教案是教師教學的重要輔助工具,能夠幫助教師合理安排教學步驟和時間。教案的編寫要注重問題導入和情境營造,增強學生的學習體驗。教案的優(yōu)劣直接影響教學質(zhì)量,所以我們要重視教案的編寫。
八年級數(shù)學名師教案篇一
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術(shù)在教學過程中的普遍應(yīng)用,促進信息技術(shù)與學科課程的整合,逐步實現(xiàn)教學內(nèi)容的呈現(xiàn)方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具?!苯處熯\用現(xiàn)代多媒體信息技術(shù)對教學活動進行創(chuàng)造性設(shè)計,發(fā)揮計算機輔助教學的特有功能,把信息技術(shù)和數(shù)學教學的學科特點結(jié)合起來,可以使教學的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學概念的形成與發(fā)展,數(shù)學思維的過程和實質(zhì),展示數(shù)學思維的形成過程,使數(shù)學課堂教學收到事半功倍的效果。
本節(jié)課內(nèi)容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎(chǔ)上進行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學體現(xiàn)出直觀、課容量大、容易接受的特點,為進一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導作用,使學生學習本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
本班經(jīng)歷了一年多課改實踐,學生對運用現(xiàn)代多媒體信息技術(shù)的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學知識于實踐的過程。
本節(jié)課充分利用現(xiàn)有的先進教學設(shè)備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數(shù)學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷數(shù)學知識的形成并進行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學生自主收集、描述和分析數(shù)據(jù)的能力;
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;
3、初步具有感性認識上升到理性認識的辯證唯物主義思想。
教學環(huán)境:
多媒體計算機網(wǎng)絡(luò)教室。
教學課型:
試驗探究式。
教學重點:
特殊四邊形性質(zhì)。
教學難點:
特殊四邊形性質(zhì)的發(fā)現(xiàn)。
一、設(shè)置情景,提出問題。
提出問題:
1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當我們學習完本節(jié)知識后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)。
二、整體了解,形成系統(tǒng)。
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
解決問題:
學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖:學生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)。
三、個體研究、總結(jié)性質(zhì)。
1、平行四邊形性質(zhì)。
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導學生拖動b點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
(1)對邊相等;
(2)對角相等;
(3)通過ao=co、bo=do,可得對角線互相平分;
(4)通過鄰角互補,可得對邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補;
……。
指導學生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
菱形性質(zhì)。
梯形性質(zhì)等腰梯形性質(zhì)。
直角梯形性質(zhì)。
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖:學生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)。
教師總結(jié):
(意圖:掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達,又節(jié)省時間。)。
四、聯(lián)系生活,解決問題。
解決問題:
學生操作電腦,觀察圖形、分組討論,教師個別指導。
學生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
(意圖:使學生體會到數(shù)學于生活、又服務(wù)于生活,更重要的是培養(yǎng)學生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)。
五、小結(jié)。
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)。
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
針對教學內(nèi)容、學生特點及設(shè)計方案,預計下列學習效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學生收集、描述和分析數(shù)據(jù)的能力,并達到初步理解特殊四邊形性質(zhì)的目標。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。
由于個體差異,針對教學目標難以達到的個別學生,根據(jù)教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現(xiàn)。
八年級數(shù)學名師教案篇二
本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學生在應(yīng)用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
本節(jié)課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設(shè)計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結(jié).最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.
八年級數(shù)學名師教案篇三
1.理解分式的基本性質(zhì).
2.會用分式的基本性質(zhì)將分式變形.
二、重點、難點。
1.重點:理解分式的基本性質(zhì).
2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認知難點與突破方法。
教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
三、例、習題的意圖分析。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
四、課堂引入。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
七、課后練習。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
八年級數(shù)學名師教案篇四
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應(yīng)用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應(yīng)用價值.
將實際問題中的等量 關(guān)系用分式方程表示
找實際問題中的等量關(guān)系
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
本節(jié)課你學到了哪些知識?有什么感想?
八年級數(shù)學名師教案篇五
教學目標:
〔知識與技能〕。
1.探索作出軸對稱圖形的對稱軸的方法.掌握軸對稱圖形對稱軸的作法.
2.在探索的過程中,培養(yǎng)學生分析、歸納的能力.
〔過程與方法〕。
2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。
〔情感、態(tài)度與價值觀〕。
1、體會數(shù)學與現(xiàn)實生活的聯(lián)系,增強克服困難的勇氣和信心;2、會應(yīng)用數(shù)學知識解決一些簡單的實際問題,增強應(yīng)用意識。
教學重點:
軸對稱圖形對稱軸的作法.
教學難點:
探索軸對稱圖形對稱軸的作法.
教具準備:圓規(guī)、三角尺。
教學過程。
一.提出問題,引入新課。
2.軸對稱圖形性質(zhì).如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點所連線段的垂直平分線.軸對稱圖形的對稱軸,是任何一對對稱點所連線段的垂直平分線.
