎo)公式(二),口答三角函數(shù)值。
(五)問題變形。
由sin3000=—sin600出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(—3000),sin1500值,讓學(xué)生聯(lián)想若已知sin3000=—sin600,能否求出sin(—3000,sin1500)的值。
學(xué)生自主探究。
1、探究任意角a與角1800—a的三角函數(shù)又有什么關(guān)系;
2、探究任意角a與角900+a的三角函數(shù)之間又有什么關(guān)系。
設(shè)計意圖。
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題—觀察發(fā)現(xiàn)—到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn)。而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn)。彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步。
展示學(xué)生自主探究的結(jié)果。
誘導(dǎo)公式(三)、(四)。
給出本節(jié)課的課題,三角函數(shù)的誘導(dǎo)公式。
設(shè)計意圖。
標(biāo)題的后給出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié)。
(六)概括升華。
三角函數(shù)的誘導(dǎo)公式口訣:即“奇變偶不變,符號看象限”。
設(shè)計意圖。
簡便記憶公式。
(七)練習(xí)強(qiáng)化。
求下列三角函數(shù)的值:(1)sin(—1000);(2)cos(—20400)。
設(shè)計意圖。
本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣。這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的。
學(xué)生練習(xí)。
化簡:(例題)。
設(shè)計意圖。
重點加強(qiáng)對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用。
(八)小結(jié)。
1、小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟。
2、體會數(shù)形結(jié)合、對稱、化歸的思想。
3、“學(xué)會”學(xué)習(xí)的習(xí)慣。
(九)作業(yè)。
1、課本p—27,第1,2,3小題;
2、附加課外題略。
設(shè)計意圖。
加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”。
(十)板書設(shè)計:(略)。
三角函數(shù)的教案篇六
這是一節(jié)初三的復(fù)習(xí)課,王老師在教案中講到在近幾年中考數(shù)學(xué)試題中,在銳角三角函數(shù)這節(jié)命題多以填空題,選擇題的形式出現(xiàn),主要考察三角函數(shù)的計算,三角函數(shù)的定義,三角函數(shù)的增減性,同角三角函數(shù)關(guān)系,互余三角函數(shù)關(guān)系。圍繞著這個目標(biāo),王老師先讓學(xué)生明白他們應(yīng)該掌握什么,必須掌握什么,并精心設(shè)計了很多練習(xí),從學(xué)生的反映中來看,大多數(shù)同學(xué)都掌握的比較好,基本達(dá)到了黃老師事先所制定的教學(xué)目標(biāo)。
王老師教學(xué)基本功比較扎實,板書非常清晰,教態(tài)和語言有一定的號召力。對教學(xué)內(nèi)容非常熟悉。我想如果把這節(jié)課分為兩節(jié)課,那效果會更加好。
三角函數(shù)的教案篇七
本節(jié)課是第一輪初三中考總復(fù)習(xí)有關(guān)銳角三角函數(shù)的復(fù)習(xí)課,根據(jù)現(xiàn)在的中考特點及考綱要求,進(jìn)行相應(yīng)的復(fù)習(xí)和鞏固?,F(xiàn)就本節(jié)課的課堂教學(xué)評價如下:
1、正確分析現(xiàn)在中考命題的方向、熱點及考綱要求,得出有關(guān)銳角三角函數(shù)考點的知識要點及各種題型,通過課堂教學(xué)在銳角三角函數(shù)的基本概念及運(yùn)算等基礎(chǔ)知識和基本技能得到相應(yīng)的發(fā)展。
