作為一位杰出的老師,編寫(xiě)教案是必不可少的,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。教案書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇教案呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。
高中數(shù)學(xué)教案全套必修一篇一
高中化學(xué)必修二教案(人教版)
引用:本文《高中化學(xué)必修二教案(人教版)》來(lái)源于師庫(kù)網(wǎng),由師庫(kù)網(wǎng)博客摘錄整理,以下是的詳細(xì)內(nèi)容:開(kāi)發(fā)利用金屬礦物和海水...《基本營(yíng)養(yǎng)物質(zhì)》教案化學(xué)反應(yīng)的速率和限度化學(xué)能與熱能化學(xué)與資源綜合利用、環(huán)...最簡(jiǎn)單的有機(jī)化合物dd...《生活中兩種常見(jiàn)的'有機(jī)...來(lái)自石油和煤的兩種基本...引用:師庫(kù)網(wǎng)溫馨提示本篇內(nèi)容來(lái)源于師庫(kù)網(wǎng),旨在用于課件制作交流,非盈利性質(zhì),僅供參考,針對(duì)本文的問(wèn)題如需了解更詳細(xì),可留言或者聯(lián)系客服tags:教案、課件、師庫(kù)網(wǎng)、教案網(wǎng)、課件網(wǎng)
高中數(shù)學(xué)教案全套必修一篇二
初中新課程中數(shù)學(xué)知識(shí)點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對(duì)這些知識(shí)點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來(lái)看,學(xué)生掌握了這些知識(shí)點(diǎn)對(duì)學(xué)習(xí)新的知識(shí)有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識(shí)也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對(duì)高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡(jiǎn)、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來(lái)看,學(xué)生作業(yè)中出現(xiàn)的大量錯(cuò)誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開(kāi)始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過(guò)渡
高中數(shù)學(xué)知識(shí)量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識(shí)的難度和對(duì)學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識(shí)綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問(wèn)題、解決問(wèn)題的綜合能力,這與初中數(shù)學(xué)知識(shí)點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過(guò)程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
高中數(shù)學(xué)教案全套必修一篇三
一、教學(xué)目標(biāo):
知識(shí)與技能:了解直線(xiàn)參數(shù)方程的條件及參數(shù)的意義
過(guò)程與方法:能根據(jù)直線(xiàn)的幾何條件,寫(xiě)出直線(xiàn)的參數(shù)方程及參數(shù)的意義
情感、態(tài)度與價(jià)值觀:通過(guò)觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過(guò)程,培養(yǎng)創(chuàng)新意識(shí)。
二、重難點(diǎn):
教學(xué)重點(diǎn):曲線(xiàn)參數(shù)方程的定義及方法
教學(xué)難點(diǎn):選擇適當(dāng)?shù)膮?shù)寫(xiě)出曲線(xiàn)的參數(shù)方程.
三、教學(xué)方法:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
四、教學(xué)過(guò)程
(一)、復(fù)習(xí)引入:
1.寫(xiě)出圓方程的標(biāo)準(zhǔn)式和對(duì)應(yīng)的參數(shù)方程。
圓參數(shù)方程(為參數(shù))
(2)圓參數(shù)方程為:(為參數(shù))
2.寫(xiě)出橢圓參數(shù)方程.
(二)、講解新課:
如果已知直線(xiàn)l經(jīng)過(guò)兩個(gè)定點(diǎn)q(1,1),p(4,3),
那么又如何描述直線(xiàn)l上任意點(diǎn)的位置呢?
2、教師引導(dǎo)學(xué)生推導(dǎo)直線(xiàn)的參數(shù)方程:
(1)過(guò)定點(diǎn)傾斜角為的直線(xiàn)的
參數(shù)方程
(為參數(shù))
【辨析直線(xiàn)的參數(shù)方程】:設(shè)m(x,y)為直線(xiàn)上的任意一點(diǎn),參數(shù)t的幾何意義是指從點(diǎn)p到點(diǎn)m的位移,可以用有向線(xiàn)段數(shù)量來(lái)表示。帶符號(hào).
(2)、經(jīng)過(guò)兩個(gè)定點(diǎn)q,p(其中)的'直線(xiàn)的參數(shù)方程為。其中點(diǎn)m(x,y)為直線(xiàn)上的任意一點(diǎn)。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動(dòng)點(diǎn)m分有向線(xiàn)段的數(shù)量比。當(dāng)時(shí),m為內(nèi)分點(diǎn);當(dāng)且時(shí),m為外分點(diǎn);當(dāng)時(shí),點(diǎn)m與q重合。
(三)、直線(xiàn)的參數(shù)方程應(yīng)用,強(qiáng)化理解。
1、例題:
學(xué)生練習(xí),教師準(zhǔn)對(duì)問(wèn)題講評(píng)。反思?xì)w納:
1)求直線(xiàn)參數(shù)方程的方法;
2)利用直線(xiàn)參數(shù)方程求交點(diǎn)。
2、鞏固導(dǎo)練:
補(bǔ)充:
1)直線(xiàn)與圓相切,那么直線(xiàn)的傾斜角為(a)
a.或b.或c.或d.或
2)(坐標(biāo)系與參數(shù)方程選做題)若直線(xiàn)與直線(xiàn)(為參數(shù))垂直,則.