3.找到一對對應(yīng)點,作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個圖形的對稱軸了.
4.問題:如何作出線段的垂直平分線?
二.導入新課。
1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點距離相等的點在這條線段的垂直平分線上,又由兩點確定一條直線這個公理,那么必須找到兩個到線段兩端點距離相等的點,這樣才能確定已知線段的垂直平分線.
[例]如圖(1),點a和點b關(guān)于某條直線成軸對稱,你能作出這條直線嗎?
已知:線段ab[如圖(1)].
求作:線段ab的垂直平分線.
作法:如圖(2)。
(1).分別以點a、b為圓心,以大于。
(2).作直線cd.
直線cd就是線段ab的垂直平分線.
2.[例]圖中的五角星有幾條對稱軸?作出這些對稱軸.
作法:
1.找出五角星的一對對應(yīng)點a和a′,
連結(jié)aa′.
2.作出線段aa′的垂直平分線l.
則l就是這個五角星的一條對稱軸.
用同樣的方法,可以找出五條對稱軸,所以五角星有五條對稱軸.
三.隨堂練習。
(一)課本35練習1、2、3。
如圖,與圖形a成軸對稱的是哪個圖形?畫出它們的對稱軸.
1ab的長為半徑作弧,兩弧相交于c和d兩點;2。
答案:與a成軸對稱的是圖形d(或b).
四.課時小結(jié)。
方法:找出軸對稱圖形的任意一對對應(yīng)點,連結(jié)這對對應(yīng)點,?作出連線的垂直平分線,該垂直平分線就是這個軸對稱圖形的一條對稱軸.
五.課后作業(yè)。
八年級數(shù)學名師教案篇六
1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應(yīng)該是多少呢?
大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學習了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根
p75習題13.1活動第1、2、3題
八年級數(shù)學名師教案篇七
在推理判斷中得出同底數(shù)冪乘法的運算法則,并掌握“法則”的應(yīng)用.2.過程與方法。
在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強學習信心.重、難點與關(guān)鍵。
1.重點:同底數(shù)冪乘法運算性質(zhì)的推導和應(yīng)用.2.難點:同底數(shù)冪的乘法的法則的應(yīng)用.
一、創(chuàng)設(shè)情境,故事引入【情境導入】。
力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
八年級數(shù)學名師教案篇八
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
平行四邊形的判定方法及應(yīng)用。
閱讀教材p44至p45。
利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(5)你還能找出其他方法嗎?
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
八年級數(shù)學名師教案篇九
多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。
二、自主學習,指向目標。
學習至此:請完成《學生用書》相應(yīng)部分。
三、合作探究,達成目標。
多邊形的定義及有關(guān)概念。
活動一:閱讀教材p19。
小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對訓練:見《學生用書》相應(yīng)部分。
多邊形的對角線。
活動二:(1)十邊形的對角線有35條。
(2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。
反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。
小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?
針對訓練:見《學生用書》相應(yīng)部分。
正多邊形的有關(guān)概念。
活動二:閱讀教材p20。
小組討論:判斷一個多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對訓練:見《學生用書》相應(yīng)部分。
四、總結(jié)梳理,內(nèi)化目標。
本節(jié)學習的數(shù)學知識是:
1、多邊形、多邊形的外角,多邊形的對角線。
2、凸凹多邊形的概念。
五、達標檢測,反思目標。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個角都相等的多邊形叫正多邊形。
d、每條邊、每個角都相等的多邊形叫正多邊形。
2、小學學過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。
4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。
八年級數(shù)學名師教案篇十
2、使學生掌握用平方差公式分解因式。
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學習方法:歸納、概括、總結(jié)。
創(chuàng)設(shè)問題情境,引入新課。
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學時我們就來學習另外的`一種因式分解的方法——公式法。
1、請看乘法公式。
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)。
2、公式講解。
如x2—16。
=(x)2—42。
=(x+4)(x—4)。
9m2—4n2。
=(3m)2—(2n)2。
=(3m+2n)(3m—2n)。
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
教科書練習。
1、教科書習題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級數(shù)學名師教案篇十一
教學目標:
1、知道一次函數(shù)與正比例函數(shù)的意義.
2、能寫出實際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應(yīng)用性.
4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.
教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.
教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。
教學過程:
1、復習舊課。
前面我們學習了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。
2、引入新課。
就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。
這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。
3、例題講解。
例1、某油管因地震破裂,導致每分鐘漏出原油30公升。
(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
(2)破裂3.5小時后,共漏出原油多少公升。
分析:y與x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。
(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關(guān)系式;。
(2)多長時間以后,小丸子的銀行存款才能買隨身聽?
分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
例3、已知函數(shù)是正比例函數(shù),求的值。
分析:本題考察的是正比例函數(shù)的概念。
解:
4、小結(jié)。
由學生對本節(jié)課知識進行總結(jié),教師板書即可.