2、本節(jié)課采用分階段,分層次歸類復(fù)習(xí)。
(1)基本概念領(lǐng)會階段。學(xué)生對概念,公式,定義的理解與掌握。
(2)基本方法學(xué)習(xí)階段。使學(xué)生對有關(guān)基本技能訓(xùn)練,掌握課本例題類型,能舉一反三,觸類旁通。
(3)針對練習(xí)階段。檢查學(xué)生對基本概念,基本技能的掌握情況。
3、本節(jié)課選題方面有以下幾個特點。
(1)有針對性,突出重要的知識點和思想方法。
(2)具有一定的應(yīng)用性,即能考察學(xué)生的數(shù)學(xué)基礎(chǔ)知識,又能考察學(xué)生的數(shù)學(xué)應(yīng)用能力。
(3)富有一定的思考性。有幾個例題,有分類思想方法,能鍛煉學(xué)生思維的靈活性。
(4)有計劃地設(shè)置練習(xí)中的思維障礙,使練習(xí)具有合適的梯度,提高訓(xùn)練的效率。
4、本節(jié)課教師能夠充分調(diào)動學(xué)生上課興趣,從而使學(xué)生復(fù)習(xí)數(shù)學(xué)的積極性,主動性發(fā)揮出來,這樣做到以學(xué)生為主,教師起主導(dǎo)作用。
三角函數(shù)的教案篇八
1、銳角三角形中,任意兩個內(nèi)角的和都屬于區(qū)間,且滿足不等式:。
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
三角函數(shù)的教案篇九
這是一節(jié)初三總復(fù)習(xí)課,內(nèi)容是銳角三角函數(shù)。王老師以基礎(chǔ)知識的復(fù)習(xí)、基本技能的訓(xùn)練為主,緊跟教學(xué)大綱,選擇了幾個典型例題,開拓了學(xué)生的知識面,豐富了學(xué)生的題型結(jié)構(gòu)。同時向?qū)W生進(jìn)行了一題多種解法思想的滲透,這樣活躍了學(xué)生的思維,豐富了學(xué)生的知識內(nèi)涵。老師對教材,教學(xué)大綱理解得非常透徹,對課堂把握能力強(qiáng),反應(yīng)很快,能積極跟上學(xué)生的思維,因時制宜的調(diào)整教學(xué)節(jié)奏,語速快而清晰,教態(tài)、板書也能給學(xué)生有積極的影響,富有感染力。例題的選擇合理、新穎且有難度,即有常見的基本計算與證明,也有一定難度的探索型、操作型問題,更有對于知識點綜合應(yīng)用的綜合題,層次鮮明,滿足了不同奮斗目標(biāo)學(xué)生的不同要求。教學(xué)上多媒體的運(yùn)用,較直觀地了解題意,提高解答的準(zhǔn)確率,課堂上充分發(fā)揮了學(xué)生的主體性,以學(xué)生的發(fā)展為本,通過小組合作,增強(qiáng)了學(xué)生的合作意識,又取長補(bǔ)短,互相競爭,營造了良好的教學(xué)氛圍,而教師知識組織者,只是參與、啟發(fā)、點撥、糾偏,培養(yǎng)了學(xué)生的創(chuàng)造能力和發(fā)散思維能力。
三角函數(shù)的教案篇十
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300=出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin=,能否求出sin(),sin()的值.
1.探究任意角與的三角函數(shù)又有什么關(guān)系;。
2.探究任意角與的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
誘導(dǎo)公式(三)、(四)。
給出本節(jié)課的課題。
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個把看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)。
設(shè)計意圖。
簡便記憶公式.
設(shè)計意圖。
本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的.
學(xué)生練習(xí)。
化簡:.
設(shè)計意圖。
1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
1.課本p-27,第1,2,3小題;。
2.附加課外題略.
設(shè)計意圖。
加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的'設(shè)置有利于有能力的同學(xué)“更上一樓”.