解:直線(xiàn)化為普通方程是,
該直線(xiàn)的斜率為,
直線(xiàn)(為參數(shù))化為普通方程是,
該直線(xiàn)的斜率為,
則由兩直線(xiàn)垂直的充要條件,得,。
(四)、小結(jié):
(1)直線(xiàn)參數(shù)方程求法;
(2)直線(xiàn)參數(shù)方程的特點(diǎn);
(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
(五)、作業(yè):
補(bǔ)充:設(shè)直線(xiàn)的參數(shù)方程為(t為參數(shù)),直線(xiàn)的方程為y=3x+4則與的距離為
【考點(diǎn)定位】本小題考查參數(shù)方程化為普通方程、兩條平行線(xiàn)間的距離,基礎(chǔ)題。
解析:由題直線(xiàn)的普通方程為,故它與與的距離為。
五、教學(xué)反思:
高中數(shù)學(xué)教案全套必修一篇四
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。 復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問(wèn)題;分類(lèi)討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問(wèn)題、解決問(wèn)題的能力。
函數(shù)
函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會(huì)對(duì)具體問(wèn)題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識(shí),最終解決問(wèn)題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)。考查函數(shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問(wèn)題,以及數(shù)形結(jié)合思想、分類(lèi)討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
規(guī)律方法總結(jié)
求函數(shù)解析式時(shí),針對(duì)條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。 判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
高中數(shù)學(xué)教案全套必修一篇五
各位老師大家好!
我說(shuō)課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線(xiàn)的傾斜角與斜率第一課時(shí)。
(一)教材分析
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線(xiàn)的傾斜角與斜率第一課時(shí),直線(xiàn)的傾斜角和斜率解析幾何的重要概念;是刻畫(huà)直線(xiàn)傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對(duì)直線(xiàn)的有關(guān)性質(zhì)及平面向量的相關(guān)知識(shí)理解的基礎(chǔ)上,重新以解析法的方式來(lái)研究直線(xiàn)相關(guān)性質(zhì),而本節(jié)課直線(xiàn)的傾斜角與斜率,是直線(xiàn)的重要的幾何性質(zhì),是研究直線(xiàn)的方程形式,直線(xiàn)的位置關(guān)系等的思維的起點(diǎn);另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開(kāi)啟全章、滲透方法,承前啟后的作用。
(二)學(xué)情分析
本節(jié)課的教學(xué)對(duì)象是高二學(xué)生,這個(gè)年齡段的學(xué)生天性活潑,求知欲強(qiáng),并且學(xué)習(xí)主動(dòng),在知識(shí)儲(chǔ)備上知道兩點(diǎn)確定一條直線(xiàn),知道點(diǎn)與坐標(biāo)的關(guān)系,實(shí)現(xiàn)了最簡(jiǎn)單的形與數(shù)的轉(zhuǎn)化;了解刻畫(huà)傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類(lèi)討論的思想。但根據(jù)學(xué)生的認(rèn)知規(guī)律,還沒(méi)有形成自覺(jué)地把數(shù)學(xué)問(wèn)題抽象化的能力。所以在教學(xué)設(shè)計(jì)時(shí)需從學(xué)生的最近發(fā)展區(qū)進(jìn)行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、鞏固和應(yīng)用過(guò)程。
(三)教學(xué)目標(biāo)
1.理解直線(xiàn)的傾斜角和斜率的概念,理解直線(xiàn)的傾斜角的唯一性和斜率的存在性;
2.掌握過(guò)兩點(diǎn)的直線(xiàn)斜率的計(jì)算公式;
3.通過(guò)經(jīng)歷從具體實(shí)例抽象出數(shù)學(xué)概念的過(guò)程,培養(yǎng)學(xué)生觀察、分析和概括能力;
生嚴(yán)謹(jǐn)求簡(jiǎn)的數(shù)學(xué)精神。
重點(diǎn):斜率的概念,用代數(shù)方法刻畫(huà)直線(xiàn)斜率的過(guò)程,過(guò)兩點(diǎn)的直線(xiàn)斜率的計(jì)算公式。
難點(diǎn):直線(xiàn)的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。
(四)教法和學(xué)法
課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過(guò)程中,創(chuàng)設(shè)問(wèn)題的情景,激發(fā)學(xué)生主動(dòng)的發(fā)現(xiàn)問(wèn)題解決問(wèn)題,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個(gè)性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問(wèn)題串的形式,啟發(fā)引導(dǎo)學(xué)生類(lèi)比、聯(lián)想,產(chǎn)生知識(shí)遷移;通過(guò)幾何畫(huà)板演示實(shí)驗(yàn)、探索交流相結(jié)合的教學(xué)方法激發(fā)學(xué)生觀察、實(shí)驗(yàn),體驗(yàn)知識(shí)的形成過(guò)程;由此循序漸進(jìn),使學(xué)生很自然達(dá)到本節(jié)課的學(xué)習(xí)目標(biāo)。
(五)教學(xué)過(guò)程
環(huán)節(jié)1.指明研究方向(3min)
簡(jiǎn)介17世紀(jì)法國(guó)數(shù)學(xué)家笛卡爾和費(fèi)馬的數(shù)學(xué)史。
高中數(shù)學(xué)教案全套必修一篇六
教學(xué)目標(biāo)
1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過(guò)等差數(shù)列和等比數(shù)列的類(lèi)比學(xué)習(xí),培養(yǎng)學(xué)生類(lèi)比歸納的能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類(lèi)討論,函數(shù)的數(shù)學(xué)思想。
教學(xué)重難點(diǎn)
重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過(guò)類(lèi)比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;
難點(diǎn):等比數(shù)列的性質(zhì)的探索過(guò)程。