5、布置作業(yè)。
書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。
八年級數(shù)學名師教案篇十二
活動目標:
1、認知目標:理解二等分的含義,學習二等分的方法。
2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關(guān)系、等量關(guān)系。
3、能力目標:探索對不同圖形進行二等分。
發(fā)散點:
運用不同的等分線對圖形進行等分。
活動準備:
正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
活動過程:
(一)等分圖形。
1、以情景引入。結(jié)合大班幼兒的年齡特點,創(chuàng)設(shè)了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現(xiàn)生活的數(shù)學,更加易于幼兒的理解。
(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐。”
(2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現(xiàn)只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”
2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
3、小結(jié):
(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
(2)師:“有幾種分的方法”(對角和對邊折)。
(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
(4)師:“怎樣分才能一樣大呢?”
(5)教師于幼兒共同總結(jié):只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關(guān)鍵要點。
(二)運用學具進一步探索。只用紙來等分,以現(xiàn)階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎(chǔ)上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗?zāi)軌蜃C明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側(cè)的洞洞子每排數(shù)量是否相同等方法。
3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
4、小結(jié):展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結(jié)合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
八年級數(shù)學名師教案篇十三
一、教學目的:
1、掌握菱形概念,知道菱形與平行四邊形的關(guān)系;
3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;
4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想;
二、重點、難點。
1、教學重點:菱形的性質(zhì)1、2;
2、教學難點:菱形的性質(zhì)及菱形知識的綜合應(yīng)用;
三、例題的意圖分析。
四、課堂引入。
1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
《18、2、2菱形》課時練習含答案;
5、在同一平面內(nèi),用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知識點:等邊三角形的性質(zhì);菱形的判定。
解析:
分析:此題主要考查了等邊三角形的性質(zhì),菱形的定義、
6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知識點:等邊三角形的性質(zhì);菱形的判定。
解析:
分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
《菱形的性質(zhì)與判定》練習題。
一選擇題:
1、下列四邊形中不一定為菱形的是()。
a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。
c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。
2、下列說法中正確的是()。
a、四邊相等的四邊形是菱形。
b、一組對邊相等,另一組對邊平行的四邊形是菱形。
c、對角線互相垂直的四邊形是菱形。
d、對角線互相平分的四邊形是菱形。
3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。
a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。
八年級數(shù)學名師教案篇十四
在教學中努力推進九年義務(wù)教育,落實新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設(shè)和進一步學習現(xiàn)代化科學技術(shù)所必需的數(shù)學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學情分析
八年級是初中學習過程中的關(guān)鍵時期,學生基礎(chǔ)的好壞,直接影響到將來是否能升學。優(yōu)生不多,思想不夠活躍,有少數(shù)學生不上進,思維跟不上。要在本期獲得理想成績,老師和學生都要付出努力,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、本學期教學內(nèi)容分析
本學期教學內(nèi)容共計六章。
第一章《三角形的證明》
本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進一步體會證明的必要性。
第二章《一元一次不等式和一元一次不等式組》
本章通過具體實例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。
第三章《圖形的平移與旋轉(zhuǎn)》
本章將在小學學習的基礎(chǔ)上進一步認識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認識并欣賞平移,中心對稱在自然界和現(xiàn)實生活中的應(yīng)用。
第四章《分解因式》
本章通過具體實例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實質(zhì),最后學習分解因式的幾種基本方法。
第五章《分式與分式方程》
本章通過分數(shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運算法則,并在此基礎(chǔ)上學習分式的化簡求值、解分式方程及列分式方程解應(yīng)用題,能解決簡單的實際應(yīng)用問題。
第六章《平行四邊形》
本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實驗等幾何發(fā)現(xiàn)之旅,享受證明之美。
