對于每個人來說,總結(jié)都是一種重要的思維和反思方式。寫總結(jié)要有簡明扼要的風(fēng)格,用簡練的語言表達復(fù)雜的問題。以下是小編為大家推薦的一些優(yōu)秀書籍和文章,希望能為大家提供新的觀點和啟發(fā)。
人教版函數(shù)的教學(xué)設(shè)計篇一
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個重要內(nèi)容,它不僅與現(xiàn)實生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅實的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學(xué)重點是:函數(shù)的奇偶性及其幾何意義。
2、本課時的教學(xué)難點是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標。
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析。
1、教學(xué)方法:啟發(fā)引導(dǎo)式。
結(jié)合本章實際,教材簡單易懂,重在應(yīng)用、解決實際問題,本節(jié)課準備采用“引導(dǎo)發(fā)現(xiàn)法”進行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí)。
三、教輔手段。
四、教學(xué)過程。
為了達到預(yù)期的教學(xué)目標,我對整個教學(xué)過程進行了系統(tǒng)地規(guī)劃,設(shè)計了五個主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的.痕跡,然后將紙展開。觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標有什么特點。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何。
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。
思考:由于對任一x,必須有一-x與之對應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點對稱。根據(jù)以上特點,請學(xué)生用完整的語言敘述定義,同時給出板書:
(1)函數(shù)f(x)的定義域為a,且關(guān)于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)。
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強調(diào)注意點:“定義域關(guān)于原點對稱”的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進行課堂鞏固,強調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點對稱,二是定義域雖關(guān)于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進行當(dāng)堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)。
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。
五、板書設(shè)計。
人教版函數(shù)的教學(xué)設(shè)計篇二
本節(jié)課的教學(xué)模式是采用循序漸進,由簡單的問題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對所學(xué)的實際結(jié)論進行學(xué)生的實際應(yīng)用。
一、這種教學(xué)模式的教學(xué)程序是:
(一)實際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。
(二)看圖,具體引入函數(shù)進行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。
(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強調(diào)定義中的注意事項,怎樣理解定義中的規(guī)定。
(四)教師具體以例題進行示范,學(xué)生們領(lǐng)會對函數(shù)奇偶性的`認識,并怎樣進行判斷。
(五)同學(xué)們在領(lǐng)會的基礎(chǔ)上,進行實際訓(xùn)練,達到對知識的理解和應(yīng)用。
二、這種教學(xué)模式的優(yōu)勢是:循序漸進,學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。
這種教學(xué)模式的缺點與解決方法是:
還缺乏對學(xué)生更高層次的參與的調(diào)動,尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問題。對配套練習(xí)要進一步細化,要對每一個知識點都要精心設(shè)計相應(yīng)知識點的訓(xùn)練,圖像的認識上,要加大同學(xué)們對生活的感知和相關(guān)軟件的使用,并能在電腦上實際體驗函數(shù)圖像的對稱情況。
人教版函數(shù)的教學(xué)設(shè)計篇三
在本節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個方面的問題:
1.幻燈片的設(shè)計。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計,在出現(xiàn)某些字或者數(shù)字時應(yīng)直接出現(xiàn),而不要設(shè)計成動畫的形式,以免學(xué)生分散注意力。
2.學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的`考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3.例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學(xué)生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6.教案設(shè)計的完整。
在本節(jié)課教學(xué)中我因為考慮到有幻燈片而沒有在教案中設(shè)計“板書設(shè)計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計“板書設(shè)計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
人教版函數(shù)的教學(xué)設(shè)計篇四
這節(jié)課的內(nèi)容是八年級(第二學(xué)期)第二十章“一次函數(shù)”的第二節(jié)“一次函數(shù)的圖像”的第三課時,內(nèi)容是結(jié)合一次函數(shù)圖像研究一次函數(shù)與一元一次方程以及一元一次不等式之間的關(guān)系。
學(xué)生在本節(jié)課之前已經(jīng)學(xué)習(xí)過一次函數(shù)及其圖像,一元一次方程,一元一次不等式,通過本節(jié)的教學(xué),可加強這些知識間的聯(lián)系,發(fā)揮函數(shù)對相關(guān)內(nèi)容的統(tǒng)領(lǐng)作用,能用一次函數(shù)可以把以前學(xué)習(xí)的方程和不等式等不同的數(shù)學(xué)概念統(tǒng)一起來,從而深化學(xué)生對方程與不等式的理解,使新舊知識融會貫通,促進學(xué)生良好知識結(jié)構(gòu)的形成。同時也為進一步學(xué)習(xí)“三個二次之間的關(guān)系”打下基礎(chǔ)。
二、教學(xué)目標分析。
1.能借助一次函數(shù)的圖像認識一元一次方程的解、一元一次不等式的解集,理解一元一次方程、一元一次不等式與一次函數(shù)之間的內(nèi)在聯(lián)系。
2.經(jīng)歷由具體到抽象、由直觀感知到得出一般結(jié)論的認知過程,體會數(shù)形結(jié)合的數(shù)學(xué)思想,提高由圖像獲取有用信息的能力以及分析與解決問題的能力。
教學(xué)重點、難點。
能以函數(shù)的觀點認識一元一次方程的解、一元一次不等式的解集。
三、教學(xué)問題診斷。
在學(xué)習(xí)本課內(nèi)容時,學(xué)生已經(jīng)掌握了一元一次方程,一元一次不等式,一次函數(shù)等知識,會畫一次函數(shù)的圖像,會用代數(shù)方法解一元一次不等式。大部分的學(xué)生正在艱難的由形象思維向抽象思維發(fā)展。觀察力偏重于第一印象,仍用自己原有的認識與知識結(jié)構(gòu)作出判斷,不會自覺利用直角坐標系從函數(shù)的這種數(shù)形對應(yīng)角度出發(fā)考慮,很難利用圖像中的信息分析和解決問題?;谏鲜銮闆r,預(yù)測學(xué)生在理解一次函數(shù)與一元一次不等式之間的關(guān)系時會產(chǎn)生困難。
四、教法特點。
1.突出數(shù)形結(jié)合的數(shù)學(xué)思想。
2.創(chuàng)設(shè)實際問題情景。
數(shù)學(xué)來源于生活,數(shù)學(xué)應(yīng)用于生活。世博是今年大家十分關(guān)注的一個話題,許多學(xué)生已經(jīng)是多次進入園區(qū)參觀,大溫度計上的數(shù)學(xué)問題來自于學(xué)生真實的日常生活,有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,大家在不知不覺中進入了今天學(xué)習(xí)的內(nèi)容。
在溫度計的背景下,提出溫度的兩種度量制度。圍繞這一情景提出了如下三個問題:第一個問題是畫出一次函數(shù)圖像,這既復(fù)習(xí)了舊知,又為新知的學(xué)習(xí)創(chuàng)造了條件;第二個問題是當(dāng)華氏度為0時,攝氏度為多少?對這一問題從“數(shù)”與“形”兩個方面入手分析研究,得出了這個一次函數(shù)與相應(yīng)一元一次方程之間的關(guān)系,然后推廣到一般情形;第三個問題是當(dāng)華氏度大于(小于0)時,相應(yīng)攝氏度應(yīng)在什么范圍內(nèi)取值?對這一問題的研究得出了這個一次函數(shù)與相應(yīng)一元一次不等式之間的關(guān)系。
3.充分展現(xiàn)知識的形成過程。
4.通過問題驅(qū)動來激發(fā)思維。
首先,由問題引發(fā)學(xué)生的思考,體會一次函數(shù)與一元一次方程之間的關(guān)系。這一部分的學(xué)習(xí),比較多的學(xué)生能夠通過觀察得出具體的結(jié)論:一次函數(shù)圖像與x軸交點坐標的橫坐標就是此函數(shù)對應(yīng)的一元一次方程的解。反之亦然。這一部分內(nèi)容的學(xué)習(xí)不僅是本節(jié)課的重點之一,為接下來的難點突破打下了基礎(chǔ)。
接下來,繼續(xù)由問題引發(fā)學(xué)生的思考,這一部分的教學(xué)是本節(jié)課的重難點,相比較前一部分(一次函數(shù)與一元一次方程之間的關(guān)系)這部分的內(nèi)容對于學(xué)生來說更抽象,更難以理解。為了幫助學(xué)生理解這部分內(nèi)容,我設(shè)計了這幾個環(huán)節(jié):
(1)通過思考問題2,學(xué)生找到圖像中符合條件的那一部分,為下面的從具體到抽象提供載體;在這里問題的設(shè)計具有層次性,學(xué)生在問題中得到適當(dāng)?shù)囊龑?dǎo)與啟發(fā),學(xué)生的積極性會很高,對于他們的回答我也都將給予充分的肯定與表揚。
(2)從具體問題入手,討論一次函數(shù)圖像與一元一次不等式之間的關(guān)系。為了使得學(xué)生深入理解這一問題且考慮到學(xué)生群體學(xué)習(xí)能力的參差不齊,利用幾何畫板動態(tài)演示,追蹤符合條件的點的軌跡,使學(xué)生從圖像上直觀獲取符合條件的點的橫坐標的取值范圍這一信息。
(3)在最后抽象到一般時采用先小組討論再全班交流的形式,這樣安排使學(xué)生形成自己對數(shù)學(xué)知識的理解并且進行了有效的學(xué)習(xí),培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想以及在交流中發(fā)展學(xué)生的合作意識和交流能力。
五、預(yù)期效果分析。
總之,本節(jié)課采用觀察、探究、交流、歸納等多種教學(xué)方式,并配合多媒體操作演示、師生互動,給學(xué)生以充分展示自我的機會和平臺,從而調(diào)動學(xué)生主動參與課堂教學(xué)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)了學(xué)生自主探究的能力,使之真正成為了學(xué)習(xí)的主人。然而,如何很好地調(diào)控學(xué)生,激發(fā)每一位同學(xué)的學(xué)習(xí)潛能,在今后的教學(xué)中還有待努力去探索。
人教版函數(shù)的教學(xué)設(shè)計篇五
本設(shè)計遵循了由淺入深、循序漸進的原則,分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的'二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。本節(jié)只是函數(shù)與方程的關(guān)系建立的第一步,教學(xué)中忌面面具到,延展太深。
恰當(dāng)使用信息技術(shù):本節(jié)的教學(xué)中應(yīng)當(dāng)充分使用信息技術(shù)。實際上,一些內(nèi)容因為涉及大數(shù)字運算、大量的數(shù)據(jù)處理、超越方程求解以及復(fù)雜的函數(shù)作圖,因此如果沒有信息技術(shù)的支持,教學(xué)是不容易展開的。因此,教學(xué)中會加強信息技術(shù)的使用力度,合理使用多媒體和計算器。讓學(xué)生直觀形象地理解問題,了解知識的形成過程。
采用問題式教學(xué),“設(shè)問——探索——歸納——定論”層層遞進的方式來突破本課的重難點。引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、體會知識的形成過程。創(chuàng)設(shè)民主、和諧的課堂氛圍。引導(dǎo)學(xué)生進行積極主動的學(xué)習(xí),培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)情感。對數(shù)學(xué)思想如函數(shù)方程思想、數(shù)形結(jié)合思想的滲透還不到位,課后需要進一步加強引導(dǎo)。