教學(xué)過(guò)程
教學(xué)過(guò)程:
1、 問(wèn)題引入:
前面我們已經(jīng)研究了一類(lèi)特殊的數(shù)列——等差數(shù)列。
問(wèn)題1:滿(mǎn)足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?
(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。
已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書(shū))an=a1+(n-1)d。
師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
(第一次類(lèi)比)類(lèi)似的,我們提出這樣一個(gè)問(wèn)題。
問(wèn)題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說(shuō)明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話(huà),這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。
師生共同簡(jiǎn)要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的性質(zhì):
下面我們一起來(lái)研究一下等比數(shù)列的性質(zhì)
通過(guò)上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過(guò)類(lèi)比得到等比數(shù)列的性質(zhì)。
問(wèn)題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過(guò)具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。
答案:1458或128。
例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____.
(本題為開(kāi)放題,沒(méi)有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)
1、 小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過(guò)今天的學(xué)習(xí)
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類(lèi)比——猜想——證明的科學(xué)思維的過(guò)程。
2、 作業(yè):
p129:1,2,3
教學(xué)設(shè)計(jì)說(shuō)明:
1、 教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來(lái)學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來(lái),通過(guò)等比數(shù)列和等差數(shù)列的類(lèi)比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類(lèi)比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。
2、 教學(xué)設(shè)計(jì)過(guò)程:本節(jié)課主要從以下幾個(gè)方面展開(kāi):
1) 通過(guò)復(fù)習(xí)等差數(shù)列的定義,類(lèi)比得出等比數(shù)列的定義;
2) 等比數(shù)列的通項(xiàng)公式的推導(dǎo);
3) 等比數(shù)列的性質(zhì);
有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊
知識(shí),另一方面使學(xué)生通過(guò)聯(lián)想,為類(lèi)比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。
在類(lèi)比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類(lèi)比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過(guò)問(wèn)題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。
通過(guò)等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類(lèi)比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過(guò)類(lèi)比
關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開(kāi)放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。
高中數(shù)學(xué)教案全套必修一篇七
1、知識(shí)與技能:掌握畫(huà)三視圖的基本技能,豐富學(xué)生的空間想象力。
2、過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3、情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫(huà)出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類(lèi)比。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情景,揭開(kāi)課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的。投影;
平行投影:在一束平行光線(xiàn)照射下形成的投影。
正投影:在平行投影中,投影線(xiàn)正對(duì)著投影面。
2、三視圖:
正視圖:光線(xiàn)從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線(xiàn)從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線(xiàn)從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱(chēng)為幾何體的三視圖。
三視圖的畫(huà)法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。
長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫(huà)長(zhǎng)方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。
4、畫(huà)圓柱、圓錐的三視圖:
5、探究:畫(huà)出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)
課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本p20習(xí)題1.2[a組]1。
高中數(shù)學(xué)教案全套必修一篇八
學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。
2。通過(guò)實(shí)際問(wèn)題的研究,促進(jìn)學(xué)生分析問(wèn)題、解決問(wèn)題以及數(shù)學(xué)建模能力的提高。
教學(xué)重點(diǎn):
如何建立實(shí)際問(wèn)題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。
教學(xué)過(guò)程:
一、問(wèn)題情境
問(wèn)題1把長(zhǎng)為60cm的鐵絲圍成矩形,長(zhǎng)寬各為多少時(shí)面積最大?