八.課后反思。
對本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達(dá)到了設(shè)計中所預(yù)想的目標(biāo)。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
三角函數(shù)的教案篇十一
數(shù)學(xué)的大題是由小題堆積起來的,只是增加了邏輯過程;難題是由易題延伸出來的,只是將定義與概念以及原理隱藏的更深而已。所以,三角函數(shù)的學(xué)習(xí),更加注重對定義域概念的學(xué)習(xí)和深刻的理解。在平時的學(xué)習(xí)中,更應(yīng)立足教材,學(xué)好用好教材,深入地鉆研定義與概念,切忌眼高手低,偏重難題,搞題海戰(zhàn)術(shù)!比如,弧度制下角的概念,六種三角函數(shù)的定義,所有的公式來源,三角函數(shù)圖像的平移與放縮,等等。說句狠話:弄不懂概念,你就別做題!你做了題,就要弄明白你是在使用什么概念什么定義什么公式!不要追求方法與技巧,因為方法與技巧來源于概念與定義。
2、記住公式不是靠背。
任何一種學(xué)習(xí)活動,都是先有理解,再有記憶,而后是靈變與應(yīng)用。面對眾多的三角公式,很多同學(xué)采用錯誤的做法:死記硬背!其結(jié)果是仍然會用錯,仍然記不住。與其花費大量的時間稀里糊涂做題,不如花點時間先從最原始的定義與概念推到公式!我曾經(jīng)有過一種比較極端然而卻非常有效的做法,讓一位一想到三角函數(shù)公式就暈就錯的學(xué)生先不做題,先整理理論,用定義與概念相互說明,用公式與公式相互推導(dǎo)。理論系統(tǒng)明白了,解題的思路和方法技巧也就順理成章了。
3、學(xué)會反思與整合。
建構(gòu)主義學(xué)習(xí)觀認(rèn)為知識并不是簡單的由教師或者其他人傳授給學(xué)生的,而只能由學(xué)生依據(jù)自身已有的知識、經(jīng)驗,主動地加以建構(gòu)。建構(gòu)一詞包含有兩重含義,一是悟,二是創(chuàng)造。一個批判、選擇、和存疑的過程,一個充滿想象、探索和體驗的過程。你不想學(xué),老師強(qiáng)行的逼迫是不容易的或者說是作用不大,俗話說“強(qiáng)扭的瓜不甜”嘛!數(shù)學(xué)學(xué)習(xí)不但要對概念、結(jié)論和技能進(jìn)行記憶,積累和模仿,而且還要動手實踐,自主探索,并且在獲得知識的基礎(chǔ)上進(jìn)行反思與整合。所以我們在平時學(xué)習(xí)中要注意反思,只有這樣才能使內(nèi)容得到鞏固,知識的得到拓展,能力得到提高,思維得到優(yōu)化,創(chuàng)新能力得到真正的發(fā)展,希望大能夠讓數(shù)學(xué)反思與整合成為我們的自然的習(xí)慣!
三角函數(shù)的教案篇十二
2.借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義;。
3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題。
2.讓學(xué)生從所學(xué)知識基礎(chǔ)上發(fā)現(xiàn)新問題,并加以解決,提高學(xué)生抽象概括、分析歸納、數(shù)學(xué)表述等基本數(shù)學(xué)思維能力.
1.通過學(xué)生之間、師生之間的交流合作,實現(xiàn)共同探究獲取知識.
教學(xué)難點:利用與單位圓有關(guān)的有向線段,將任意角的正弦、余弦、正切函數(shù)值分別用它們的幾何形式表示出來.
三角函數(shù)的教案篇十三
一、弄清對鄰斜。
銳角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系。而銳角三角函數(shù)值實質(zhì)上就是邊與邊之間的'一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。不管角怎樣變,斜邊是固定的,直角邊或是某一銳角的對邊或是某一銳角的鄰邊。不要死記硬背a,b,c的比值。記清對鄰斜兩者之比。
三、應(yīng)用公式變形解決實際問題。
三角函數(shù)的教案篇一
3、問題:由,你能否知道sin2100的值嗎?引如新課。
設(shè)計意圖。
自信的鼓勵是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會證明我能行,從而思考解決的辦法。
(二)新知探究。
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
3、sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖。
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化。
三角函數(shù)的教案篇二
《考試說明》和《考綱》是每位考生必須熟悉的最權(quán)威最準(zhǔn)確的高考信息,通過研究應(yīng)明確“考什么”、“考多難”、“怎樣考”這三個問題。
命題通常注意試題背景,強(qiáng)調(diào)數(shù)學(xué)思想,注重數(shù)學(xué)應(yīng)用;試題強(qiáng)調(diào)問題性、啟發(fā)性,突出基礎(chǔ)性;重視通性通法,淡化特殊技巧,凸顯數(shù)學(xué)的問題思考;強(qiáng)化主干知識;關(guān)注知識點的銜接,考察創(chuàng)新意識。
《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現(xiàn)”。因此試題都比較新穎活潑。所以復(fù)習(xí)中你就要加強(qiáng)對新題型的練習(xí),揭示問題的本質(zhì),創(chuàng)造性地解決問題。
2.多維審視知識結(jié)構(gòu)。