四、主要措施
1、面向全體學生。
由于學生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應(yīng)從大多數(shù)學生的實際出發(fā),并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學習數(shù)學的興趣,指導他們改進學習方法。幫助他們解決學習中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學有余力的學生,要通過講授選學內(nèi)容和組織課外活動等多種形式,滿足他們的學習愿望,發(fā)展他們的數(shù)學才能。
2、重視改進教學方法,堅持啟發(fā)式,反對注入式。
教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學生課前完成,教學中教師應(yīng)幫助學生梳理新課知識,指出重點和易錯點,解答學生預習時遇到的問題,再設(shè)計提高題由學生進行嘗試,使學生在學習中體會成功,調(diào)動學習積極性,同時也可激勵學生自我編題。努力培養(yǎng)學生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學模型的能力,注意激勵學生的創(chuàng)新意識。
3、 改革作業(yè)結(jié)構(gòu)減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學生都能在原有基礎(chǔ)上提高。
4、課后輔導實行流動分層。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的'非智力因素,彌補智力上的不足。
7、開展課題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。
8、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎(chǔ)知識;對學困生,一些關(guān)鍵知識,輔導他們過關(guān),為他們以后的發(fā)展鋪平道路。
9、培養(yǎng)學生學習數(shù)學的良好習慣。
四、教學進度
第一章《三角形的證明》13課時
1.1等腰三角形 4課時
1.2直角三角形 2課時
1.3線段的垂直平分線 2課時
1.4角平分線 2課時
復習小節(jié)與檢測 3課時
第二章《一元一次不等式和一元一次不等式組》 12課時
2.1 不等關(guān)系 1課時
2.2 不等式的基本性質(zhì) 1課時
2.3 不等式的解集 1課時
2.4 一元一次不等式2課時
2.5 一元一次不等式與一次函數(shù)2課時
2.6 一元一次不等式組 2課時
復習小節(jié) 與檢測 3課時
第三章《圖形的平移與旋轉(zhuǎn)》 10課時
3.1圖形的平移 3課時
3.2圖形的旋轉(zhuǎn) 2 課時
3.3中心對稱 1課時
3.4簡單的圖形設(shè)計 1 課時
復習小節(jié)與檢測 3課時
期中考試復習2 課時
第四章《分解因式》7課時
4.1分解因式1課時
4.2提公因式法 2課時
4.3公式法 2課時
4.4重心 2課時
復習小節(jié)與檢測 2課時
第五章《分式與分式方程》 11課時
5.1認識分式 2課時
5.2 分式的乘除法 1課時
5.3分式的加減法 3課時
5.4分式方程 3課時
復習小節(jié)與檢測 2課時
第六章《平行四邊形》 10課時
4.1平行四邊形的性質(zhì) 2課時
4.2特殊的平行四邊形的判定 3課時
4.3三角形的中位線 1課時
4.4多邊形的內(nèi)角和外角和 2課時
復習小節(jié)與檢測 2課時
八年級數(shù)學名師教案篇一
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進多媒體信息技術(shù)在教學過程中的普遍應(yīng)用,促進信息技術(shù)與學科課程的整合,逐步實現(xiàn)教學內(nèi)容的呈現(xiàn)方式、學生的學習方式、教師的教學方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學生的學習和發(fā)展提供豐富多彩的教育環(huán)境和有力的學習工具?!苯處熯\用現(xiàn)代多媒體信息技術(shù)對教學活動進行創(chuàng)造性設(shè)計,發(fā)揮計算機輔助教學的特有功能,把信息技術(shù)和數(shù)學教學的學科特點結(jié)合起來,可以使教學的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學概念的形成與發(fā)展,數(shù)學思維的過程和實質(zhì),展示數(shù)學思維的形成過程,使數(shù)學課堂教學收到事半功倍的效果。
本節(jié)課內(nèi)容是學生在小學階段初步了解特殊四邊形以及學過《三角形》這章的基礎(chǔ)上進行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學體現(xiàn)出直觀、課容量大、容易接受的特點,為進一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導作用,使學生學習本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
本班經(jīng)歷了一年多課改實踐,學生對運用現(xiàn)代多媒體信息技術(shù)的教學方式有濃厚的興趣,能運用《幾何畫板》這一工具進行簡單的操作,形成自主探索和合作交流的學風,從而樂于在教師的指導下主動與同學探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學知識于實踐的過程。
本節(jié)課充分利用現(xiàn)有的先進教學設(shè)備(兩名學生一臺電腦),利用筆者自制,借助《幾何畫板》把學生帶入數(shù)學模擬實驗室,以研究電動門的機械原理為切入點,從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷數(shù)學知識的形成并進行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當好課堂教學的組織者、決策者、創(chuàng)造者和參與者,教給學生自覺主動地探究新知識的方法,激發(fā)學生的思維,培養(yǎng)學生的科學精神和創(chuàng)新思維習慣,使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學生自主收集、描述和分析數(shù)據(jù)的能力;
1、了解特殊四邊形性質(zhì)的形成過程;
2、初步了解探究新知識的一些方法;
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學生在觀察、歸納、類比及實驗教學活動中,體會成功后的喜悅;
3、初步具有感性認識上升到理性認識的辯證唯物主義思想。
教學環(huán)境:
多媒體計算機網(wǎng)絡(luò)教室。
教學課型:
試驗探究式。
教學重點:
特殊四邊形性質(zhì)。
教學難點:
特殊四邊形性質(zhì)的發(fā)現(xiàn)。
一、設(shè)置情景,提出問題。
提出問題:
1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?