方程的根與函數(shù)的零點是高中課程標準新增的內(nèi)容,表面上看,這一內(nèi)容的教學(xué)并不困難,但要讓學(xué)生能夠真正理解,教學(xué)還需要妥善處理其中的一些問題。首先要讓學(xué)生認識到學(xué)習(xí)函數(shù)的零點的必要性,其次教學(xué)要把握內(nèi)容結(jié)構(gòu),突出思想方法。在實踐和反思中不斷地發(fā)現(xiàn)和解決新的問題,教學(xué)效果才會逐步得到提高。
人教版函數(shù)的教學(xué)設(shè)計篇六
在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動,讓學(xué)生在動手實踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動要能激發(fā)學(xué)生探求新知識的興趣和欲望,逐步培養(yǎng)他們提問的意識,鼓勵學(xué)生多思考。同時還要關(guān)注他們在數(shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。
在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對應(yīng)的二次函數(shù)的圖象和x軸的交點的橫坐標之間的關(guān)系,給出函數(shù)的零點的概念,并揭示了方程的根與對應(yīng)的函數(shù)的零點之間的關(guān)系。然后,通過探究介紹了判斷一個函數(shù)在某個給定區(qū)間存在零點的方法和二分法。并且,教科書在“用二分法求函數(shù)零點的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。
人教版函數(shù)的教學(xué)設(shè)計篇七
二、目標和目標解析。
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
三、教學(xué)問題診斷分析。
四、教學(xué)支持條件分析。
(一)引入課題。
問題引入:求方程3x2+6x-1=0的實數(shù)根。
變式:解方程3x5+6x-1=0的實數(shù)根.(一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。)。
設(shè)計意圖:從學(xué)生的認知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標。
人教版函數(shù)的教學(xué)設(shè)計篇八
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學(xué)生更形象的看到對稱。例題展現(xiàn)、問題展現(xiàn),節(jié)約了教師黑板抄題的時間,提高了課堂效率。當(dāng)然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內(nèi)容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內(nèi)容就不用放入課件,如:例題的解題過程和在黑板上必須呈現(xiàn)的內(nèi)容不用再搬到課件上去,否則學(xué)生也不知道該看黑板還是課件,增大了學(xué)生學(xué)習(xí)負擔(dān),降低了學(xué)習(xí)效率。所以我在課件制作中,注重內(nèi)容與黑板板書不重疊。
在多媒體應(yīng)用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設(shè)計教學(xué)設(shè)計的過程中,充分考慮課程標準和教材的要求來確定教學(xué)目標,把握學(xué)生的學(xué)習(xí)水平,在教學(xué)中給學(xué)生充分思考的時間和空間,尊重學(xué)生的思想方法,點評優(yōu)化學(xué)生的學(xué)習(xí)收獲,充分調(diào)動學(xué)生探究的積極性,培養(yǎng)學(xué)生學(xué)習(xí)的興趣。在教學(xué)中不變的是先進的教學(xué)理念和合理的教學(xué)設(shè)計。放手給學(xué)生們自主學(xué)和研究就是我們應(yīng)該大膽做的。從學(xué)生的角度設(shè)計教學(xué),才能體現(xiàn)以學(xué)生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學(xué)技術(shù)、教學(xué)專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設(shè)計,那樣的課堂才能高效,學(xué)生才會喜歡。
在本節(jié)課中重點之一是函數(shù)奇偶性概念的理解,從實例引入,讓學(xué)生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質(zhì)讓學(xué)生給出概念,老師總結(jié),再讓學(xué)生回頭感悟,有利于學(xué)生真正理解概念和應(yīng)用概念。如何理解0再定義域內(nèi)時,奇函數(shù)在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學(xué)生探究的欲望,學(xué)得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學(xué)素養(yǎng)、技術(shù),才能真正提高咱們的教學(xué)理念。
人教版函數(shù)的教學(xué)設(shè)計篇九
在課堂教學(xué)中,我發(fā)現(xiàn)當(dāng)將常識問題類推函數(shù)圖象與x軸交點存在所需條件時,學(xué)生有些茫然。反思除了學(xué)生對這種抽象方式不太習(xí)慣以外,我感到其中的過渡有問題。教學(xué)中,將小溪類比成x軸,將前后的位置類比成函數(shù)中的兩個點。課后我覺得將前后的位置類比成函數(shù)中的兩個點不確切,而且不能引起學(xué)生的思考,因為兩者最相似之處是行程路線與函數(shù)圖象,應(yīng)該將行程路線類比成函數(shù)圖象更佳。要清楚學(xué)生的認知狀況。在課堂中,學(xué)生在分析定理其中一個條件“不連續(xù)”時,舉了反比例函數(shù)的例子。我只是在黑板上比劃了一下,沒有畫出來。
主要的考慮是認為反比例函數(shù)在[a,b]上并不都有意義與定理中的條件違背,我想回避掉,然后用自己的分段函數(shù)來代替。課后,我重新反思這個細節(jié),學(xué)生頭腦中的不連續(xù)最深刻的就是反比例函數(shù)應(yīng)該將它畫出來,不應(yīng)該只因定理中這個細節(jié)去“較真”,然后讓學(xué)生再思考是否還有其它的不連續(xù)函數(shù),相信學(xué)生能從高中階段的函數(shù)模型找到分段函數(shù)的不連續(xù)的圖象,從而對不連續(xù)有更深刻的認識。從學(xué)生的認知實際出發(fā),通過學(xué)習(xí)學(xué)生才能同化新的知識,形成新的知識結(jié)構(gòu)。學(xué)生注意力的控制。在課堂中學(xué)生的注意力是不可能長時間的集中。如何控制和分配學(xué)生的注意力,我認為很重要。存在性定理的研究是本節(jié)課的重點。當(dāng)展示這個推理的實例時,學(xué)生的注意力開始調(diào)動起來,而我得到需要的兩個結(jié)果后,馬上轉(zhuǎn)移了學(xué)生的注意力,使得這個“趁熱打鐵”的機會失去。學(xué)生正出于活躍的思維之中,如果能進一步激發(fā)他們的思維,那么對定理的分析將會更深入。
人教版函數(shù)的教學(xué)設(shè)計篇十
教學(xué)中,對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則。分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。
除了函數(shù)模型的應(yīng)用之外,還要介紹函數(shù)的零點與方程的根的關(guān)系,用二分法求方程的近似解,以及幾種不同增長的函數(shù)模型。教科書在處理上,以函數(shù)模型的應(yīng)用這一內(nèi)容為主線,以幾個重要的函數(shù)模型為對象或工具,將各部分內(nèi)容緊密結(jié)合起來,使之成為一個系統(tǒng)的整體。教學(xué)中應(yīng)當(dāng)注意貫徹教科書的這個意圖,是學(xué)生經(jīng)歷函數(shù)模型應(yīng)用的完整。
人教版函數(shù)的教學(xué)設(shè)計篇十一
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
做一做書本p56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學(xué)生的運算能力又一般,因此,建議把這個表格的一部分數(shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
議一議書本p56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。
在對三種表示方式進行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇十二
1.理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖象,性質(zhì)及其簡單應(yīng)用.
2.通過指數(shù)函數(shù)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點和難點。
難點是認識底數(shù)對函數(shù)值影響的認識.
教學(xué)用具。
投影儀。
教學(xué)方法。
啟發(fā)討論研究式。
教學(xué)過程。
一.引入新課。
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的'問題:。
由學(xué)生回答:與之間的關(guān)系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.
由學(xué)生回答:.
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).
1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關(guān)于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以指數(shù)函數(shù)的定義域為.擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值.
剛才分別認識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).
(1),(2),(3)。
(4),(5).
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.
最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì).
3.歸納性質(zhì)。
作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學(xué)生回答.
函數(shù)。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4.截距:在軸上沒有,在軸上為1.
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應(yīng)會證明.對于單調(diào)性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了.取點時還要提醒學(xué)生由于不具備對稱性,故的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少.
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(zhì)(板書)。
1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法.
2.草圖:。
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關(guān)于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學(xué)生仿照此例再列一個的表,將相應(yīng)的內(nèi)容填好.為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì).
3.性質(zhì).
(1)無論為何值,指數(shù)函數(shù)都有定義域為,值域為,都過點.
(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù).
(3)時,,時,.
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).
三.簡單應(yīng)用(板書)。
1.利用指數(shù)函數(shù)單調(diào)性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數(shù),且。
(板書)。
教師最后再強調(diào)過程必須寫清三句話:。
(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.
(2)自變量的大小比較.
(3)函數(shù)值的大小比較.
后兩個題的過程略.要求學(xué)生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生指數(shù)函數(shù)的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出1,1,.
解決后由教師小結(jié)比較大小的方法。
(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0.
三.鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結(jié)。
3.簡單應(yīng)用。
五.板書設(shè)計。
探究活動。
答案:有兩個交點.
答案:15天的合同可以簽,而30天的合同不能簽.