高考數(shù)學(xué)試題一直注重對思維方法的考查,數(shù)學(xué)思維和方法是數(shù)學(xué)知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達(dá)到考察數(shù)學(xué)思維的目的。你需要建立各部分內(nèi)容的知識網(wǎng)絡(luò);全面、準(zhǔn)確地把握概念,在理解的基礎(chǔ)上加強(qiáng)記憶;加強(qiáng)對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質(zhì);體會數(shù)學(xué)思想和解題的方法。
3.把答案蓋住看例題。
參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經(jīng)過上面的`訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
4.研究每題都考什么。
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到多題。你需要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運(yùn)用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習(xí)慣。
與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。習(xí)題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
5.答題少費時多辦事。
解題上要抓好三個字:數(shù),式,形;閱讀、審題和表述上要實現(xiàn)數(shù)學(xué)的三種語言自如轉(zhuǎn)化(文字語言、符號語言、圖形語言)。要重視和加強(qiáng)選擇題的訓(xùn)練和研究。不能僅僅滿足于答案正確,還要學(xué)會優(yōu)化解題過程,追求解題質(zhì)量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經(jīng)驗,盡可能小題小做,除直接法外,還要靈活運(yùn)用特殊值法、排除法、檢驗法、數(shù)形結(jié)合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。
6.錯一次反思一次。
每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。
因此平時要注意把錯題記下來,做錯題筆記包括三個方面:
(1)記下錯誤是什么,最好用紅筆劃出。
(2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。
(3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。你若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。
7.分析試卷總結(jié)經(jīng)驗。
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類。
(1)遺憾之錯。就是分明會做,反而做錯了的題。
(2)似非之錯。記憶不準(zhǔn)確,理解不夠透徹,應(yīng)用不夠自如;回答不嚴(yán)密不完整等等。
(3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應(yīng)用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。
8.優(yōu)秀是一種習(xí)慣。
柏拉圖說:“優(yōu)秀是一種習(xí)慣”。好的習(xí)慣終生受益,不好的習(xí)慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習(xí)慣。
三角函數(shù)的教案篇三
本節(jié)課是在學(xué)習(xí)學(xué)習(xí)了第一章函數(shù)的應(yīng)用和三角函數(shù)的性質(zhì)和圖象的基礎(chǔ)上來習(xí)三角函數(shù)模型的簡單應(yīng)用,學(xué)生已經(jīng)有了數(shù)學(xué)建摸的基本思想和方法,應(yīng)用三角函數(shù)的基本知識來解決實際問題對學(xué)生來說應(yīng)該順理成章,所以對本節(jié)的學(xué)習(xí)應(yīng)讓學(xué)生能夠多參與多思考,培養(yǎng)他們的分析解決問題的能力,提高應(yīng)用所學(xué)知識的能力。
三角函數(shù)的教案篇四
(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。
2、過程與方法。
通過正弦函數(shù)在r上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價值觀。
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
三角函數(shù)的教案篇五
數(shù)學(xué)是一門培養(yǎng)人的思維在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四)教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四)同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求,為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
本節(jié)課的授課對象是本校高一(3)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容。
(1)、基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(4)、個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀。
1、教學(xué)重點。
理解并掌握誘導(dǎo)公式。
2、教學(xué)難點。