問(wèn)題3做一個(gè)容積為256l的方底無(wú)蓋水箱,它的高為多少時(shí)材料最省?
二、新課引入
導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題。
1。幾何方面的應(yīng)用(面積和體積等的最值)。
2。物理方面的應(yīng)用(功和功率等最值)。
3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤(rùn)方面最值)。
三、知識(shí)建構(gòu)
說(shuō)明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。
說(shuō)明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類(lèi)似,加一步與幾個(gè)極
值及端點(diǎn)值比較即可。
例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才
能使所用的材料最???
說(shuō)明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱(chēng)單峰函數(shù)。
說(shuō)明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡(jiǎn)化,其步驟為:
s1列:列出函數(shù)關(guān)系式。
s2求:求函數(shù)的導(dǎo)數(shù)。
s3述:說(shuō)明函數(shù)在定義域內(nèi)僅有一個(gè)極大(小)值,從而斷定為函數(shù)的最大(小)值,必要時(shí)作答。
例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為
多大時(shí),才能使電功率最大?最大電功率是多少?
說(shuō)明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說(shuō)取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。
例4強(qiáng)度分別為a,b的兩個(gè)光源a,b,它們間的距離為d,試問(wèn):在連接這兩個(gè)光源的線(xiàn)段ab上,何處照度最???試就a=8,b=1,d=3時(shí)回答上述問(wèn)題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。
例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱(chēng)為成本函數(shù),記為;出售單位產(chǎn)品的收益稱(chēng)為收益函數(shù),記為;稱(chēng)為利潤(rùn)函數(shù),記為。
(1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?
(2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤(rùn)最大?
四、課堂練習(xí)
1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。
2。在半徑為r的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽?時(shí),它的面積最大。
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面abcd的面積為定值s時(shí),使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b。
五、回顧反思
(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義。
(2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。
(3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單。
六、課外作業(yè)
課本第38頁(yè)第1,2,3,4題。
高中數(shù)學(xué)教案全套必修一篇九
教學(xué)目標(biāo)
解三角形及應(yīng)用舉例
教學(xué)重難點(diǎn)
解三角形及應(yīng)用舉例
教學(xué)過(guò)程
一?;A(chǔ)知識(shí)精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問(wèn)題。
二。問(wèn)題討論
思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論。
思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。
例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)
風(fēng)中心位于城市o(如圖)的東偏南方向
300km的海面p處,并以20km/h的速度向西偏北的
方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,
并以10km/h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到
臺(tái)風(fēng)的侵襲。
一。小結(jié):
1、利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3、邊角互化是解三角形問(wèn)題常用的手段。
三。作業(yè):p80闖關(guān)訓(xùn)練
高中數(shù)學(xué)教案全套必修一篇十
(1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
2、過(guò)程與方法
學(xué)生通過(guò)觀察和類(lèi)比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
3、情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
1、學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
2、教學(xué)用具:三角板、圓規(guī)
(一)創(chuàng)設(shè)情景,揭示課題
1、我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
2、學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1、例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。
根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2、例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