人教版函數(shù)的教學(xué)設(shè)計篇十三
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個具體函數(shù),所以在這部分的教學(xué)安排上,我更注意學(xué)生思維習(xí)慣的養(yǎng)成,特作如下思考:
1、設(shè)計應(yīng)從哪些方面,哪些角度去探索一個具體函數(shù),我在這部分設(shè)置了三個環(huán)節(jié)。
(1)由具體的折紙的例子引出指數(shù)函數(shù)。
設(shè)計意圖:貼近學(xué)生的生活實際,便于動手操作與觀察。讓學(xué)生充分感受我們生活中大量存在指數(shù)函數(shù)模型,從而便于學(xué)生接受指數(shù)函數(shù)的形式,突破符號語言的障礙。
(2)通過研究幾個特殊的底數(shù)的指數(shù)函數(shù)得到一般指數(shù)函數(shù)的規(guī)律。符合學(xué)生由特殊到一般的,由具體到抽象的學(xué)習(xí)認知規(guī)律。
(3)通過多媒體手段,用計算機作出底數(shù)a變換的圖像,讓學(xué)生更直觀、深刻的感受指數(shù)函數(shù)的圖像及性質(zhì)。
通過引入定義剖析辨析運用,這個由特殊到一般的過程揭示了概念的內(nèi)涵和外延;而后在教師的點撥下,學(xué)生作圖觀察探究交流概括運用,使學(xué)生在動手操作、動眼觀察、動腦思考、合作探究中達到對知識的發(fā)現(xiàn)和接受,同時滲透了分類討論、數(shù)形結(jié)合的思想,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)概念、性質(zhì)和方法的能力,養(yǎng)成了良好的學(xué)習(xí)習(xí)慣。
2、課堂練習(xí)前后呼應(yīng),各有側(cè)重。
通過問題呈現(xiàn),變式教學(xué),不但突出了重點內(nèi)容,把知識加固、挖深。使教學(xué)目標得以實現(xiàn)。而且注重知識的延續(xù)性,為以后的學(xué)習(xí)奠定了基礎(chǔ)。
3、教學(xué)過程設(shè)計為六個環(huán)節(jié):
1、情景設(shè)置,形成概念2、發(fā)現(xiàn)問題,深化概念。
3、深入探究圖像,加深理解性質(zhì)。
4、強化訓(xùn)練,落實掌握。
5、小結(jié)歸納,拓展深化。
6、布置作業(yè),延伸課堂。各個環(huán)節(jié)層層深入,環(huán)環(huán)相扣,充分體現(xiàn)了在教師的'指導(dǎo)下,師生、生生之間的交流互動,使學(xué)生親身經(jīng)歷知識的形成和發(fā)展過程。
4、通過學(xué)案教學(xué)為抓手,讓學(xué)生先學(xué)。
老師在課前充分了解了學(xué)情,以學(xué)定教,進行二次備課,抓住學(xué)生的學(xué)習(xí)困難,站在學(xué)生學(xué)的角度設(shè)計教學(xué)。
5、學(xué)生真思考,學(xué)生的真探究,才是保障教學(xué)目標得以實現(xiàn)的前提。
在教學(xué)中,教師通過教學(xué)設(shè)計要以給學(xué)生充分的思維空間、推理運算空間和交流學(xué)習(xí)空間,努力創(chuàng)設(shè)一個“活動化的課堂”才可能真正喚起學(xué)生的生命主體意識,引領(lǐng)他們走上自主構(gòu)建知識意義的發(fā)展路徑。
人教版函數(shù)的教學(xué)設(shè)計篇十四
“指數(shù)函數(shù)及性質(zhì)”的教學(xué)共分兩個課時完成,這是第一課時。本節(jié)課主要學(xué)習(xí)了指數(shù)函數(shù)的定義,研究了指數(shù)函數(shù)的圖像及相關(guān)的性質(zhì)。回顧這節(jié)課,心中有很多感想,也有下面一些思考:
1.這節(jié)課是在學(xué)生系統(tǒng)的學(xué)習(xí)了指數(shù)概念、函數(shù)概念,基本掌握了函數(shù)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,具有初步的函數(shù)知識,但是對于研究具體的初等函數(shù)的性質(zhì)的基本方法和步驟還比較陌生,對于指數(shù)函數(shù)要怎么樣進行較為系統(tǒng)的研究對學(xué)生來說是有困難的,因此這節(jié)課的每一個環(huán)節(jié)以我引導(dǎo),以學(xué)生的自主探究為主來完成是符合學(xué)情的。
2.設(shè)計“指數(shù)函數(shù)的圖象及性質(zhì)”,“y=ax的圖象和y=(1/a)x的圖象間的關(guān)系”.“a的大小對函數(shù)圖象的影響”三個問題,讓學(xué)生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達到對知識的發(fā)現(xiàn)和接受,改變過去機械接受和死記結(jié)論的狀況,符合新課改的理念,同時也完成了這節(jié)課的主要教學(xué)任務(wù)。
3.在對底數(shù)a的范圍的思考及三個探究性問題后都設(shè)置了練習(xí),能及時反饋學(xué)生對所探求到的知識的掌握程度,便于及時調(diào)整課堂教學(xué)行為。從課后看學(xué)生對這些知識的掌握應(yīng)該是比較好的。
4.這節(jié)課的學(xué)習(xí)及對函數(shù)研究方法和步驟的總結(jié)對后續(xù)學(xué)習(xí)新的函數(shù)起到了重要的示范作用。
在整個的教學(xué)過程中,始終體現(xiàn)以學(xué)生為本的教育理念。在學(xué)生已有的認知基礎(chǔ)上進行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認知過程,強調(diào)學(xué)生的品德、思維和心理等方面的發(fā)展。重視討論、交流和合作,重視探究問題的習(xí)慣的培養(yǎng)和養(yǎng)成。同時,考慮不同學(xué)生的個性差異和發(fā)展層次,使不同的學(xué)生都有發(fā)展,體現(xiàn)因材施教的原則。
在教學(xué)的過程中,考慮到學(xué)生的實際,有意地設(shè)計了一些鋪墊和引導(dǎo),既鞏固舊有知識,又為新知識提供了附著點,充分體現(xiàn)學(xué)生的主體地位。
三.存在的問題。
1.沒有充分調(diào)動學(xué)生的積極性,課堂氣氛顯得沉悶。
2.盡量放手讓學(xué)生自己去解決問題,教師自己講得偏多,學(xué)生的主體作用體現(xiàn)得不夠。
3.指數(shù)函數(shù)概念部分的教學(xué)時間稍多,后面教學(xué)過程稍顯倉促,學(xué)生自主探究的時間不夠,因此違背了教學(xué)設(shè)計的初衷。當(dāng)然我會通過對學(xué)生作業(yè)的批改獲得更全面的對學(xué)生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設(shè)計方案,達到預(yù)期的教學(xué)效果,實現(xiàn)學(xué)生的目標掌握和能力發(fā)展。
人教版函數(shù)的教學(xué)設(shè)計篇十五
“指數(shù)函數(shù)”的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用?!爸笖?shù)函數(shù)”第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準備。
在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨立提出問題、解決問題??傊{(diào)動學(xué)生的非智力因素來促進智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
為了調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動學(xué)習(xí)為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準確性。總之,本堂課充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
人教版函數(shù)的教學(xué)設(shè)計篇十六
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇十七
由于每個學(xué)生的基礎(chǔ)知識、智力水平和學(xué)習(xí)方法等都存在一定差別,所以本節(jié)課采用分層教學(xué)。既創(chuàng)設(shè)舞臺讓優(yōu)秀生表演,又要重視給后進生提供參與的機會,使其增強學(xué)習(xí)數(shù)學(xué)的信心。具體題目安排從易到難,形成梯度,符合學(xué)生的認知規(guī)律,使全體學(xué)生都能得到不同程度的提高。
1.掌握二次函數(shù)的圖像和性質(zhì),了解一元二次方程與二次函數(shù)的關(guān)系,能依據(jù)已知條件確定二次函數(shù)的關(guān)系式。
2.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.通過學(xué)習(xí)和探究xxxx考點問題,滲透數(shù)形結(jié)合思想及分類討論思想。
3.查漏補缺,采用小組學(xué)習(xí)使復(fù)習(xí)更有效,學(xué)生在自主探索與合作交流的過程中,全方位“參與”問題的解決,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法。
如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題。
[活動1]學(xué)生分組處理前置性作業(yè)
教師出示習(xí)題答案。組織學(xué)生合作交流,深入到每個小組,針對不同情況加強指導(dǎo)。
教師重點關(guān)注學(xué)困生。
針對學(xué)生的實際情況,對習(xí)題進行分層處理,樹立學(xué)困生學(xué)習(xí)數(shù)學(xué)的信心。
[活動2]師生共同解決作業(yè)中存在的問題
學(xué)生自主研究,分組討論后,然后提出問題,教師對學(xué)生回答的問題進行評價
教師重點歸納數(shù)學(xué)思想。
通過對習(xí)題的處理,使學(xué)生進一步加深對二次函數(shù)有關(guān)概念及性質(zhì)的理解,能用函數(shù)觀點解決實際問題。同時,小組學(xué)習(xí)也使學(xué)生全方位參與問題的解決。
[活動3]習(xí)題現(xiàn)中考
例1(xxxx,南寧)
教師結(jié)合教材對比、分析
學(xué)生小組合作,完成例題
教師歸納:本題考查了二次函數(shù)、一元二次方程與梯形的面積等知識。
對于二次函數(shù)與其他知識的綜合應(yīng)用,關(guān)鍵要讓學(xué)生掌握解題思路,把握題型,能利用數(shù)形結(jié)合思想進行分析,從而把握解題的突破口。
[活動4]例題現(xiàn)中考
例2(xxxx,濟寧)
例3(xxxx,黔東南州)
學(xué)生自學(xué),教師指導(dǎo),讓學(xué)生討論回答這兩道題的共同特點。
讓學(xué)生根據(jù)討論的結(jié)果概括、歸納出“每每型”二次函數(shù)模型的題型特點和解決這類問題的關(guān)鍵。
[活動5]知識提高階段
教師給出一組習(xí)題,學(xué)生討論完成。
知識再運用有助于知識的鞏固。
[活動6]小結(jié)、布置作業(yè)
問題
本節(jié)學(xué)了哪些內(nèi)容?你認為最重要的內(nèi)容是什么?
布置作業(yè)
把錯題整理到作業(yè)本上。
師生共同小結(jié),加深對本節(jié)課知識的理解。
讓學(xué)生參與小結(jié)并有不同的答案,可以增強學(xué)生學(xué)習(xí)的積極性和主動性,培養(yǎng)學(xué)生對所學(xué)知識回顧思考的習(xí)慣。
人教版函數(shù)的教學(xué)設(shè)計篇十八
正比例函數(shù)是本章的重點內(nèi)容,是學(xué)生在初中階段第一次接觸的函數(shù),這部分內(nèi)容的學(xué)習(xí)是在學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)的概念及圖像的基礎(chǔ)之上進行的。它是對前面所學(xué)知識的應(yīng)用,又為后面學(xué)習(xí)做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。
學(xué)情分析。
學(xué)習(xí)本節(jié)課之前,學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)等知識。在描點法的學(xué)習(xí)中初步感受了通過描點法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學(xué)習(xí)做好準備,所以本節(jié)課的學(xué)習(xí)問題不大。
知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個變量是否構(gòu)成正比例函數(shù)關(guān)系。
數(shù)學(xué)思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學(xué)習(xí)和探究,感知數(shù)行結(jié)合思想。
解決問題:1、能夠要求運用“列表法”和“兩點法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學(xué)問題。
情感態(tài)度:1、結(jié)合描點作圖,培養(yǎng)學(xué)生認真、細心、嚴謹?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。2、通過正比率函數(shù)概念的引入,使學(xué)生進一步認識數(shù)學(xué)是由于人們需要而產(chǎn)生的,與現(xiàn)實世界密切相關(guān)。同時滲透熱愛自然和生活的教育。
教學(xué)重點和難點。
重點:正比率函數(shù)的概念。
難點:正比率函數(shù)的性質(zhì)。
人教版函數(shù)的教學(xué)設(shè)計篇十九
對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學(xué)的實用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用.