2、在開(關(guān))門過程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問題:
學生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當我們學習完本節(jié)知識后,其他問題就容易解決了。
(意圖:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學的美妙,可以使學生容易進入情境和保持積極學習狀態(tài),激起學生探究解決問題的求知欲望。)。
二、整體了解,形成系統(tǒng)。
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
解決問題:
學生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
(意圖:學生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)。
三、個體研究、總結(jié)性質(zhì)。
1、平行四邊形性質(zhì)。
提出問題:
在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。
解決問題:
教師引導學生拖動b點(學生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。
在圖形變化過程中,
(1)對邊相等;
(2)對角相等;
(3)通過ao=co、bo=do,可得對角線互相平分;
(4)通過鄰角互補,可得對邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補;
……。
指導學生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
菱形性質(zhì)。
梯形性質(zhì)等腰梯形性質(zhì)。
直角梯形性質(zhì)。
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
(意圖:學生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學生體驗到科學探索的樂趣。)。
教師總結(jié):
(意圖:掌握畫箭頭的方法,使學生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達,又節(jié)省時間。)。
四、聯(lián)系生活,解決問題。
解決問題:
學生操作電腦,觀察圖形、分組討論,教師個別指導。
學生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒有這個特點……。
(意圖:使學生體會到數(shù)學于生活、又服務(wù)于生活,更重要的是培養(yǎng)學生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)。
五、小結(jié)。
1.研究問題從整體到局部的方法;
2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)。
1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。
針對教學內(nèi)容、學生特點及設(shè)計方案,預計下列學習效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學生收集、描述和分析數(shù)據(jù)的能力,并達到初步理解特殊四邊形性質(zhì)的目標。
在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認識規(guī)律及探究新知識的一般方法,初步形成感性認識上升到理性認識的辯證唯物主義思想。
由于個體差異,針對教學目標難以達到的個別學生,根據(jù)教學的進展,通過師生之間、學生之間的對話交流及時指導,使教學目標得以實現(xiàn)。
八年級數(shù)學名師教案篇二
本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系.垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反.學生在應(yīng)用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
本節(jié)課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設(shè)計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關(guān)系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結(jié).最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.
八年級數(shù)學名師教案篇三
1.理解分式的基本性質(zhì).
2.會用分式的基本性質(zhì)將分式變形.
二、重點、難點。
1.重點:理解分式的基本性質(zhì).
2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認知難點與突破方法。
教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。
三、例、習題的意圖分析。
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。
四、課堂引入。
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).
五、例題講解。
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.
[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.
解:=,=,=,=,=。
六、隨堂練習。
1.填空:
(1)=(2)=。
(3)=(4)=。
2.約分:
3.通分:
(1)和(2)和。
(3)和(4)和。
4.不改變分式的值,使下列分式的分子和分母都不含“-”號.
七、課后練習。
1.判斷下列約分是否正確:
(1)=(2)=。
(3)=0。
2.通分:
(1)和(2)和。
3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2.(1)(2)(3)(4)-2(x-y)2。
3.通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
八年級數(shù)學名師教案篇四
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應(yīng)用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應(yīng)用價值.
將實際問題中的等量 關(guān)系用分式方程表示
找實際問題中的等量關(guān)系
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
本節(jié)課你學到了哪些知識?有什么感想?
八年級數(shù)學名師教案篇五
教學目標:
〔知識與技能〕。
1.探索作出軸對稱圖形的對稱軸的方法.掌握軸對稱圖形對稱軸的作法.
2.在探索的過程中,培養(yǎng)學生分析、歸納的能力.
〔過程與方法〕。
2、在靈活運用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性質(zhì)的推理方法,進一步培說理和進行簡單推理的能力。
〔情感、態(tài)度與價值觀〕。
1、體會數(shù)學與現(xiàn)實生活的聯(lián)系,增強克服困難的勇氣和信心;2、會應(yīng)用數(shù)學知識解決一些簡單的實際問題,增強應(yīng)用意識。
教學重點:
軸對稱圖形對稱軸的作法.
教學難點:
探索軸對稱圖形對稱軸的作法.
教具準備:圓規(guī)、三角尺。
教學過程。
一.提出問題,引入新課。
2.軸對稱圖形性質(zhì).如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點所連線段的垂直平分線.軸對稱圖形的對稱軸,是任何一對對稱點所連線段的垂直平分線.
3.找到一對對應(yīng)點,作出連結(jié)它們的線段的垂直平分線,就可以得到這兩個圖形的對稱軸了.
4.問題:如何作出線段的垂直平分線?
二.導入新課。
1.要作出線段的垂直平分線,根據(jù)垂直平分線的判定定理,到線段兩端點距離相等的點在這條線段的垂直平分線上,又由兩點確定一條直線這個公理,那么必須找到兩個到線段兩端點距離相等的點,這樣才能確定已知線段的垂直平分線.
[例]如圖(1),點a和點b關(guān)于某條直線成軸對稱,你能作出這條直線嗎?
已知:線段ab[如圖(1)].
求作:線段ab的垂直平分線.
作法:如圖(2)。
(1).分別以點a、b為圓心,以大于。
(2).作直線cd.
直線cd就是線段ab的垂直平分線.
2.[例]圖中的五角星有幾條對稱軸?作出這些對稱軸.
作法:
1.找出五角星的一對對應(yīng)點a和a′,
連結(jié)aa′.
2.作出線段aa′的垂直平分線l.