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式。
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究。下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析。
1、教法。
在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅。
2、學(xué)法。
在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題——共同探討——解決問題——簡單應(yīng)用——重現(xiàn)探索過程——練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí)。
3、預(yù)期效果。
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題。
(一)創(chuàng)設(shè)情景。
1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;
2、復(fù)習(xí)任意角的三角函數(shù)定義;
設(shè)計意圖。
自信的鼓勵是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會證明我能行,從而思考解決的辦法。
(二)新知探究。
1、讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2、讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標(biāo)有什么關(guān)系;
3、sin2100與sin300之間有什么關(guān)系。
設(shè)計意圖。
由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與特殊角的三角函數(shù)值的關(guān)系做好鋪墊。
(三)問題一般化。
探究。
1、探究發(fā)現(xiàn)任意角a的終邊與—a的終邊關(guān)于原點對稱;
3、探究發(fā)現(xiàn)任意角a與角a+1800或a—1800的三角函數(shù)值的關(guān)系。
設(shè)計意圖。
首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二。同時也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)。
(四)練習(xí)。
利用誘導(dǎo)公式(二),口答三角函數(shù)值。
(五)問題變形。
由sin3000=—sin600出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(—3000),sin1500值,讓學(xué)生聯(lián)想若已知sin3000=—sin600,能否求出sin(—3000,sin1500)的值。
學(xué)生自主探究。
1、探究任意角a與角1800—a的三角函數(shù)又有什么關(guān)系;
2、探究任意角a與角900+a的三角函數(shù)之間又有什么關(guān)系。
設(shè)計意圖。
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題—觀察發(fā)現(xiàn)—到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn)。而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn)。彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步。
展示學(xué)生自主探究的結(jié)果。
誘導(dǎo)公式(三)、(四)。
給出本節(jié)課的課題,三角函數(shù)的誘導(dǎo)公式。
設(shè)計意圖。
標(biāo)題的后給出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié)。
(六)概括升華。
三角函數(shù)的誘導(dǎo)公式口訣:即“奇變偶不變,符號看象限”。
設(shè)計意圖。
簡便記憶公式。
(七)練習(xí)強(qiáng)化。
求下列三角函數(shù)的值:(1)sin(—1000);(2)cos(—20400)。
設(shè)計意圖。
本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣。這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的。
學(xué)生練習(xí)。
化簡:(例題)。
設(shè)計意圖。
重點加強(qiáng)對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用。
(八)小結(jié)。
1、小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟。
2、體會數(shù)形結(jié)合、對稱、化歸的思想。
3、“學(xué)會”學(xué)習(xí)的習(xí)慣。
(九)作業(yè)。
1、課本p—27,第1,2,3小題;
2、附加課外題略。
設(shè)計意圖。
加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”。
(十)板書設(shè)計:(略)。
三角函數(shù)的教案篇六
這是一節(jié)初三的復(fù)習(xí)課,王老師在教案中講到在近幾年中考數(shù)學(xué)試題中,在銳角三角函數(shù)這節(jié)命題多以填空題,選擇題的形式出現(xiàn),主要考察三角函數(shù)的計算,三角函數(shù)的定義,三角函數(shù)的增減性,同角三角函數(shù)關(guān)系,互余三角函數(shù)關(guān)系。圍繞著這個目標(biāo),王老師先讓學(xué)生明白他們應(yīng)該掌握什么,必須掌握什么,并精心設(shè)計了很多練習(xí),從學(xué)生的反映中來看,大多數(shù)同學(xué)都掌握的比較好,基本達(dá)到了黃老師事先所制定的教學(xué)目標(biāo)。