根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認知特點確定教學(xué)目標如下:
學(xué)習(xí)目標:
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小。
能力目標:
1、培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力。
2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標:
培養(yǎng)學(xué)生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)。
教學(xué)中將在以下2個環(huán)節(jié)中突出教學(xué)重點:
1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補不足。
2、通過適當(dāng)?shù)木毩?xí),加強對解題方法的掌握及原理的理解。
教學(xué)中會在以下3個方面突破教學(xué)難點:
1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學(xué)生,增強學(xué)生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。基于此,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
1、課件展示本節(jié)課學(xué)習(xí)目標。
設(shè)計意圖:明確任務(wù),激發(fā)興趣。
2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))。
設(shè)計意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。
3、預(yù)習(xí)后心得交流。
1)同底對數(shù)比大小。
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
設(shè)計意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小。
以例3為例,學(xué)生分組合作探究解題方法,預(yù)計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學(xué)生的主動性,培養(yǎng)主動學(xué)習(xí)的意識,同時也鍛煉學(xué)生各方面能力的很好機會,為以后的探究學(xué)習(xí)積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)。
6、思考題。
以2009高考題為例,讓學(xué)生學(xué)以致用,增強數(shù)學(xué)學(xué)習(xí)興趣。
7、作業(yè)。
包括兩個方面:
1、書寫作業(yè)。
2、下節(jié)課前的預(yù)習(xí)作業(yè)。
通過本節(jié)課的教學(xué)實例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯,既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。在自主探究時,學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動起來,課堂都有所收獲,增強學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學(xué)生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達到小結(jié)知識的程度,在以后的訓(xùn)練中還會加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
人教版函數(shù)的教學(xué)設(shè)計篇二十
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進行一個全方位的研究,不僅僅是通過對比總結(jié)得到指數(shù)函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學(xué)中借助信息技術(shù)可以彌補傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點、突破教學(xué)重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
人教版函數(shù)的教學(xué)設(shè)計篇二十一
冪函數(shù)的圖象和性質(zhì)
畫冪函數(shù)的圖象并由圖象概括其性質(zhì)
教學(xué)內(nèi)容問題、任務(wù)師生活動設(shè)計意圖
1.某種蔬菜每千克1元,若購買千克,需要支付元是函數(shù)嗎?
2.正方形的邊長為,那么它的面積是的函數(shù)嗎?
3.立方體的邊長為,那么它的體積是的函數(shù)嗎?
4.正方形的面積為,那么它的邊長是的函數(shù)嗎?
5.某人內(nèi)騎車 內(nèi)行進了1,那么他騎車的平均速度是函數(shù)嗎?
6.這五個函數(shù)有什么共同特征?
7.給出冪函數(shù)的定義
8.下列函數(shù)是冪函數(shù)嗎?
9.冪函數(shù)的定義和指數(shù)函數(shù)的定義有什么區(qū)別?
10. 已知冪函數(shù)的圖象過點(4, ),求這個函數(shù)的解析式?
11. 觀察冪函數(shù)的圖象
12.作函數(shù)的圖象。
13. 作函數(shù)的圖象。
14.作函數(shù)的圖象。
15.根據(jù)所作函數(shù)的圖象,分別討論這些函數(shù)的性質(zhì)。
16.你能證明冪函數(shù)在[0,+ 上是增函數(shù)嗎?
17.從整體上把握冪函數(shù)的圖象。
作業(yè)p79習(xí)題1、2、3
師:投影展示問題,引導(dǎo)學(xué)生根據(jù)函數(shù)的定義進行分析。
生:根據(jù)函數(shù)定義思考并回答。
師:板書這5個函數(shù)表達式。
師生:從形式上分析:是指數(shù)冪的形式,其中底數(shù)是自變量,指數(shù)是常數(shù)。
師:板書定義。
生:根據(jù)冪函數(shù)的形式進行辨別。
生:對比指數(shù)函數(shù)的定義,指出區(qū)別。
師生:用待定系數(shù)法共同完成。
師:幾何畫板展示冪函數(shù)圖象,隨著指數(shù) 的改變,冪函數(shù)圖象的形態(tài)和位置都發(fā)生改變。
生:觀察指數(shù)的變化和圖象的變化
師:冪函數(shù)的圖象因指數(shù) 不同而形態(tài)各異,遠比指數(shù)函數(shù)的.圖象復(fù)雜。但我們可以通過討論其中有代表性的幾個函數(shù)來了解冪函數(shù)的圖象特征。生:在同一坐標系中作出三個函數(shù)的圖象。
師:巡視指導(dǎo)。
師:用幾何畫板作出三個函數(shù)的圖象。
生:對照檢查,注意所作圖象的特征。
師:提示橫坐標取值: 。巡視學(xué)生作圖情況。
生:列表,并描點作圖。
師:投影函數(shù)圖象。
師:指導(dǎo)作圖:取橫坐標0。
生:作圖。
師:投影圖象。
師:引導(dǎo)學(xué)生根據(jù)函數(shù)的圖象,指出函數(shù)的性質(zhì)。
生:指出函數(shù)性質(zhì)并完成課本第78頁表格。
生:嘗試證明。
師生:共同完成證明。
師:幾何畫板動態(tài)展示冪函數(shù)在第一象限的圖象,引導(dǎo)學(xué)生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數(shù) :猛增:增函數(shù) :緩增通過實際問題,引入冪函數(shù)。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數(shù)函數(shù)混淆。進一步加強理解冪函數(shù)定義。對冪函數(shù)的圖象作整體感知,了解冪函數(shù)的圖象和性質(zhì)與指數(shù) 關(guān)系密切。三個函數(shù)都是初中學(xué)過的,描三個點作出簡圖,把握圖象的主要特征。數(shù)形結(jié)合。
人教版函數(shù)的教學(xué)設(shè)計篇二十二
《指數(shù)函數(shù)》是人教b版高中數(shù)學(xué)必修1第三章第二節(jié)第1課時,是繼第二章函數(shù)的概念、函數(shù)的性質(zhì)、一次函數(shù)、二次函數(shù)之后,學(xué)生要認識的一個新的函數(shù)。下面是我對本節(jié)課的教學(xué)反思:
(一)對課前準備的反思。
上課前認真?zhèn)湔n,多次請教了指導(dǎo)教師孫久志老師的意見與建議,在他的指導(dǎo)下,我對新課標和新教材有了較為整體的把握和認識,將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成了知識框架,了解了學(xué)生的現(xiàn)狀和認知結(jié)構(gòu),做到了因材施教。
(一)對情境創(chuàng)設(shè)的反思。
這是本節(jié)課的一個成功之處,整堂課的問題情景創(chuàng)設(shè)很恰當(dāng),幾乎所有的結(jié)論都是在教師的引導(dǎo)下,學(xué)生自己總結(jié)出來的。
本節(jié)課是以問題的形式引入,采用兩個實際問題,既激發(fā)了學(xué)生學(xué)習(xí)的積極性,又讓他們體會到數(shù)學(xué)是來自于生活,也是服務(wù)于生活的。引出函數(shù)的一般式12y=ax'type=“#_x0000_t75”以后,我又讓學(xué)生自己舉幾個例子,他們舉的例子中有a=1,a=0,a0的情況,我又是以提問的形式讓學(xué)生自己分析相應(yīng)的函數(shù)定義域與函數(shù)值,結(jié)果學(xué)生自己意識到這些情況不必研究或者不容易研究,自然的得到了參數(shù)a0且a12鈮?'type=“#_x0000_t75”的范圍,進而讓學(xué)生自己求出此時函數(shù)的定義域,此時指數(shù)函數(shù)的定義已經(jīng)呼之欲出,不言自明了,甚至學(xué)生自己已經(jīng)可以給指數(shù)函數(shù)下定義了。
(二)對教學(xué)模式的反思。
本節(jié)課的另一個成功之處就是采用“引導(dǎo)啟發(fā)探討”式教學(xué),在授課的過程中,我一直在和學(xué)生進行探討,讓學(xué)生自己舉例子,自己畫圖象,自己歸納概括。剛上課的時候,有位同學(xué)就對我們舉的例子提出了問題,我耐心地進行了解答,正好他的問題也為下一步的討論提供了思路,我就順勢進行了。其實在平時的課堂中,我就比較注意和學(xué)生的交流,盡量地讓學(xué)生把問題暴漏出來,因為這樣的問題一般就是大家共同的問題。在和學(xué)生探討指數(shù)函數(shù)的特性時,他們觀察得非常細致,幾乎把圖象上能反映出來的函數(shù)性質(zhì)都說出來了,每位發(fā)言的同學(xué)我都給予了肯定,大家很積極,有位同學(xué)還說出了函數(shù)增長速度的問題,我就順勢講了一個與此有關(guān)的故事,大家聽得津津有味。
(三)對現(xiàn)代化多媒體應(yīng)用的反思。
本節(jié)課的第三個成功之處是:教學(xué)課件用得恰到好處,我采用的是幾何畫板數(shù)學(xué)軟件,非常形象直觀地展示了描點法作圖的全過程,因為這個過程是我們歸納圖像與性質(zhì)的一個準備工作,應(yīng)該向?qū)W生展示,但是如果在黑板上演示,既要花費大量的時間,對于較精確的計算也無法進行。幾何畫板正好解決了這個問題,通過演示,讓學(xué)生了解到數(shù)學(xué)需要嚴謹科學(xué)的計算,而且數(shù)學(xué)其實也是一種很美的科學(xué)。但是數(shù)學(xué)這門學(xué)科又要求老師要正確規(guī)范地板書,除了練習(xí)、例題的題目和作圖的過程,其他重要內(nèi)容我都進行了規(guī)范的板書,讓學(xué)生的思維始終跟著我。在課堂中,我還用投影儀展示了個別學(xué)生的作業(yè),進行了點評,讓學(xué)生發(fā)現(xiàn)自己學(xué)習(xí)中的優(yōu)點和缺點。
(四)對于贊賞評價的反思。
對于學(xué)生創(chuàng)造性的回答我給予了鼓勵與肯定,而對于學(xué)生不足甚至錯誤的回答,指出了不足,但沒有損傷其自尊心和自信心。在新課標下,我們的學(xué)生應(yīng)該是自由的`、真實的、快樂的、幸福的。我們的數(shù)學(xué)課堂教學(xué),應(yīng)該從數(shù)學(xué)的實際出發(fā)給學(xué)生自由、真實、快樂、幸福。
(五)對不足之處的反思。
在讓學(xué)生歸納指數(shù)函數(shù)的圖象時,學(xué)生總結(jié)了a1與01的代表就是我們畫出的12y=2x涓?/m:tm:rpry=3x'type=“#_x0000_t75”的圖像,而0y=(13)x'type=“#_x0000_t75”的圖像,這樣就更形象直觀一些;由于上課的教室聽不見鈴聲,時間控制得不是很準確,提前了一分鐘下課,如果能利用這一分鐘再稍深入地探討一下例2中利用找中間量的方法比較兩個冪的大小,這堂課就更加完滿,雖然是一個很小的問題,不影響整堂課的效果,但是卻提醒我自己在平時的上課中就得注意小的細節(jié)問題;板書方面,行與行的疏密控制得不夠準確,導(dǎo)致最后一行的空間有點小了。
人教版函數(shù)的教學(xué)設(shè)計篇一
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個重要內(nèi)容,它不僅與現(xiàn)實生活中的對稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)打下了堅實的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學(xué)重點是:函數(shù)的奇偶性及其幾何意義。
2、本課時的教學(xué)難點是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標。
1、知識與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學(xué)生體會數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴謹?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析。
1、教學(xué)方法:啟發(fā)引導(dǎo)式。
結(jié)合本章實際,教材簡單易懂,重在應(yīng)用、解決實際問題,本節(jié)課準備采用“引導(dǎo)發(fā)現(xiàn)法”進行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會學(xué)習(xí)。
三、教輔手段。
四、教學(xué)過程。