則l就是這個五角星的一條對稱軸.
用同樣的方法,可以找出五條對稱軸,所以五角星有五條對稱軸.
三.隨堂練習。
(一)課本35練習1、2、3。
如圖,與圖形a成軸對稱的是哪個圖形?畫出它們的對稱軸.
1ab的長為半徑作弧,兩弧相交于c和d兩點;2。
答案:與a成軸對稱的是圖形d(或b).
四.課時小結(jié)。
方法:找出軸對稱圖形的任意一對對應(yīng)點,連結(jié)這對對應(yīng)點,?作出連線的垂直平分線,該垂直平分線就是這個軸對稱圖形的一條對稱軸.
五.課后作業(yè)。
八年級數(shù)學名師教案篇六
1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。
算術(shù)平方根的概念。
根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關(guān)算術(shù)平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如表示25的算術(shù)平方根。
4、例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應(yīng)該是多少呢?
大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學習了什么呢?
2、算術(shù)平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術(shù)平方根
p75習題13.1活動第1、2、3題
八年級數(shù)學名師教案篇七
在推理判斷中得出同底數(shù)冪乘法的運算法則,并掌握“法則”的應(yīng)用.2.過程與方法。
在小組合作交流中,培養(yǎng)協(xié)作精神、探究精神,增強學習信心.重、難點與關(guān)鍵。
1.重點:同底數(shù)冪乘法運算性質(zhì)的推導和應(yīng)用.2.難點:同底數(shù)冪的乘法的法則的應(yīng)用.
一、創(chuàng)設(shè)情境,故事引入【情境導入】。
力一劈,把混沌的宇宙劈成兩半,上面是天,下面是地,從此宇宙有了天地之分,盤古完成了這樣一個壯舉,累死了,他的左眼變成了太陽,右眼變成了月亮,毛發(fā)變成了森林和草原,骨頭變成了高山和高原,肌肉變成了平原與谷地,血液變成了河流.
八年級數(shù)學名師教案篇八
1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題。
平行四邊形的判定方法及應(yīng)用。
閱讀教材p44至p45。
利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(5)你還能找出其他方法嗎?
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
八年級數(shù)學名師教案篇九
多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。
二、自主學習,指向目標。
學習至此:請完成《學生用書》相應(yīng)部分。
三、合作探究,達成目標。
多邊形的定義及有關(guān)概念。
活動一:閱讀教材p19。
小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?
反思小結(jié):多邊形的定義及相關(guān)概念。
針對訓練:見《學生用書》相應(yīng)部分。
多邊形的對角線。
活動二:(1)十邊形的對角線有35條。
(2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。
反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。
小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?
針對訓練:見《學生用書》相應(yīng)部分。
正多邊形的有關(guān)概念。
活動二:閱讀教材p20。
小組討論:判斷一個多邊形是否是正多邊形的條件?
反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。
針對訓練:見《學生用書》相應(yīng)部分。
四、總結(jié)梳理,內(nèi)化目標。
本節(jié)學習的數(shù)學知識是:
1、多邊形、多邊形的外角,多邊形的對角線。
2、凸凹多邊形的概念。
五、達標檢測,反思目標。
1、下列敘述正確的是(d)。
a、每條邊都相等的多邊形是正多邊形。
c、每個角都相等的多邊形叫正多邊形。
d、每條邊、每個角都相等的多邊形叫正多邊形。
2、小學學過的下列圖形中不可能是正多邊形的是(d)。
a、三角形b。正方形c。四邊形d。梯形。
3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。
4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。
八年級數(shù)學名師教案篇十
2、使學生掌握用平方差公式分解因式。
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學習方法:歸納、概括、總結(jié)。
創(chuàng)設(shè)問題情境,引入新課。
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學時我們就來學習另外的`一種因式分解的方法——公式法。
1、請看乘法公式。
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)。
2、公式講解。
如x2—16。
=(x)2—42。
=(x+4)(x—4)。
9m2—4n2。
=(3m)2—(2n)2。
=(3m+2n)(3m—2n)。
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
教科書練習。
1、教科書習題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年級數(shù)學名師教案篇十一
教學目標:
1、知道一次函數(shù)與正比例函數(shù)的意義.
2、能寫出實際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應(yīng)用性.
4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的能力.
教學重點:對于一次函數(shù)與正比例函數(shù)概念的理解.
教學難點:根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
教學方法:結(jié)構(gòu)教學法、以學生“再創(chuàng)造”為主的教學方法。
教學過程:
1、復習舊課。
前面我們學習了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學生說出前三。
2、引入新課。
就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)。
這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號內(nèi)用紅字強調(diào))那么y叫做x的一次函數(shù).特別地,當b=0時,一次函數(shù)就成為(是常數(shù),)。
3、例題講解。
例1、某油管因地震破裂,導致每分鐘漏出原油30公升。
(1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
(2)破裂3.5小時后,共漏出原油多少公升。
分析:y與x成正比例。
解:(1)(2)(升)。
例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個月可以得到150元的零用錢,小丸子計劃每月將零用錢的60%存入銀行,用以購買她期盼已久的cd隨身聽(價值1680元)。
(1)列出小丸子的銀行存款(不計利息)y與月數(shù)x的函數(shù)關(guān)系式;。
(2)多長時間以后,小丸子的銀行存款才能買隨身聽?