3、探求空間幾何體的直觀圖的畫(huà)法
(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4、平行投影與中心投影
投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
5、鞏固練習(xí),課本p16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟
四、作業(yè)
1、書(shū)畫(huà)作業(yè),課本p17練習(xí)第5題
2、課外思考課本p16,探究(1)(2)
高中數(shù)學(xué)教案全套必修一篇一
高中化學(xué)必修二教案(人教版)
引用:本文《高中化學(xué)必修二教案(人教版)》來(lái)源于師庫(kù)網(wǎng),由師庫(kù)網(wǎng)博客摘錄整理,以下是的詳細(xì)內(nèi)容:開(kāi)發(fā)利用金屬礦物和海水...《基本營(yíng)養(yǎng)物質(zhì)》教案化學(xué)反應(yīng)的速率和限度化學(xué)能與熱能化學(xué)與資源綜合利用、環(huán)...最簡(jiǎn)單的有機(jī)化合物dd...《生活中兩種常見(jiàn)的'有機(jī)...來(lái)自石油和煤的兩種基本...引用:師庫(kù)網(wǎng)溫馨提示本篇內(nèi)容來(lái)源于師庫(kù)網(wǎng),旨在用于課件制作交流,非盈利性質(zhì),僅供參考,針對(duì)本文的問(wèn)題如需了解更詳細(xì),可留言或者聯(lián)系客服tags:教案、課件、師庫(kù)網(wǎng)、教案網(wǎng)、課件網(wǎng)
高中數(shù)學(xué)教案全套必修一篇二
初中新課程中數(shù)學(xué)知識(shí)點(diǎn)刪了很多要求,如“立方和、立方差”公式,“韋達(dá)定理”,“十字相乘法分解因式”等。雖然初中新課程對(duì)這些知識(shí)點(diǎn)不作要求,但是從高中數(shù)學(xué)教學(xué)的實(shí)踐來(lái)看,學(xué)生掌握了這些知識(shí)點(diǎn)對(duì)學(xué)習(xí)新的知識(shí)有一定的促進(jìn)作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實(shí)際情況,做適當(dāng)?shù)难a(bǔ)充,同時(shí),初中學(xué)習(xí)的有理數(shù)乘方及運(yùn)算性質(zhì)和二次函數(shù),這些知識(shí)也要進(jìn)行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運(yùn)算能力的進(jìn)一步強(qiáng)化
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實(shí)踐能力很強(qiáng),但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對(duì)高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時(shí),由于初中大量使用計(jì)算器,學(xué)生的計(jì)算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強(qiáng)的化簡(jiǎn)、變形、推理及運(yùn)算能力有一定的差距,從教學(xué)的實(shí)踐來(lái)看,學(xué)生作業(yè)中出現(xiàn)的大量錯(cuò)誤與計(jì)算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實(shí)際情況,從高一開(kāi)始就要切實(shí)提高學(xué)生的運(yùn)算能力。
3、抓住學(xué)科特點(diǎn),做好順利過(guò)渡
高中數(shù)學(xué)知識(shí)量大,理論性、綜合性強(qiáng),同時(shí)高中課時(shí)少,學(xué)生基礎(chǔ)差等,知識(shí)的難度和對(duì)學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識(shí)綜合性較強(qiáng))。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強(qiáng)的閱讀能力、運(yùn)算能力、邏輯推理能力、抽象思維能力及分析問(wèn)題、解決問(wèn)題的綜合能力,這與初中數(shù)學(xué)知識(shí)點(diǎn)較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實(shí)際情況及時(shí)調(diào)整教學(xué)方法和教學(xué)過(guò)程,使學(xué)生能順利進(jìn)入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
高中數(shù)學(xué)教案全套必修一篇三
一、教學(xué)目標(biāo):
知識(shí)與技能:了解直線(xiàn)參數(shù)方程的條件及參數(shù)的意義
過(guò)程與方法:能根據(jù)直線(xiàn)的幾何條件,寫(xiě)出直線(xiàn)的參數(shù)方程及參數(shù)的意義
情感、態(tài)度與價(jià)值觀:通過(guò)觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過(guò)程,培養(yǎng)創(chuàng)新意識(shí)。
二、重難點(diǎn):
教學(xué)重點(diǎn):曲線(xiàn)參數(shù)方程的定義及方法
教學(xué)難點(diǎn):選擇適當(dāng)?shù)膮?shù)寫(xiě)出曲線(xiàn)的參數(shù)方程.
三、教學(xué)方法:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
四、教學(xué)過(guò)程
(一)、復(fù)習(xí)引入:
1.寫(xiě)出圓方程的標(biāo)準(zhǔn)式和對(duì)應(yīng)的參數(shù)方程。
圓參數(shù)方程(為參數(shù))
(2)圓參數(shù)方程為:(為參數(shù))
2.寫(xiě)出橢圓參數(shù)方程.
(二)、講解新課:
如果已知直線(xiàn)l經(jīng)過(guò)兩個(gè)定點(diǎn)q(1,1),p(4,3),
那么又如何描述直線(xiàn)l上任意點(diǎn)的位置呢?
2、教師引導(dǎo)學(xué)生推導(dǎo)直線(xiàn)的參數(shù)方程:
(1)過(guò)定點(diǎn)傾斜角為的直線(xiàn)的
參數(shù)方程
(為參數(shù))
【辨析直線(xiàn)的參數(shù)方程】:設(shè)m(x,y)為直線(xiàn)上的任意一點(diǎn),參數(shù)t的幾何意義是指從點(diǎn)p到點(diǎn)m的位移,可以用有向線(xiàn)段數(shù)量來(lái)表示。帶符號(hào).