為了達到預(yù)期的教學(xué)目標,我對整個教學(xué)過程進行了系統(tǒng)地規(guī)劃,設(shè)計了五個主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的.痕跡,然后將紙展開。觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應(yīng)的點的坐標有什么特點。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何。
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。
借助課件演示,學(xué)生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內(nèi)是否對所有的x,都有類似的情況借助課件演示,學(xué)生會得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。
思考:由于對任一x,必須有一-x與之對應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點對稱。根據(jù)以上特點,請學(xué)生用完整的語言敘述定義,同時給出板書:
(1)函數(shù)f(x)的定義域為a,且關(guān)于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)。
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強調(diào)注意點:“定義域關(guān)于原點對稱”的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進行課堂鞏固,強調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點對稱,二是定義域雖關(guān)于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進行當(dāng)堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)。
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。
五、板書設(shè)計。
人教版函數(shù)的教學(xué)設(shè)計篇二
本節(jié)課的教學(xué)模式是采用循序漸進,由簡單的問題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對所學(xué)的實際結(jié)論進行學(xué)生的實際應(yīng)用。
一、這種教學(xué)模式的教學(xué)程序是:
(一)實際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。
(二)看圖,具體引入函數(shù)進行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。
(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強調(diào)定義中的注意事項,怎樣理解定義中的規(guī)定。
(四)教師具體以例題進行示范,學(xué)生們領(lǐng)會對函數(shù)奇偶性的`認識,并怎樣進行判斷。
(五)同學(xué)們在領(lǐng)會的基礎(chǔ)上,進行實際訓(xùn)練,達到對知識的理解和應(yīng)用。
二、這種教學(xué)模式的優(yōu)勢是:循序漸進,學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。
這種教學(xué)模式的缺點與解決方法是:
還缺乏對學(xué)生更高層次的參與的調(diào)動,尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問題。對配套練習(xí)要進一步細化,要對每一個知識點都要精心設(shè)計相應(yīng)知識點的訓(xùn)練,圖像的認識上,要加大同學(xué)們對生活的感知和相關(guān)軟件的使用,并能在電腦上實際體驗函數(shù)圖像的對稱情況。
人教版函數(shù)的教學(xué)設(shè)計篇三
在本節(jié)課教學(xué)過程中,我讓學(xué)生通過圖象直觀獲得函數(shù)奇偶性的認識,然后利用表格探究數(shù)量變化特征,通過代數(shù)運算,驗證發(fā)現(xiàn)的數(shù)量特征對定義域中的”任意”值都成立,最后在這個基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個方面的問題:
1.幻燈片的設(shè)計。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動,但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計,在出現(xiàn)某些字或者數(shù)字時應(yīng)直接出現(xiàn),而不要設(shè)計成動畫的形式,以免學(xué)生分散注意力。
2.學(xué)生練習(xí)。
在教學(xué)過程中應(yīng)多注意學(xué)生的活動,由單一的問答式轉(zhuǎn)化為多方位的`考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3.例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學(xué)生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學(xué)生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應(yīng)該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學(xué)環(huán)節(jié)的完整。
在授課過程中要注意到教學(xué)環(huán)節(jié)設(shè)計,我們的教學(xué)過程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時小結(jié)、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計不完善。在以后的教學(xué)過程中要注意這些環(huán)節(jié)。
6.教案設(shè)計的完整。
在本節(jié)課教學(xué)中我因為考慮到有幻燈片而沒有在教案中設(shè)計“板書設(shè)計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設(shè)計“板書設(shè)計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進這些錯誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
人教版函數(shù)的教學(xué)設(shè)計篇四
這節(jié)課的內(nèi)容是八年級(第二學(xué)期)第二十章“一次函數(shù)”的第二節(jié)“一次函數(shù)的圖像”的第三課時,內(nèi)容是結(jié)合一次函數(shù)圖像研究一次函數(shù)與一元一次方程以及一元一次不等式之間的關(guān)系。
學(xué)生在本節(jié)課之前已經(jīng)學(xué)習(xí)過一次函數(shù)及其圖像,一元一次方程,一元一次不等式,通過本節(jié)的教學(xué),可加強這些知識間的聯(lián)系,發(fā)揮函數(shù)對相關(guān)內(nèi)容的統(tǒng)領(lǐng)作用,能用一次函數(shù)可以把以前學(xué)習(xí)的方程和不等式等不同的數(shù)學(xué)概念統(tǒng)一起來,從而深化學(xué)生對方程與不等式的理解,使新舊知識融會貫通,促進學(xué)生良好知識結(jié)構(gòu)的形成。同時也為進一步學(xué)習(xí)“三個二次之間的關(guān)系”打下基礎(chǔ)。
二、教學(xué)目標分析。
1.能借助一次函數(shù)的圖像認識一元一次方程的解、一元一次不等式的解集,理解一元一次方程、一元一次不等式與一次函數(shù)之間的內(nèi)在聯(lián)系。
2.經(jīng)歷由具體到抽象、由直觀感知到得出一般結(jié)論的認知過程,體會數(shù)形結(jié)合的數(shù)學(xué)思想,提高由圖像獲取有用信息的能力以及分析與解決問題的能力。
教學(xué)重點、難點。
能以函數(shù)的觀點認識一元一次方程的解、一元一次不等式的解集。
三、教學(xué)問題診斷。
在學(xué)習(xí)本課內(nèi)容時,學(xué)生已經(jīng)掌握了一元一次方程,一元一次不等式,一次函數(shù)等知識,會畫一次函數(shù)的圖像,會用代數(shù)方法解一元一次不等式。大部分的學(xué)生正在艱難的由形象思維向抽象思維發(fā)展。觀察力偏重于第一印象,仍用自己原有的認識與知識結(jié)構(gòu)作出判斷,不會自覺利用直角坐標系從函數(shù)的這種數(shù)形對應(yīng)角度出發(fā)考慮,很難利用圖像中的信息分析和解決問題?;谏鲜銮闆r,預(yù)測學(xué)生在理解一次函數(shù)與一元一次不等式之間的關(guān)系時會產(chǎn)生困難。
四、教法特點。
1.突出數(shù)形結(jié)合的數(shù)學(xué)思想。
2.創(chuàng)設(shè)實際問題情景。
數(shù)學(xué)來源于生活,數(shù)學(xué)應(yīng)用于生活。世博是今年大家十分關(guān)注的一個話題,許多學(xué)生已經(jīng)是多次進入園區(qū)參觀,大溫度計上的數(shù)學(xué)問題來自于學(xué)生真實的日常生活,有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,大家在不知不覺中進入了今天學(xué)習(xí)的內(nèi)容。
在溫度計的背景下,提出溫度的兩種度量制度。圍繞這一情景提出了如下三個問題:第一個問題是畫出一次函數(shù)圖像,這既復(fù)習(xí)了舊知,又為新知的學(xué)習(xí)創(chuàng)造了條件;第二個問題是當(dāng)華氏度為0時,攝氏度為多少?對這一問題從“數(shù)”與“形”兩個方面入手分析研究,得出了這個一次函數(shù)與相應(yīng)一元一次方程之間的關(guān)系,然后推廣到一般情形;第三個問題是當(dāng)華氏度大于(小于0)時,相應(yīng)攝氏度應(yīng)在什么范圍內(nèi)取值?對這一問題的研究得出了這個一次函數(shù)與相應(yīng)一元一次不等式之間的關(guān)系。
3.充分展現(xiàn)知識的形成過程。
4.通過問題驅(qū)動來激發(fā)思維。
首先,由問題引發(fā)學(xué)生的思考,體會一次函數(shù)與一元一次方程之間的關(guān)系。這一部分的學(xué)習(xí),比較多的學(xué)生能夠通過觀察得出具體的結(jié)論:一次函數(shù)圖像與x軸交點坐標的橫坐標就是此函數(shù)對應(yīng)的一元一次方程的解。反之亦然。這一部分內(nèi)容的學(xué)習(xí)不僅是本節(jié)課的重點之一,為接下來的難點突破打下了基礎(chǔ)。
接下來,繼續(xù)由問題引發(fā)學(xué)生的思考,這一部分的教學(xué)是本節(jié)課的重難點,相比較前一部分(一次函數(shù)與一元一次方程之間的關(guān)系)這部分的內(nèi)容對于學(xué)生來說更抽象,更難以理解。為了幫助學(xué)生理解這部分內(nèi)容,我設(shè)計了這幾個環(huán)節(jié):
(1)通過思考問題2,學(xué)生找到圖像中符合條件的那一部分,為下面的從具體到抽象提供載體;在這里問題的設(shè)計具有層次性,學(xué)生在問題中得到適當(dāng)?shù)囊龑?dǎo)與啟發(fā),學(xué)生的積極性會很高,對于他們的回答我也都將給予充分的肯定與表揚。
(2)從具體問題入手,討論一次函數(shù)圖像與一元一次不等式之間的關(guān)系。為了使得學(xué)生深入理解這一問題且考慮到學(xué)生群體學(xué)習(xí)能力的參差不齊,利用幾何畫板動態(tài)演示,追蹤符合條件的點的軌跡,使學(xué)生從圖像上直觀獲取符合條件的點的橫坐標的取值范圍這一信息。
(3)在最后抽象到一般時采用先小組討論再全班交流的形式,這樣安排使學(xué)生形成自己對數(shù)學(xué)知識的理解并且進行了有效的學(xué)習(xí),培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想以及在交流中發(fā)展學(xué)生的合作意識和交流能力。
五、預(yù)期效果分析。
總之,本節(jié)課采用觀察、探究、交流、歸納等多種教學(xué)方式,并配合多媒體操作演示、師生互動,給學(xué)生以充分展示自我的機會和平臺,從而調(diào)動學(xué)生主動參與課堂教學(xué)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)了學(xué)生自主探究的能力,使之真正成為了學(xué)習(xí)的主人。然而,如何很好地調(diào)控學(xué)生,激發(fā)每一位同學(xué)的學(xué)習(xí)潛能,在今后的教學(xué)中還有待努力去探索。
人教版函數(shù)的教學(xué)設(shè)計篇五
本設(shè)計遵循了由淺入深、循序漸進的原則,分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的'二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。本節(jié)只是函數(shù)與方程的關(guān)系建立的第一步,教學(xué)中忌面面具到,延展太深。
恰當(dāng)使用信息技術(shù):本節(jié)的教學(xué)中應(yīng)當(dāng)充分使用信息技術(shù)。實際上,一些內(nèi)容因為涉及大數(shù)字運算、大量的數(shù)據(jù)處理、超越方程求解以及復(fù)雜的函數(shù)作圖,因此如果沒有信息技術(shù)的支持,教學(xué)是不容易展開的。因此,教學(xué)中會加強信息技術(shù)的使用力度,合理使用多媒體和計算器。讓學(xué)生直觀形象地理解問題,了解知識的形成過程。
采用問題式教學(xué),“設(shè)問——探索——歸納——定論”層層遞進的方式來突破本課的重難點。引導(dǎo)學(xué)生自主探究、合作學(xué)習(xí)、體會知識的形成過程。創(chuàng)設(shè)民主、和諧的課堂氛圍。引導(dǎo)學(xué)生進行積極主動的學(xué)習(xí),培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)情感。對數(shù)學(xué)思想如函數(shù)方程思想、數(shù)形結(jié)合思想的滲透還不到位,課后需要進一步加強引導(dǎo)。
方程的根與函數(shù)的零點是高中課程標準新增的內(nèi)容,表面上看,這一內(nèi)容的教學(xué)并不困難,但要讓學(xué)生能夠真正理解,教學(xué)還需要妥善處理其中的一些問題。首先要讓學(xué)生認識到學(xué)習(xí)函數(shù)的零點的必要性,其次教學(xué)要把握內(nèi)容結(jié)構(gòu),突出思想方法。在實踐和反思中不斷地發(fā)現(xiàn)和解決新的問題,教學(xué)效果才會逐步得到提高。