分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
例3、已知函數(shù)是正比例函數(shù),求的值。
分析:本題考察的是正比例函數(shù)的概念。
解:
4、小結(jié)。
由學生對本節(jié)課知識進行總結(jié),教師板書即可.
5、布置作業(yè)。
書面作業(yè):1、書后習題2、自己寫出一個實際中的一次函數(shù)的例子并進行討論。
八年級數(shù)學名師教案篇十二
活動目標:
1、認知目標:理解二等分的含義,學習二等分的方法。
2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關(guān)系、等量關(guān)系。
3、能力目標:探索對不同圖形進行二等分。
發(fā)散點:
運用不同的等分線對圖形進行等分。
活動準備:
正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
活動過程:
(一)等分圖形。
1、以情景引入。結(jié)合大班幼兒的年齡特點,創(chuàng)設(shè)了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現(xiàn)生活的數(shù)學,更加易于幼兒的理解。
(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐。”
(2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現(xiàn)只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”
2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
3、小結(jié):
(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
(2)師:“有幾種分的方法”(對角和對邊折)。
(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
(4)師:“怎樣分才能一樣大呢?”
(5)教師于幼兒共同總結(jié):只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關(guān)鍵要點。
(二)運用學具進一步探索。只用紙來等分,以現(xiàn)階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎(chǔ)上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗?zāi)軌蜃C明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側(cè)的洞洞子每排數(shù)量是否相同等方法。
3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
4、小結(jié):展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結(jié)合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
八年級數(shù)學名師教案篇十三
一、教學目的:
1、掌握菱形概念,知道菱形與平行四邊形的關(guān)系;
3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;
4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想;
二、重點、難點。
1、教學重點:菱形的性質(zhì)1、2;
2、教學難點:菱形的性質(zhì)及菱形知識的綜合應(yīng)用;
三、例題的意圖分析。
四、課堂引入。
1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
《18、2、2菱形》課時練習含答案;
5、在同一平面內(nèi),用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知識點:等邊三角形的性質(zhì);菱形的判定。
解析:
分析:此題主要考查了等邊三角形的性質(zhì),菱形的定義、
6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知識點:等邊三角形的性質(zhì);菱形的判定。
解析:
分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
《菱形的性質(zhì)與判定》練習題。
一選擇題:
1、下列四邊形中不一定為菱形的是()。
a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。
c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。
2、下列說法中正確的是()。
a、四邊相等的四邊形是菱形。
b、一組對邊相等,另一組對邊平行的四邊形是菱形。
c、對角線互相垂直的四邊形是菱形。
d、對角線互相平分的四邊形是菱形。
3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。
a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。
八年級數(shù)學名師教案篇十四
在教學中努力推進九年義務(wù)教育,落實新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神。
通過數(shù)學課的教學,使學生切實學好從事現(xiàn)代化建設(shè)和進一步學習現(xiàn)代化科學技術(shù)所必需的數(shù)學基本知識和基本技能;努力培養(yǎng)學生的運算能力、邏輯思維能力,以及分析問題和解決問題的能力。