王老師教學(xué)基本功比較扎實,板書非常清晰,教態(tài)和語言有一定的號召力。對教學(xué)內(nèi)容非常熟悉。我想如果把這節(jié)課分為兩節(jié)課,那效果會更加好。
三角函數(shù)的教案篇七
本節(jié)課是第一輪初三中考總復(fù)習(xí)有關(guān)銳角三角函數(shù)的復(fù)習(xí)課,根據(jù)現(xiàn)在的中考特點及考綱要求,進(jìn)行相應(yīng)的復(fù)習(xí)和鞏固?,F(xiàn)就本節(jié)課的課堂教學(xué)評價如下:
1、正確分析現(xiàn)在中考命題的方向、熱點及考綱要求,得出有關(guān)銳角三角函數(shù)考點的知識要點及各種題型,通過課堂教學(xué)在銳角三角函數(shù)的基本概念及運(yùn)算等基礎(chǔ)知識和基本技能得到相應(yīng)的發(fā)展。
2、本節(jié)課采用分階段,分層次歸類復(fù)習(xí)。
(1)基本概念領(lǐng)會階段。學(xué)生對概念,公式,定義的理解與掌握。
(2)基本方法學(xué)習(xí)階段。使學(xué)生對有關(guān)基本技能訓(xùn)練,掌握課本例題類型,能舉一反三,觸類旁通。
(3)針對練習(xí)階段。檢查學(xué)生對基本概念,基本技能的掌握情況。
3、本節(jié)課選題方面有以下幾個特點。
(1)有針對性,突出重要的知識點和思想方法。
(2)具有一定的應(yīng)用性,即能考察學(xué)生的數(shù)學(xué)基礎(chǔ)知識,又能考察學(xué)生的數(shù)學(xué)應(yīng)用能力。
(3)富有一定的思考性。有幾個例題,有分類思想方法,能鍛煉學(xué)生思維的靈活性。
(4)有計劃地設(shè)置練習(xí)中的思維障礙,使練習(xí)具有合適的梯度,提高訓(xùn)練的效率。
4、本節(jié)課教師能夠充分調(diào)動學(xué)生上課興趣,從而使學(xué)生復(fù)習(xí)數(shù)學(xué)的積極性,主動性發(fā)揮出來,這樣做到以學(xué)生為主,教師起主導(dǎo)作用。
三角函數(shù)的教案篇八
1、銳角三角形中,任意兩個內(nèi)角的和都屬于區(qū)間,且滿足不等式:。
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標(biāo)決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
三角函數(shù)的教案篇九
這是一節(jié)初三總復(fù)習(xí)課,內(nèi)容是銳角三角函數(shù)。王老師以基礎(chǔ)知識的復(fù)習(xí)、基本技能的訓(xùn)練為主,緊跟教學(xué)大綱,選擇了幾個典型例題,開拓了學(xué)生的知識面,豐富了學(xué)生的題型結(jié)構(gòu)。同時向?qū)W生進(jìn)行了一題多種解法思想的滲透,這樣活躍了學(xué)生的思維,豐富了學(xué)生的知識內(nèi)涵。老師對教材,教學(xué)大綱理解得非常透徹,對課堂把握能力強(qiáng),反應(yīng)很快,能積極跟上學(xué)生的思維,因時制宜的調(diào)整教學(xué)節(jié)奏,語速快而清晰,教態(tài)、板書也能給學(xué)生有積極的影響,富有感染力。例題的選擇合理、新穎且有難度,即有常見的基本計算與證明,也有一定難度的探索型、操作型問題,更有對于知識點綜合應(yīng)用的綜合題,層次鮮明,滿足了不同奮斗目標(biāo)學(xué)生的不同要求。教學(xué)上多媒體的運(yùn)用,較直觀地了解題意,提高解答的準(zhǔn)確率,課堂上充分發(fā)揮了學(xué)生的主體性,以學(xué)生的發(fā)展為本,通過小組合作,增強(qiáng)了學(xué)生的合作意識,又取長補(bǔ)短,互相競爭,營造了良好的教學(xué)氛圍,而教師知識組織者,只是參與、啟發(fā)、點撥、糾偏,培養(yǎng)了學(xué)生的創(chuàng)造能力和發(fā)散思維能力。
三角函數(shù)的教案篇十
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300=出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin=,能否求出sin(),sin()的值.
1.探究任意角與的三角函數(shù)又有什么關(guān)系;。
2.探究任意角與的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強(qiáng)了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
誘導(dǎo)公式(三)、(四)。
給出本節(jié)課的課題。
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于的同名函數(shù)值,前面加上一個把看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)。
設(shè)計意圖。
簡便記憶公式.
設(shè)計意圖。
本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對具體負(fù)角而言的.
學(xué)生練習(xí)。
化簡:.
設(shè)計意圖。
1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
1.課本p-27,第1,2,3小題;。
2.附加課外題略.
設(shè)計意圖。
加強(qiáng)學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的'設(shè)置有利于有能力的同學(xué)“更上一樓”.