人教版函數(shù)的教學(xué)設(shè)計篇六
在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動,讓學(xué)生在動手實踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動要能激發(fā)學(xué)生探求新知識的興趣和欲望,逐步培養(yǎng)他們提問的意識,鼓勵學(xué)生多思考。同時還要關(guān)注他們在數(shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。
在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對應(yīng)的二次函數(shù)的圖象和x軸的交點的橫坐標之間的關(guān)系,給出函數(shù)的零點的概念,并揭示了方程的根與對應(yīng)的函數(shù)的零點之間的關(guān)系。然后,通過探究介紹了判斷一個函數(shù)在某個給定區(qū)間存在零點的方法和二分法。并且,教科書在“用二分法求函數(shù)零點的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。
人教版函數(shù)的教學(xué)設(shè)計篇七
二、目標和目標解析。
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
三、教學(xué)問題診斷分析。
四、教學(xué)支持條件分析。
(一)引入課題。
問題引入:求方程3x2+6x-1=0的實數(shù)根。
變式:解方程3x5+6x-1=0的實數(shù)根.(一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。)。
設(shè)計意圖:從學(xué)生的認知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標。
人教版函數(shù)的教學(xué)設(shè)計篇八
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學(xué)生更形象的看到對稱。例題展現(xiàn)、問題展現(xiàn),節(jié)約了教師黑板抄題的時間,提高了課堂效率。當(dāng)然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內(nèi)容呈現(xiàn)在課件上才能真正體現(xiàn)多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內(nèi)容就不用放入課件,如:例題的解題過程和在黑板上必須呈現(xiàn)的內(nèi)容不用再搬到課件上去,否則學(xué)生也不知道該看黑板還是課件,增大了學(xué)生學(xué)習(xí)負擔(dān),降低了學(xué)習(xí)效率。所以我在課件制作中,注重內(nèi)容與黑板板書不重疊。
在多媒體應(yīng)用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設(shè)計教學(xué)設(shè)計的過程中,充分考慮課程標準和教材的要求來確定教學(xué)目標,把握學(xué)生的學(xué)習(xí)水平,在教學(xué)中給學(xué)生充分思考的時間和空間,尊重學(xué)生的思想方法,點評優(yōu)化學(xué)生的學(xué)習(xí)收獲,充分調(diào)動學(xué)生探究的積極性,培養(yǎng)學(xué)生學(xué)習(xí)的興趣。在教學(xué)中不變的是先進的教學(xué)理念和合理的教學(xué)設(shè)計。放手給學(xué)生們自主學(xué)和研究就是我們應(yīng)該大膽做的。從學(xué)生的角度設(shè)計教學(xué),才能體現(xiàn)以學(xué)生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學(xué)技術(shù)、教學(xué)專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設(shè)計,那樣的課堂才能高效,學(xué)生才會喜歡。
在本節(jié)課中重點之一是函數(shù)奇偶性概念的理解,從實例引入,讓學(xué)生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質(zhì)讓學(xué)生給出概念,老師總結(jié),再讓學(xué)生回頭感悟,有利于學(xué)生真正理解概念和應(yīng)用概念。如何理解0再定義域內(nèi)時,奇函數(shù)在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學(xué)生探究的欲望,學(xué)得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學(xué)素養(yǎng)、技術(shù),才能真正提高咱們的教學(xué)理念。
人教版函數(shù)的教學(xué)設(shè)計篇九
在課堂教學(xué)中,我發(fā)現(xiàn)當(dāng)將常識問題類推函數(shù)圖象與x軸交點存在所需條件時,學(xué)生有些茫然。反思除了學(xué)生對這種抽象方式不太習(xí)慣以外,我感到其中的過渡有問題。教學(xué)中,將小溪類比成x軸,將前后的位置類比成函數(shù)中的兩個點。課后我覺得將前后的位置類比成函數(shù)中的兩個點不確切,而且不能引起學(xué)生的思考,因為兩者最相似之處是行程路線與函數(shù)圖象,應(yīng)該將行程路線類比成函數(shù)圖象更佳。要清楚學(xué)生的認知狀況。在課堂中,學(xué)生在分析定理其中一個條件“不連續(xù)”時,舉了反比例函數(shù)的例子。我只是在黑板上比劃了一下,沒有畫出來。
主要的考慮是認為反比例函數(shù)在[a,b]上并不都有意義與定理中的條件違背,我想回避掉,然后用自己的分段函數(shù)來代替。課后,我重新反思這個細節(jié),學(xué)生頭腦中的不連續(xù)最深刻的就是反比例函數(shù)應(yīng)該將它畫出來,不應(yīng)該只因定理中這個細節(jié)去“較真”,然后讓學(xué)生再思考是否還有其它的不連續(xù)函數(shù),相信學(xué)生能從高中階段的函數(shù)模型找到分段函數(shù)的不連續(xù)的圖象,從而對不連續(xù)有更深刻的認識。從學(xué)生的認知實際出發(fā),通過學(xué)習(xí)學(xué)生才能同化新的知識,形成新的知識結(jié)構(gòu)。學(xué)生注意力的控制。在課堂中學(xué)生的注意力是不可能長時間的集中。如何控制和分配學(xué)生的注意力,我認為很重要。存在性定理的研究是本節(jié)課的重點。當(dāng)展示這個推理的實例時,學(xué)生的注意力開始調(diào)動起來,而我得到需要的兩個結(jié)果后,馬上轉(zhuǎn)移了學(xué)生的注意力,使得這個“趁熱打鐵”的機會失去。學(xué)生正出于活躍的思維之中,如果能進一步激發(fā)他們的思維,那么對定理的分析將會更深入。
人教版函數(shù)的教學(xué)設(shè)計篇十
教學(xué)中,對函數(shù)與方程的關(guān)系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則。分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。
除了函數(shù)模型的應(yīng)用之外,還要介紹函數(shù)的零點與方程的根的關(guān)系,用二分法求方程的近似解,以及幾種不同增長的函數(shù)模型。教科書在處理上,以函數(shù)模型的應(yīng)用這一內(nèi)容為主線,以幾個重要的函數(shù)模型為對象或工具,將各部分內(nèi)容緊密結(jié)合起來,使之成為一個系統(tǒng)的整體。教學(xué)中應(yīng)當(dāng)注意貫徹教科書的這個意圖,是學(xué)生經(jīng)歷函數(shù)模型應(yīng)用的完整。
人教版函數(shù)的教學(xué)設(shè)計篇十一
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題
這節(jié)課,我們來學(xué)習(xí)二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
做一做書本p56矩形的周長與邊長、面積的關(guān)系
鼓勵學(xué)生間的互相交流,一定要讓學(xué)生理解周長與邊長、面積的關(guān)系。
比較全面、完整、簡單地表示出變量之間的關(guān)系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學(xué)生的運算能力又一般,因此,建議把這個表格的一部分數(shù)據(jù)先給出來,讓學(xué)生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系
3、用圖象表示
議一議書本p56議一議
關(guān)于自變量的問題,學(xué)生往往比較難理解,講解時,可適當(dāng)多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。
在對三種表示方式進行比較時,學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇十二
1.理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖象,性質(zhì)及其簡單應(yīng)用.
2.通過指數(shù)函數(shù)的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點和難點。
難點是認識底數(shù)對函數(shù)值影響的認識.
教學(xué)用具。
投影儀。
教學(xué)方法。
啟發(fā)討論研究式。
教學(xué)過程。
一.引入新課。
我們前面學(xué)習(xí)了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的'問題:。
由學(xué)生回答:與之間的關(guān)系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.
由學(xué)生回答:.
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).
1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關(guān)于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當(dāng)指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以指數(shù)函數(shù)的定義域為.擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值.
剛才分別認識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).
(1),(2),(3)。
(4),(5).
學(xué)生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.
最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì).
3.歸納性質(zhì)。
作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學(xué)生回答.
函數(shù)。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4.截距:在軸上沒有,在軸上為1.
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應(yīng)會證明.對于單調(diào)性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點了.取點時還要提醒學(xué)生由于不具備對稱性,故的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少.
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學(xué)生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(zhì)(板書)。
1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點法.
2.草圖:。
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關(guān)于軸對稱,而此時的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學(xué)生仿照此例再列一個的表,將相應(yīng)的內(nèi)容填好.為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì).
3.性質(zhì).
(1)無論為何值,指數(shù)函數(shù)都有定義域為,值域為,都過點.
(2)時,在定義域內(nèi)為增函數(shù),時,為減函數(shù).
(3)時,,時,.
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).
三.簡單應(yīng)用(板書)。
1.利用指數(shù)函數(shù)單調(diào)性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學(xué)生觀察兩個數(shù)的特點,有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數(shù),且。
(板書)。
教師最后再強調(diào)過程必須寫清三句話:。
(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.
(2)自變量的大小比較.
(3)函數(shù)值的大小比較.
后兩個題的過程略.要求學(xué)生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生指數(shù)函數(shù)的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。
最后由學(xué)生說出1,1,.
解決后由教師小結(jié)比較大小的方法。
(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0.
三.鞏固練習(xí)。
練習(xí):比較下列各組數(shù)的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結(jié)。
3.簡單應(yīng)用。
五.板書設(shè)計。
探究活動。
答案:有兩個交點.
答案:15天的合同可以簽,而30天的合同不能簽.