(2)、經(jīng)過(guò)兩個(gè)定點(diǎn)q,p(其中)的'直線(xiàn)的參數(shù)方程為。其中點(diǎn)m(x,y)為直線(xiàn)上的任意一點(diǎn)。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動(dòng)點(diǎn)m分有向線(xiàn)段的數(shù)量比。當(dāng)時(shí),m為內(nèi)分點(diǎn);當(dāng)且時(shí),m為外分點(diǎn);當(dāng)時(shí),點(diǎn)m與q重合。
(三)、直線(xiàn)的參數(shù)方程應(yīng)用,強(qiáng)化理解。
1、例題:
學(xué)生練習(xí),教師準(zhǔn)對(duì)問(wèn)題講評(píng)。反思?xì)w納:
1)求直線(xiàn)參數(shù)方程的方法;
2)利用直線(xiàn)參數(shù)方程求交點(diǎn)。
2、鞏固導(dǎo)練:
補(bǔ)充:
1)直線(xiàn)與圓相切,那么直線(xiàn)的傾斜角為(a)
a.或b.或c.或d.或
2)(坐標(biāo)系與參數(shù)方程選做題)若直線(xiàn)與直線(xiàn)(為參數(shù))垂直,則.
解:直線(xiàn)化為普通方程是,
該直線(xiàn)的斜率為,
直線(xiàn)(為參數(shù))化為普通方程是,
該直線(xiàn)的斜率為,
則由兩直線(xiàn)垂直的充要條件,得,。
(四)、小結(jié):
(1)直線(xiàn)參數(shù)方程求法;
(2)直線(xiàn)參數(shù)方程的特點(diǎn);
(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
(五)、作業(yè):
補(bǔ)充:設(shè)直線(xiàn)的參數(shù)方程為(t為參數(shù)),直線(xiàn)的方程為y=3x+4則與的距離為
【考點(diǎn)定位】本小題考查參數(shù)方程化為普通方程、兩條平行線(xiàn)間的距離,基礎(chǔ)題。
解析:由題直線(xiàn)的普通方程為,故它與與的距離為。
五、教學(xué)反思:
高中數(shù)學(xué)教案全套必修一篇四
集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。 復(fù)習(xí)中首先要把握基礎(chǔ)知識(shí),深刻理解本章的基礎(chǔ)知識(shí)點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。
本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問(wèn)題;分類(lèi)討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時(shí)要重視對(duì)基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來(lái)分析問(wèn)題、解決問(wèn)題的能力。
函數(shù)
函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會(huì)對(duì)具體問(wèn)題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識(shí),最終解決問(wèn)題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)。考查函數(shù)內(nèi)容的同時(shí),用函數(shù)的思想觀點(diǎn)研究問(wèn)題,以及數(shù)形結(jié)合思想、分類(lèi)討論思想的靈活熟練應(yīng)用,也是高考的一個(gè)重點(diǎn)。
規(guī)律方法總結(jié)
求函數(shù)解析式時(shí),針對(duì)條件的特點(diǎn)可選用換元法、待定系數(shù)法、湊項(xiàng)法、列方程組法等進(jìn)行求解。其中換元法是常用的方法,但要特別注意正確確定中間變量的取值范圍,否則就不能正確確定函數(shù)的定義域。 判斷函數(shù)單調(diào)性主要的方法有定義法、導(dǎo)數(shù)法、圖象法。
高中數(shù)學(xué)教案全套必修一篇五
各位老師大家好!
我說(shuō)課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線(xiàn)的傾斜角與斜率第一課時(shí)。
(一)教材分析
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線(xiàn)的傾斜角與斜率第一課時(shí),直線(xiàn)的傾斜角和斜率解析幾何的重要概念;是刻畫(huà)直線(xiàn)傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對(duì)直線(xiàn)的有關(guān)性質(zhì)及平面向量的相關(guān)知識(shí)理解的基礎(chǔ)上,重新以解析法的方式來(lái)研究直線(xiàn)相關(guān)性質(zhì),而本節(jié)課直線(xiàn)的傾斜角與斜率,是直線(xiàn)的重要的幾何性質(zhì),是研究直線(xiàn)的方程形式,直線(xiàn)的位置關(guān)系等的思維的起點(diǎn);另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開(kāi)啟全章、滲透方法,承前啟后的作用。
(二)學(xué)情分析