八.課后反思。
對本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達(dá)到了設(shè)計中所預(yù)想的目標(biāo)。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
三角函數(shù)的教案篇十一
數(shù)學(xué)的大題是由小題堆積起來的,只是增加了邏輯過程;難題是由易題延伸出來的,只是將定義與概念以及原理隱藏的更深而已。所以,三角函數(shù)的學(xué)習(xí),更加注重對定義域概念的學(xué)習(xí)和深刻的理解。在平時的學(xué)習(xí)中,更應(yīng)立足教材,學(xué)好用好教材,深入地鉆研定義與概念,切忌眼高手低,偏重難題,搞題海戰(zhàn)術(shù)!比如,弧度制下角的概念,六種三角函數(shù)的定義,所有的公式來源,三角函數(shù)圖像的平移與放縮,等等。說句狠話:弄不懂概念,你就別做題!你做了題,就要弄明白你是在使用什么概念什么定義什么公式!不要追求方法與技巧,因為方法與技巧來源于概念與定義。
2、記住公式不是靠背。
任何一種學(xué)習(xí)活動,都是先有理解,再有記憶,而后是靈變與應(yīng)用。面對眾多的三角公式,很多同學(xué)采用錯誤的做法:死記硬背!其結(jié)果是仍然會用錯,仍然記不住。與其花費大量的時間稀里糊涂做題,不如花點時間先從最原始的定義與概念推到公式!我曾經(jīng)有過一種比較極端然而卻非常有效的做法,讓一位一想到三角函數(shù)公式就暈就錯的學(xué)生先不做題,先整理理論,用定義與概念相互說明,用公式與公式相互推導(dǎo)。理論系統(tǒng)明白了,解題的思路和方法技巧也就順理成章了。
3、學(xué)會反思與整合。
建構(gòu)主義學(xué)習(xí)觀認(rèn)為知識并不是簡單的由教師或者其他人傳授給學(xué)生的,而只能由學(xué)生依據(jù)自身已有的知識、經(jīng)驗,主動地加以建構(gòu)。建構(gòu)一詞包含有兩重含義,一是悟,二是創(chuàng)造。一個批判、選擇、和存疑的過程,一個充滿想象、探索和體驗的過程。你不想學(xué),老師強(qiáng)行的逼迫是不容易的或者說是作用不大,俗話說“強(qiáng)扭的瓜不甜”嘛!數(shù)學(xué)學(xué)習(xí)不但要對概念、結(jié)論和技能進(jìn)行記憶,積累和模仿,而且還要動手實踐,自主探索,并且在獲得知識的基礎(chǔ)上進(jìn)行反思與整合。所以我們在平時學(xué)習(xí)中要注意反思,只有這樣才能使內(nèi)容得到鞏固,知識的得到拓展,能力得到提高,思維得到優(yōu)化,創(chuàng)新能力得到真正的發(fā)展,希望大能夠讓數(shù)學(xué)反思與整合成為我們的自然的習(xí)慣!
三角函數(shù)的教案篇十二
2.借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義;。
3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題。
2.讓學(xué)生從所學(xué)知識基礎(chǔ)上發(fā)現(xiàn)新問題,并加以解決,提高學(xué)生抽象概括、分析歸納、數(shù)學(xué)表述等基本數(shù)學(xué)思維能力.
1.通過學(xué)生之間、師生之間的交流合作,實現(xiàn)共同探究獲取知識.
教學(xué)難點:利用與單位圓有關(guān)的有向線段,將任意角的正弦、余弦、正切函數(shù)值分別用它們的幾何形式表示出來.
三角函數(shù)的教案篇十三
一、弄清對鄰斜。
銳角三角函數(shù)是定義在直角三角形中的研究邊角之間的關(guān)系。而銳角三角函數(shù)值實質(zhì)上就是邊與邊之間的'一種比值,它能溝通了邊與角之間的聯(lián)系,為解直角三角形提供了角邊關(guān)系的根據(jù)。不管角怎樣變,斜邊是固定的,直角邊或是某一銳角的對邊或是某一銳角的鄰邊。不要死記硬背a,b,c的比值。記清對鄰斜兩者之比。
三、應(yīng)用公式變形解決實際問題。