人教版函數(shù)的教學(xué)設(shè)計篇十三
指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個具體函數(shù),所以在這部分的教學(xué)安排上,我更注意學(xué)生思維習(xí)慣的養(yǎng)成,特作如下思考:
1、設(shè)計應(yīng)從哪些方面,哪些角度去探索一個具體函數(shù),我在這部分設(shè)置了三個環(huán)節(jié)。
(1)由具體的折紙的例子引出指數(shù)函數(shù)。
設(shè)計意圖:貼近學(xué)生的生活實際,便于動手操作與觀察。讓學(xué)生充分感受我們生活中大量存在指數(shù)函數(shù)模型,從而便于學(xué)生接受指數(shù)函數(shù)的形式,突破符號語言的障礙。
(2)通過研究幾個特殊的底數(shù)的指數(shù)函數(shù)得到一般指數(shù)函數(shù)的規(guī)律。符合學(xué)生由特殊到一般的,由具體到抽象的學(xué)習(xí)認知規(guī)律。
(3)通過多媒體手段,用計算機作出底數(shù)a變換的圖像,讓學(xué)生更直觀、深刻的感受指數(shù)函數(shù)的圖像及性質(zhì)。
通過引入定義剖析辨析運用,這個由特殊到一般的過程揭示了概念的內(nèi)涵和外延;而后在教師的點撥下,學(xué)生作圖觀察探究交流概括運用,使學(xué)生在動手操作、動眼觀察、動腦思考、合作探究中達到對知識的發(fā)現(xiàn)和接受,同時滲透了分類討論、數(shù)形結(jié)合的思想,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)概念、性質(zhì)和方法的能力,養(yǎng)成了良好的學(xué)習(xí)習(xí)慣。
2、課堂練習(xí)前后呼應(yīng),各有側(cè)重。
通過問題呈現(xiàn),變式教學(xué),不但突出了重點內(nèi)容,把知識加固、挖深。使教學(xué)目標得以實現(xiàn)。而且注重知識的延續(xù)性,為以后的學(xué)習(xí)奠定了基礎(chǔ)。
3、教學(xué)過程設(shè)計為六個環(huán)節(jié):
1、情景設(shè)置,形成概念2、發(fā)現(xiàn)問題,深化概念。
3、深入探究圖像,加深理解性質(zhì)。
4、強化訓(xùn)練,落實掌握。
5、小結(jié)歸納,拓展深化。
6、布置作業(yè),延伸課堂。各個環(huán)節(jié)層層深入,環(huán)環(huán)相扣,充分體現(xiàn)了在教師的'指導(dǎo)下,師生、生生之間的交流互動,使學(xué)生親身經(jīng)歷知識的形成和發(fā)展過程。
4、通過學(xué)案教學(xué)為抓手,讓學(xué)生先學(xué)。
老師在課前充分了解了學(xué)情,以學(xué)定教,進行二次備課,抓住學(xué)生的學(xué)習(xí)困難,站在學(xué)生學(xué)的角度設(shè)計教學(xué)。
5、學(xué)生真思考,學(xué)生的真探究,才是保障教學(xué)目標得以實現(xiàn)的前提。
在教學(xué)中,教師通過教學(xué)設(shè)計要以給學(xué)生充分的思維空間、推理運算空間和交流學(xué)習(xí)空間,努力創(chuàng)設(shè)一個“活動化的課堂”才可能真正喚起學(xué)生的生命主體意識,引領(lǐng)他們走上自主構(gòu)建知識意義的發(fā)展路徑。
人教版函數(shù)的教學(xué)設(shè)計篇十四
“指數(shù)函數(shù)及性質(zhì)”的教學(xué)共分兩個課時完成,這是第一課時。本節(jié)課主要學(xué)習(xí)了指數(shù)函數(shù)的定義,研究了指數(shù)函數(shù)的圖像及相關(guān)的性質(zhì)。回顧這節(jié)課,心中有很多感想,也有下面一些思考:
1.這節(jié)課是在學(xué)生系統(tǒng)的學(xué)習(xí)了指數(shù)概念、函數(shù)概念,基本掌握了函數(shù)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,具有初步的函數(shù)知識,但是對于研究具體的初等函數(shù)的性質(zhì)的基本方法和步驟還比較陌生,對于指數(shù)函數(shù)要怎么樣進行較為系統(tǒng)的研究對學(xué)生來說是有困難的,因此這節(jié)課的每一個環(huán)節(jié)以我引導(dǎo),以學(xué)生的自主探究為主來完成是符合學(xué)情的。
2.設(shè)計“指數(shù)函數(shù)的圖象及性質(zhì)”,“y=ax的圖象和y=(1/a)x的圖象間的關(guān)系”.“a的大小對函數(shù)圖象的影響”三個問題,讓學(xué)生通過幾何畫板軟件動手畫圖操作、自主探究、主動思考來達到對知識的發(fā)現(xiàn)和接受,改變過去機械接受和死記結(jié)論的狀況,符合新課改的理念,同時也完成了這節(jié)課的主要教學(xué)任務(wù)。
3.在對底數(shù)a的范圍的思考及三個探究性問題后都設(shè)置了練習(xí),能及時反饋學(xué)生對所探求到的知識的掌握程度,便于及時調(diào)整課堂教學(xué)行為。從課后看學(xué)生對這些知識的掌握應(yīng)該是比較好的。
4.這節(jié)課的學(xué)習(xí)及對函數(shù)研究方法和步驟的總結(jié)對后續(xù)學(xué)習(xí)新的函數(shù)起到了重要的示范作用。
在整個的教學(xué)過程中,始終體現(xiàn)以學(xué)生為本的教育理念。在學(xué)生已有的認知基礎(chǔ)上進行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認知過程,強調(diào)學(xué)生的品德、思維和心理等方面的發(fā)展。重視討論、交流和合作,重視探究問題的習(xí)慣的培養(yǎng)和養(yǎng)成。同時,考慮不同學(xué)生的個性差異和發(fā)展層次,使不同的學(xué)生都有發(fā)展,體現(xiàn)因材施教的原則。
在教學(xué)的過程中,考慮到學(xué)生的實際,有意地設(shè)計了一些鋪墊和引導(dǎo),既鞏固舊有知識,又為新知識提供了附著點,充分體現(xiàn)學(xué)生的主體地位。
三.存在的問題。
1.沒有充分調(diào)動學(xué)生的積極性,課堂氣氛顯得沉悶。
2.盡量放手讓學(xué)生自己去解決問題,教師自己講得偏多,學(xué)生的主體作用體現(xiàn)得不夠。
3.指數(shù)函數(shù)概念部分的教學(xué)時間稍多,后面教學(xué)過程稍顯倉促,學(xué)生自主探究的時間不夠,因此違背了教學(xué)設(shè)計的初衷。當(dāng)然我會通過對學(xué)生作業(yè)的批改獲得更全面的對學(xué)生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設(shè)計方案,達到預(yù)期的教學(xué)效果,實現(xiàn)學(xué)生的目標掌握和能力發(fā)展。
人教版函數(shù)的教學(xué)設(shè)計篇十五
“指數(shù)函數(shù)”的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用?!爸笖?shù)函數(shù)”第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準備。
在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高。針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨立提出問題、解決問題??傊{(diào)動學(xué)生的非智力因素來促進智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
為了調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動學(xué)習(xí)為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準確性。總之,本堂課充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
人教版函數(shù)的教學(xué)設(shè)計篇十六
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
四、教學(xué)過程:
(一)復(fù)習(xí)提問。
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
(四)鞏固練習(xí)。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
人教版函數(shù)的教學(xué)設(shè)計篇十七
由于每個學(xué)生的基礎(chǔ)知識、智力水平和學(xué)習(xí)方法等都存在一定差別,所以本節(jié)課采用分層教學(xué)。既創(chuàng)設(shè)舞臺讓優(yōu)秀生表演,又要重視給后進生提供參與的機會,使其增強學(xué)習(xí)數(shù)學(xué)的信心。具體題目安排從易到難,形成梯度,符合學(xué)生的認知規(guī)律,使全體學(xué)生都能得到不同程度的提高。
1.掌握二次函數(shù)的圖像和性質(zhì),了解一元二次方程與二次函數(shù)的關(guān)系,能依據(jù)已知條件確定二次函數(shù)的關(guān)系式。
2.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.通過學(xué)習(xí)和探究xxxx考點問題,滲透數(shù)形結(jié)合思想及分類討論思想。
3.查漏補缺,采用小組學(xué)習(xí)使復(fù)習(xí)更有效,學(xué)生在自主探索與合作交流的過程中,全方位“參與”問題的解決,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法。
如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題。
[活動1]學(xué)生分組處理前置性作業(yè)
教師出示習(xí)題答案。組織學(xué)生合作交流,深入到每個小組,針對不同情況加強指導(dǎo)。
教師重點關(guān)注學(xué)困生。
針對學(xué)生的實際情況,對習(xí)題進行分層處理,樹立學(xué)困生學(xué)習(xí)數(shù)學(xué)的信心。
[活動2]師生共同解決作業(yè)中存在的問題
學(xué)生自主研究,分組討論后,然后提出問題,教師對學(xué)生回答的問題進行評價
教師重點歸納數(shù)學(xué)思想。
通過對習(xí)題的處理,使學(xué)生進一步加深對二次函數(shù)有關(guān)概念及性質(zhì)的理解,能用函數(shù)觀點解決實際問題。同時,小組學(xué)習(xí)也使學(xué)生全方位參與問題的解決。
[活動3]習(xí)題現(xiàn)中考
例1(xxxx,南寧)
教師結(jié)合教材對比、分析
學(xué)生小組合作,完成例題
教師歸納:本題考查了二次函數(shù)、一元二次方程與梯形的面積等知識。
對于二次函數(shù)與其他知識的綜合應(yīng)用,關(guān)鍵要讓學(xué)生掌握解題思路,把握題型,能利用數(shù)形結(jié)合思想進行分析,從而把握解題的突破口。
[活動4]例題現(xiàn)中考
例2(xxxx,濟寧)
例3(xxxx,黔東南州)
學(xué)生自學(xué),教師指導(dǎo),讓學(xué)生討論回答這兩道題的共同特點。
讓學(xué)生根據(jù)討論的結(jié)果概括、歸納出“每每型”二次函數(shù)模型的題型特點和解決這類問題的關(guān)鍵。
[活動5]知識提高階段
教師給出一組習(xí)題,學(xué)生討論完成。
知識再運用有助于知識的鞏固。
[活動6]小結(jié)、布置作業(yè)
問題
本節(jié)學(xué)了哪些內(nèi)容?你認為最重要的內(nèi)容是什么?
布置作業(yè)
把錯題整理到作業(yè)本上。
師生共同小結(jié),加深對本節(jié)課知識的理解。
讓學(xué)生參與小結(jié)并有不同的答案,可以增強學(xué)生學(xué)習(xí)的積極性和主動性,培養(yǎng)學(xué)生對所學(xué)知識回顧思考的習(xí)慣。
人教版函數(shù)的教學(xué)設(shè)計篇十八
正比例函數(shù)是本章的重點內(nèi)容,是學(xué)生在初中階段第一次接觸的函數(shù),這部分內(nèi)容的學(xué)習(xí)是在學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)的概念及圖像的基礎(chǔ)之上進行的。它是對前面所學(xué)知識的應(yīng)用,又為后面學(xué)習(xí)做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。
學(xué)情分析。
學(xué)習(xí)本節(jié)課之前,學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)等知識。在描點法的學(xué)習(xí)中初步感受了通過描點法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學(xué)習(xí)做好準備,所以本節(jié)課的學(xué)習(xí)問題不大。
知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個變量是否構(gòu)成正比例函數(shù)關(guān)系。
數(shù)學(xué)思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學(xué)習(xí)和探究,感知數(shù)行結(jié)合思想。
解決問題:1、能夠要求運用“列表法”和“兩點法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學(xué)問題。
情感態(tài)度:1、結(jié)合描點作圖,培養(yǎng)學(xué)生認真、細心、嚴謹?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。2、通過正比率函數(shù)概念的引入,使學(xué)生進一步認識數(shù)學(xué)是由于人們需要而產(chǎn)生的,與現(xiàn)實世界密切相關(guān)。同時滲透熱愛自然和生活的教育。
教學(xué)重點和難點。
重點:正比率函數(shù)的概念。
難點:正比率函數(shù)的性質(zhì)。
人教版函數(shù)的教學(xué)設(shè)計篇十九
對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學(xué)的實用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用.