本節(jié)課的教學(xué)對(duì)象是高二學(xué)生,這個(gè)年齡段的學(xué)生天性活潑,求知欲強(qiáng),并且學(xué)習(xí)主動(dòng),在知識(shí)儲(chǔ)備上知道兩點(diǎn)確定一條直線(xiàn),知道點(diǎn)與坐標(biāo)的關(guān)系,實(shí)現(xiàn)了最簡(jiǎn)單的形與數(shù)的轉(zhuǎn)化;了解刻畫(huà)傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類(lèi)討論的思想。但根據(jù)學(xué)生的認(rèn)知規(guī)律,還沒(méi)有形成自覺(jué)地把數(shù)學(xué)問(wèn)題抽象化的能力。所以在教學(xué)設(shè)計(jì)時(shí)需從學(xué)生的最近發(fā)展區(qū)進(jìn)行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、鞏固和應(yīng)用過(guò)程。
(三)教學(xué)目標(biāo)
1.理解直線(xiàn)的傾斜角和斜率的概念,理解直線(xiàn)的傾斜角的唯一性和斜率的存在性;
2.掌握過(guò)兩點(diǎn)的直線(xiàn)斜率的計(jì)算公式;
3.通過(guò)經(jīng)歷從具體實(shí)例抽象出數(shù)學(xué)概念的過(guò)程,培養(yǎng)學(xué)生觀察、分析和概括能力;
生嚴(yán)謹(jǐn)求簡(jiǎn)的數(shù)學(xué)精神。
重點(diǎn):斜率的概念,用代數(shù)方法刻畫(huà)直線(xiàn)斜率的過(guò)程,過(guò)兩點(diǎn)的直線(xiàn)斜率的計(jì)算公式。
難點(diǎn):直線(xiàn)的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。
(四)教法和學(xué)法
課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過(guò)程中,創(chuàng)設(shè)問(wèn)題的情景,激發(fā)學(xué)生主動(dòng)的發(fā)現(xiàn)問(wèn)題解決問(wèn)題,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個(gè)性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問(wèn)題串的形式,啟發(fā)引導(dǎo)學(xué)生類(lèi)比、聯(lián)想,產(chǎn)生知識(shí)遷移;通過(guò)幾何畫(huà)板演示實(shí)驗(yàn)、探索交流相結(jié)合的教學(xué)方法激發(fā)學(xué)生觀察、實(shí)驗(yàn),體驗(yàn)知識(shí)的形成過(guò)程;由此循序漸進(jìn),使學(xué)生很自然達(dá)到本節(jié)課的學(xué)習(xí)目標(biāo)。
(五)教學(xué)過(guò)程
環(huán)節(jié)1.指明研究方向(3min)
簡(jiǎn)介17世紀(jì)法國(guó)數(shù)學(xué)家笛卡爾和費(fèi)馬的數(shù)學(xué)史。
高中數(shù)學(xué)教案全套必修一篇六
教學(xué)目標(biāo)
1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過(guò)等差數(shù)列和等比數(shù)列的類(lèi)比學(xué)習(xí),培養(yǎng)學(xué)生類(lèi)比歸納的能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類(lèi)討論,函數(shù)的數(shù)學(xué)思想。
教學(xué)重難點(diǎn)
重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過(guò)類(lèi)比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;
難點(diǎn):等比數(shù)列的性質(zhì)的探索過(guò)程。
教學(xué)過(guò)程
教學(xué)過(guò)程:
1、 問(wèn)題引入:
前面我們已經(jīng)研究了一類(lèi)特殊的數(shù)列——等差數(shù)列。
問(wèn)題1:滿(mǎn)足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?
(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。
已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書(shū))an=a1+(n-1)d。
師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
(第一次類(lèi)比)類(lèi)似的,我們提出這樣一個(gè)問(wèn)題。
問(wèn)題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說(shuō)明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話(huà),這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。
師生共同簡(jiǎn)要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的性質(zhì):
下面我們一起來(lái)研究一下等比數(shù)列的性質(zhì)
通過(guò)上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過(guò)類(lèi)比得到等比數(shù)列的性質(zhì)。
問(wèn)題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過(guò)具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。
答案:1458或128。
例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____.