二、學情分析
八年級是初中學習過程中的關(guān)鍵時期,學生基礎(chǔ)的好壞,直接影響到將來是否能升學。優(yōu)生不多,思想不夠活躍,有少數(shù)學生不上進,思維跟不上。要在本期獲得理想成績,老師和學生都要付出努力,充分發(fā)揮學生是學習的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。
三、本學期教學內(nèi)容分析
本學期教學內(nèi)容共計六章。
第一章《三角形的證明》
本章將證明與等腰三角形和直角三角形的性質(zhì)及判定有關(guān)的一些結(jié)論,證明線段垂直平分線和角平分線的有關(guān)性質(zhì),將研究直角三角形全等的判定,進一步體會證明的必要性。
第二章《一元一次不等式和一元一次不等式組》
本章通過具體實例建立不等式,探索不等式的基本性質(zhì),了解一般不等式的解、解集、解集在數(shù)軸上的表示,一元一次不等式的解法及應(yīng)用;通過具體實例滲透一元一次不等式、一元一次方程和一次函數(shù)的內(nèi)在聯(lián)系.最后研究一元一次不等式組的解集和應(yīng)。
第三章《圖形的平移與旋轉(zhuǎn)》
本章將在小學學習的基礎(chǔ)上進一步認識平面圖形的平移與旋轉(zhuǎn),探索平移,旋轉(zhuǎn)的性質(zhì),認識并欣賞平移,中心對稱在自然界和現(xiàn)實生活中的應(yīng)用。
第四章《分解因式》
本章通過具體實例分析分解因式與整式的乘法之間的關(guān)系揭示分解因式的實質(zhì),最后學習分解因式的幾種基本方法。
第五章《分式與分式方程》
本章通過分數(shù)的有關(guān)性質(zhì)的回顧建立了分式的概念、性質(zhì)和運算法則,并在此基礎(chǔ)上學習分式的化簡求值、解分式方程及列分式方程解應(yīng)用題,能解決簡單的實際應(yīng)用問題。
第六章《平行四邊形》
本章將研究平行四邊形的性質(zhì)與判定,以及三角形中位線的性質(zhì),還將探索多邊形的內(nèi)角和,外角和的規(guī)律;經(jīng)歷操作,實驗等幾何發(fā)現(xiàn)之旅,享受證明之美。
四、主要措施
1、面向全體學生。
由于學生在知識、技能方面的發(fā)展和興趣、特長等不盡相同,所以要因材施教。在組織教學時,應(yīng)從大多數(shù)學生的實際出發(fā),并兼顧學習有困難的和學有余力的學生。對學習有困難的學生,要特別予以關(guān)心,及時采取有效措施,激發(fā)他們學習數(shù)學的興趣,指導他們改進學習方法。幫助他們解決學習中的困難,使他們經(jīng)過努力,能夠達到大綱中規(guī)定的基本要求,對學有余力的學生,要通過講授選學內(nèi)容和組織課外活動等多種形式,滿足他們的學習愿望,發(fā)展他們的數(shù)學才能。
2、重視改進教學方法,堅持啟發(fā)式,反對注入式。
教師在課前先布置學生預習,同時要指導學生預習,提出預習要求,并布置與課本內(nèi)容相關(guān)、難度適中的嘗試題材由學生課前完成,教學中教師應(yīng)幫助學生梳理新課知識,指出重點和易錯點,解答學生預習時遇到的問題,再設(shè)計提高題由學生進行嘗試,使學生在學習中體會成功,調(diào)動學習積極性,同時也可激勵學生自我編題。努力培養(yǎng)學生發(fā)現(xiàn)、得出、分析、解決問題的能力,包括將實際問題上升為數(shù)學模型的能力,注意激勵學生的創(chuàng)新意識。
3、 改革作業(yè)結(jié)構(gòu)減輕學生負擔。將學生按學習能力分成幾個層次,分別布置難、中、淺三個層次作業(yè),使每類學生都能在原有基礎(chǔ)上提高。
4、課后輔導實行流動分層。
5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學生良好的學習習慣,陶行知說:教育就是培養(yǎng)習慣,有助于學生穩(wěn)步提高學習成績,發(fā)展學生的'非智力因素,彌補智力上的不足。
7、開展課題的研究,課外調(diào)查,操作實踐,帶動班級學生學習數(shù)學,同時發(fā)展這一部分學生的特長。
8、進行個別輔導,優(yōu)生提升能力,扎實打牢基礎(chǔ)知識;對學困生,一些關(guān)鍵知識,輔導他們過關(guān),為他們以后的發(fā)展鋪平道路。
9、培養(yǎng)學生學習數(shù)學的良好習慣。
四、教學進度
第一章《三角形的證明》13課時
1.1等腰三角形 4課時
1.2直角三角形 2課時
1.3線段的垂直平分線 2課時
1.4角平分線 2課時
復習小節(jié)與檢測 3課時
第二章《一元一次不等式和一元一次不等式組》 12課時
2.1 不等關(guān)系 1課時
2.2 不等式的基本性質(zhì) 1課時
2.3 不等式的解集 1課時
2.4 一元一次不等式2課時
2.5 一元一次不等式與一次函數(shù)2課時
2.6 一元一次不等式組 2課時
復習小節(jié) 與檢測 3課時
第三章《圖形的平移與旋轉(zhuǎn)》 10課時
3.1圖形的平移 3課時
3.2圖形的旋轉(zhuǎn) 2 課時
3.3中心對稱 1課時
3.4簡單的圖形設(shè)計 1 課時
復習小節(jié)與檢測 3課時
期中考試復習2 課時
第四章《分解因式》7課時
4.1分解因式1課時
4.2提公因式法 2課時
4.3公式法 2課時
4.4重心 2課時
復習小節(jié)與檢測 2課時
第五章《分式與分式方程》 11課時
5.1認識分式 2課時
5.2 分式的乘除法 1課時
5.3分式的加減法 3課時
5.4分式方程 3課時
復習小節(jié)與檢測 2課時
第六章《平行四邊形》 10課時
4.1平行四邊形的性質(zhì) 2課時
4.2特殊的平行四邊形的判定 3課時
4.3三角形的中位線 1課時
4.4多邊形的內(nèi)角和外角和 2課時
復習小節(jié)與檢測 2課時