根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認知特點確定教學(xué)目標如下:
學(xué)習(xí)目標:
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小。
能力目標:
1、培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力。
2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標:
培養(yǎng)學(xué)生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)。
教學(xué)中將在以下2個環(huán)節(jié)中突出教學(xué)重點:
1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補不足。
2、通過適當(dāng)?shù)木毩?xí),加強對解題方法的掌握及原理的理解。
教學(xué)中會在以下3個方面突破教學(xué)難點:
1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學(xué)生,增強學(xué)生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。基于此,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
1、課件展示本節(jié)課學(xué)習(xí)目標。
設(shè)計意圖:明確任務(wù),激發(fā)興趣。
2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))。
設(shè)計意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。
3、預(yù)習(xí)后心得交流。
1)同底對數(shù)比大小。
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
設(shè)計意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小。
以例3為例,學(xué)生分組合作探究解題方法,預(yù)計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學(xué)生的主動性,培養(yǎng)主動學(xué)習(xí)的意識,同時也鍛煉學(xué)生各方面能力的很好機會,為以后的探究學(xué)習(xí)積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)。
6、思考題。
以2009高考題為例,讓學(xué)生學(xué)以致用,增強數(shù)學(xué)學(xué)習(xí)興趣。
7、作業(yè)。
包括兩個方面:
1、書寫作業(yè)。
2、下節(jié)課前的預(yù)習(xí)作業(yè)。
通過本節(jié)課的教學(xué)實例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯,既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。在自主探究時,學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動起來,課堂都有所收獲,增強學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學(xué)生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達到小結(jié)知識的程度,在以后的訓(xùn)練中還會加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
人教版函數(shù)的教學(xué)設(shè)計篇二十
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進行一個全方位的研究,不僅僅是通過對比總結(jié)得到指數(shù)函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學(xué)中借助信息技術(shù)可以彌補傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點、突破教學(xué)重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
人教版函數(shù)的教學(xué)設(shè)計篇二十一
冪函數(shù)的圖象和性質(zhì)
畫冪函數(shù)的圖象并由圖象概括其性質(zhì)
教學(xué)內(nèi)容問題、任務(wù)師生活動設(shè)計意圖
1.某種蔬菜每千克1元,若購買千克,需要支付元是函數(shù)嗎?
2.正方形的邊長為,那么它的面積是的函數(shù)嗎?
3.立方體的邊長為,那么它的體積是的函數(shù)嗎?
4.正方形的面積為,那么它的邊長是的函數(shù)嗎?
5.某人內(nèi)騎車 內(nèi)行進了1,那么他騎車的平均速度是函數(shù)嗎?
6.這五個函數(shù)有什么共同特征?
7.給出冪函數(shù)的定義
8.下列函數(shù)是冪函數(shù)嗎?
9.冪函數(shù)的定義和指數(shù)函數(shù)的定義有什么區(qū)別?
10. 已知冪函數(shù)的圖象過點(4, ),求這個函數(shù)的解析式?
11. 觀察冪函數(shù)的圖象
12.作函數(shù)的圖象。
13. 作函數(shù)的圖象。
14.作函數(shù)的圖象。
15.根據(jù)所作函數(shù)的圖象,分別討論這些函數(shù)的性質(zhì)。
16.你能證明冪函數(shù)在[0,+ 上是增函數(shù)嗎?
17.從整體上把握冪函數(shù)的圖象。
作業(yè)p79習(xí)題1、2、3
師:投影展示問題,引導(dǎo)學(xué)生根據(jù)函數(shù)的定義進行分析。
生:根據(jù)函數(shù)定義思考并回答。
師:板書這5個函數(shù)表達式。
師生:從形式上分析:是指數(shù)冪的形式,其中底數(shù)是自變量,指數(shù)是常數(shù)。
師:板書定義。
生:根據(jù)冪函數(shù)的形式進行辨別。
生:對比指數(shù)函數(shù)的定義,指出區(qū)別。
師生:用待定系數(shù)法共同完成。
師:幾何畫板展示冪函數(shù)圖象,隨著指數(shù) 的改變,冪函數(shù)圖象的形態(tài)和位置都發(fā)生改變。
生:觀察指數(shù)的變化和圖象的變化
師:冪函數(shù)的圖象因指數(shù) 不同而形態(tài)各異,遠比指數(shù)函數(shù)的.圖象復(fù)雜。但我們可以通過討論其中有代表性的幾個函數(shù)來了解冪函數(shù)的圖象特征。生:在同一坐標系中作出三個函數(shù)的圖象。
師:巡視指導(dǎo)。
師:用幾何畫板作出三個函數(shù)的圖象。
生:對照檢查,注意所作圖象的特征。
師:提示橫坐標取值: 。巡視學(xué)生作圖情況。
生:列表,并描點作圖。
師:投影函數(shù)圖象。
師:指導(dǎo)作圖:取橫坐標0。
生:作圖。
師:投影圖象。
師:引導(dǎo)學(xué)生根據(jù)函數(shù)的圖象,指出函數(shù)的性質(zhì)。
生:指出函數(shù)性質(zhì)并完成課本第78頁表格。
生:嘗試證明。
師生:共同完成證明。
師:幾何畫板動態(tài)展示冪函數(shù)在第一象限的圖象,引導(dǎo)學(xué)生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數(shù) :猛增:增函數(shù) :緩增通過實際問題,引入冪函數(shù)。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數(shù)函數(shù)混淆。進一步加強理解冪函數(shù)定義。對冪函數(shù)的圖象作整體感知,了解冪函數(shù)的圖象和性質(zhì)與指數(shù) 關(guān)系密切。三個函數(shù)都是初中學(xué)過的,描三個點作出簡圖,把握圖象的主要特征。數(shù)形結(jié)合。
人教版函數(shù)的教學(xué)設(shè)計篇二十二
《指數(shù)函數(shù)》是人教b版高中數(shù)學(xué)必修1第三章第二節(jié)第1課時,是繼第二章函數(shù)的概念、函數(shù)的性質(zhì)、一次函數(shù)、二次函數(shù)之后,學(xué)生要認識的一個新的函數(shù)。下面是我對本節(jié)課的教學(xué)反思:
(一)對課前準備的反思。
上課前認真?zhèn)湔n,多次請教了指導(dǎo)教師孫久志老師的意見與建議,在他的指導(dǎo)下,我對新課標和新教材有了較為整體的把握和認識,將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成了知識框架,了解了學(xué)生的現(xiàn)狀和認知結(jié)構(gòu),做到了因材施教。
(一)對情境創(chuàng)設(shè)的反思。
這是本節(jié)課的一個成功之處,整堂課的問題情景創(chuàng)設(shè)很恰當(dāng),幾乎所有的結(jié)論都是在教師的引導(dǎo)下,學(xué)生自己總結(jié)出來的。
本節(jié)課是以問題的形式引入,采用兩個實際問題,既激發(fā)了學(xué)生學(xué)習(xí)的積極性,又讓他們體會到數(shù)學(xué)是來自于生活,也是服務(wù)于生活的。引出函數(shù)的一般式12y=ax'type=“#_x0000_t75”以后,我又讓學(xué)生自己舉幾個例子,他們舉的例子中有a=1,a=0,a0的情況,我又是以提問的形式讓學(xué)生自己分析相應(yīng)的函數(shù)定義域與函數(shù)值,結(jié)果學(xué)生自己意識到這些情況不必研究或者不容易研究,自然的得到了參數(shù)a0且a12鈮?'type=“#_x0000_t75”的范圍,進而讓學(xué)生自己求出此時函數(shù)的定義域,此時指數(shù)函數(shù)的定義已經(jīng)呼之欲出,不言自明了,甚至學(xué)生自己已經(jīng)可以給指數(shù)函數(shù)下定義了。
(二)對教學(xué)模式的反思。
本節(jié)課的另一個成功之處就是采用“引導(dǎo)啟發(fā)探討”式教學(xué),在授課的過程中,我一直在和學(xué)生進行探討,讓學(xué)生自己舉例子,自己畫圖象,自己歸納概括。剛上課的時候,有位同學(xué)就對我們舉的例子提出了問題,我耐心地進行了解答,正好他的問題也為下一步的討論提供了思路,我就順勢進行了。其實在平時的課堂中,我就比較注意和學(xué)生的交流,盡量地讓學(xué)生把問題暴漏出來,因為這樣的問題一般就是大家共同的問題。在和學(xué)生探討指數(shù)函數(shù)的特性時,他們觀察得非常細致,幾乎把圖象上能反映出來的函數(shù)性質(zhì)都說出來了,每位發(fā)言的同學(xué)我都給予了肯定,大家很積極,有位同學(xué)還說出了函數(shù)增長速度的問題,我就順勢講了一個與此有關(guān)的故事,大家聽得津津有味。
(三)對現(xiàn)代化多媒體應(yīng)用的反思。
本節(jié)課的第三個成功之處是:教學(xué)課件用得恰到好處,我采用的是幾何畫板數(shù)學(xué)軟件,非常形象直觀地展示了描點法作圖的全過程,因為這個過程是我們歸納圖像與性質(zhì)的一個準備工作,應(yīng)該向?qū)W生展示,但是如果在黑板上演示,既要花費大量的時間,對于較精確的計算也無法進行。幾何畫板正好解決了這個問題,通過演示,讓學(xué)生了解到數(shù)學(xué)需要嚴謹科學(xué)的計算,而且數(shù)學(xué)其實也是一種很美的科學(xué)。但是數(shù)學(xué)這門學(xué)科又要求老師要正確規(guī)范地板書,除了練習(xí)、例題的題目和作圖的過程,其他重要內(nèi)容我都進行了規(guī)范的板書,讓學(xué)生的思維始終跟著我。在課堂中,我還用投影儀展示了個別學(xué)生的作業(yè),進行了點評,讓學(xué)生發(fā)現(xiàn)自己學(xué)習(xí)中的優(yōu)點和缺點。
(四)對于贊賞評價的反思。
對于學(xué)生創(chuàng)造性的回答我給予了鼓勵與肯定,而對于學(xué)生不足甚至錯誤的回答,指出了不足,但沒有損傷其自尊心和自信心。在新課標下,我們的學(xué)生應(yīng)該是自由的`、真實的、快樂的、幸福的。我們的數(shù)學(xué)課堂教學(xué),應(yīng)該從數(shù)學(xué)的實際出發(fā)給學(xué)生自由、真實、快樂、幸福。
(五)對不足之處的反思。
在讓學(xué)生歸納指數(shù)函數(shù)的圖象時,學(xué)生總結(jié)了a1與01的代表就是我們畫出的12y=2x涓?/m:tm:rpry=3x'type=“#_x0000_t75”的圖像,而0y=(13)x'type=“#_x0000_t75”的圖像,這樣就更形象直觀一些;由于上課的教室聽不見鈴聲,時間控制得不是很準確,提前了一分鐘下課,如果能利用這一分鐘再稍深入地探討一下例2中利用找中間量的方法比較兩個冪的大小,這堂課就更加完滿,雖然是一個很小的問題,不影響整堂課的效果,但是卻提醒我自己在平時的上課中就得注意小的細節(jié)問題;板書方面,行與行的疏密控制得不夠準確,導(dǎo)致最后一行的空間有點小了。