(本題為開(kāi)放題,沒(méi)有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)
1、 小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過(guò)今天的學(xué)習(xí)
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類(lèi)比——猜想——證明的科學(xué)思維的過(guò)程。
2、 作業(yè):
p129:1,2,3
教學(xué)設(shè)計(jì)說(shuō)明:
1、 教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來(lái)學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來(lái),通過(guò)等比數(shù)列和等差數(shù)列的類(lèi)比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類(lèi)比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。
2、 教學(xué)設(shè)計(jì)過(guò)程:本節(jié)課主要從以下幾個(gè)方面展開(kāi):
1) 通過(guò)復(fù)習(xí)等差數(shù)列的定義,類(lèi)比得出等比數(shù)列的定義;
2) 等比數(shù)列的通項(xiàng)公式的推導(dǎo);
3) 等比數(shù)列的性質(zhì);
有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊
知識(shí),另一方面使學(xué)生通過(guò)聯(lián)想,為類(lèi)比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。
在類(lèi)比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類(lèi)比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過(guò)問(wèn)題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。
通過(guò)等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類(lèi)比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過(guò)類(lèi)比
關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開(kāi)放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。
高中數(shù)學(xué)教案全套必修一篇七
1、知識(shí)與技能:掌握畫(huà)三視圖的基本技能,豐富學(xué)生的空間想象力。
2、過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3、情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫(huà)出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類(lèi)比。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情景,揭開(kāi)課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的。投影;
平行投影:在一束平行光線(xiàn)照射下形成的投影。
正投影:在平行投影中,投影線(xiàn)正對(duì)著投影面。
2、三視圖:
正視圖:光線(xiàn)從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線(xiàn)從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線(xiàn)從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱(chēng)為幾何體的三視圖。
三視圖的畫(huà)法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。
長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫(huà)長(zhǎng)方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。
4、畫(huà)圓柱、圓錐的三視圖:
5、探究:畫(huà)出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)
課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本p20習(xí)題1.2[a組]1。
高中數(shù)學(xué)教案全套必修一篇八
學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。
2。通過(guò)實(shí)際問(wèn)題的研究,促進(jìn)學(xué)生分析問(wèn)題、解決問(wèn)題以及數(shù)學(xué)建模能力的提高。
教學(xué)重點(diǎn):
如何建立實(shí)際問(wèn)題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。
教學(xué)過(guò)程:
一、問(wèn)題情境
問(wèn)題1把長(zhǎng)為60cm的鐵絲圍成矩形,長(zhǎng)寬各為多少時(shí)面積最大?
問(wèn)題3做一個(gè)容積為256l的方底無(wú)蓋水箱,它的高為多少時(shí)材料最省?
二、新課引入
導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題。
1。幾何方面的應(yīng)用(面積和體積等的最值)。
2。物理方面的應(yīng)用(功和功率等最值)。
3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤(rùn)方面最值)。
三、知識(shí)建構(gòu)
說(shuō)明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。
說(shuō)明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類(lèi)似,加一步與幾個(gè)極
值及端點(diǎn)值比較即可。
例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才
能使所用的材料最???
說(shuō)明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱(chēng)單峰函數(shù)。
說(shuō)明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡(jiǎn)化,其步驟為:
s1列:列出函數(shù)關(guān)系式。
s2求:求函數(shù)的導(dǎo)數(shù)。
s3述:說(shuō)明函數(shù)在定義域內(nèi)僅有一個(gè)極大(小)值,從而斷定為函數(shù)的最大(小)值,必要時(shí)作答。
例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為
多大時(shí),才能使電功率最大?最大電功率是多少?
說(shuō)明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說(shuō)取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。
例4強(qiáng)度分別為a,b的兩個(gè)光源a,b,它們間的距離為d,試問(wèn):在連接這兩個(gè)光源的線(xiàn)段ab上,何處照度最???試就a=8,b=1,d=3時(shí)回答上述問(wèn)題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。
例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱(chēng)為成本函數(shù),記為;出售單位產(chǎn)品的收益稱(chēng)為收益函數(shù),記為;稱(chēng)為利潤(rùn)函數(shù),記為。
(1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低?
(2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤(rùn)最大?
四、課堂練習(xí)
1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。
2。在半徑為r的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽?時(shí),它的面積最大。
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面abcd的面積為定值s時(shí),使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b。
五、回顧反思
(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義。
(2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。
(3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單。
六、課外作業(yè)
課本第38頁(yè)第1,2,3,4題。
高中數(shù)學(xué)教案全套必修一篇九
教學(xué)目標(biāo)
解三角形及應(yīng)用舉例
教學(xué)重難點(diǎn)
解三角形及應(yīng)用舉例
教學(xué)過(guò)程
一?;A(chǔ)知識(shí)精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問(wèn)題。
二。問(wèn)題討論
思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論。
思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。
例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)
風(fēng)中心位于城市o(如圖)的東偏南方向
300km的海面p處,并以20km/h的速度向西偏北的
方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,
并以10km/h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到
臺(tái)風(fēng)的侵襲。
一。小結(jié):
1、利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3、邊角互化是解三角形問(wèn)題常用的手段。
三。作業(yè):p80闖關(guān)訓(xùn)練
高中數(shù)學(xué)教案全套必修一篇十
(1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
2、過(guò)程與方法
學(xué)生通過(guò)觀察和類(lèi)比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
3、情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
1、學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
2、教學(xué)用具:三角板、圓規(guī)
(一)創(chuàng)設(shè)情景,揭示課題
1、我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
2、學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1、例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。
根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2、例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
3、探求空間幾何體的直觀圖的畫(huà)法
(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4、平行投影與中心投影
投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
5、鞏固練習(xí),課本p16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟
四、作業(yè)
1、書(shū)畫(huà)作業(yè),課本p17練習(xí)第5題
2、課外思考課本p16,探究(1)(2)