亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        一元二次方程概念說(shuō)課稿(專業(yè)20篇)

        字號(hào):

            熱愛(ài)閱讀是培養(yǎng)興趣和提升素養(yǎng)的一種有效途徑??偨Y(jié)要簡(jiǎn)潔明了,并突出重點(diǎn),以便讀者能夠快速了解主要觀點(diǎn)??偨Y(jié)的范文可以幫助我們更好地了解總結(jié)的格式、框架和語(yǔ)言表達(dá),但我們要根據(jù)自己的經(jīng)歷和情況進(jìn)行適當(dāng)?shù)恼{(diào)整。
            一元二次方程概念說(shuō)課稿篇一
            大家好,今天我說(shuō)課的題目是函數(shù)的概念,將從以下七個(gè)方面來(lái)進(jìn)行說(shuō)課。
            函數(shù)的概念是人教a版實(shí)驗(yàn)教科書必修一第三章第一節(jié)的內(nèi)容,我們?cè)诔踔须A段學(xué)過(guò)的一次函數(shù)反比例函數(shù)二次函數(shù)為我們?cè)诟咧袑W(xué)習(xí)函數(shù)的概念,這一內(nèi)容進(jìn)行了鋪墊,而函數(shù)的概念又為后續(xù)學(xué)習(xí)函數(shù)的性質(zhì)做了鋪墊,因此,本節(jié)課的內(nèi)容在整個(gè)教科書中起著承上啟下的作用。
            在學(xué)琴方面,從知識(shí)和能力兩方面入手,目前學(xué)生處于高一階段,在中學(xué)已經(jīng)初步探討了函數(shù)的相關(guān)問(wèn)題,為重新定義函數(shù)提供了理論基礎(chǔ),并且通過(guò)以前的學(xué)習(xí),同學(xué)們已經(jīng)具備了分析,推理和概括的能力,并具備了學(xué)習(xí)函數(shù)概念的基本能力。
            根據(jù)課程標(biāo)準(zhǔn),
            教學(xué)。
            內(nèi)容,及學(xué)生學(xué)情,我制定了如下三維教學(xué)目標(biāo),知識(shí)與技能方面,理解函數(shù)的概念能對(duì)具體函數(shù)指出定義域值域?qū)?yīng)法則能夠正確,使用區(qū)間符號(hào)表示,某些函數(shù)的定義域和值域,過(guò)程與方法方面,通過(guò)實(shí)例進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上,用集合與對(duì)應(yīng)語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的進(jìn)步作用,加深數(shù)學(xué)思想方法,情感態(tài)度,價(jià)值觀方面,在自主探究中感受到成功的喜悅,激發(fā)數(shù)學(xué)學(xué)習(xí)興趣。
            根據(jù)課程標(biāo)準(zhǔn),教學(xué)內(nèi)容教學(xué)重點(diǎn)為,函數(shù)的模型化思想函數(shù)的三要素,根據(jù)教學(xué)內(nèi)容,學(xué)生學(xué)情,教學(xué)難點(diǎn)為函數(shù)符號(hào)fx的含義,函數(shù)的定義,域值域和區(qū)間表示,從具體實(shí)例中抽象出函數(shù)概念。
            多樣化的教學(xué)方法是突破重難點(diǎn)的關(guān)鍵,我們因此本節(jié)課我將采用,領(lǐng)導(dǎo)發(fā)現(xiàn)練習(xí)鞏固分組討論的教學(xué)方法,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,主動(dòng)性,使課堂氣氛更加活躍,培養(yǎng)學(xué)生自主學(xué)習(xí),動(dòng)手探究的能力,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)知識(shí)的應(yīng)用能力和意識(shí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)知識(shí)的探索精神和團(tuán)隊(duì)協(xié)作精神,更能讓學(xué)生體驗(yàn)成功的樂(lè)趣。
            根據(jù)上面的教學(xué)方法以及新課程倡導(dǎo)的自主合作探究的學(xué)習(xí)方式,在本節(jié)課的教學(xué)中,教會(huì)學(xué)生動(dòng)手嘗試,仔細(xì)觀察開動(dòng)腦筋分析問(wèn)題,這樣有利于學(xué)生發(fā)揮學(xué)習(xí)的主動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為教師引導(dǎo)下再創(chuàng)造過(guò)程,并使學(xué)生從中體會(huì)到學(xué)習(xí)的樂(lè)趣,下面我將著重談一談我對(duì)教學(xué)過(guò)程的設(shè)計(jì),首先,創(chuàng)設(shè)情境引入課題,例如,正方形的周長(zhǎng)也要與邊長(zhǎng)x的對(duì)應(yīng)關(guān)系是l=4x,而且對(duì)于每一個(gè)x都有唯一的l與之對(duì)應(yīng),所以l是x的函數(shù),這個(gè)函數(shù)與y=4x相同嗎?又如你能用已有的知識(shí)判斷y=x與y=x/x^2是否相同嗎?要解決這些問(wèn)題,就需要進(jìn)一步學(xué)習(xí)函數(shù)的概念,此部分我設(shè)計(jì)的意圖是利用初中所學(xué)知識(shí)引入課題,由熟悉到陌生,便于學(xué)生理解與接受,符合學(xué)生邏輯思維,接下來(lái),引導(dǎo)探求以書上的四個(gè)實(shí)例高速列車時(shí)間與路程關(guān)系,電器維修工人工作天數(shù)與工資的關(guān)系,時(shí)間與空氣質(zhì)量指數(shù)之間的關(guān)系,以及八五計(jì)劃以來(lái),我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系,這四個(gè)實(shí)力為例,讓同學(xué)們探究其對(duì)應(yīng)變量之間的關(guān)系,以及變量的變化范圍,目的是讓學(xué)生體會(huì)函數(shù),是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想,第三部分,歸納。
            總結(jié)。
            形成知識(shí),讓學(xué)生總結(jié)第一到第四中的函數(shù)有哪些共同特征,由此概括出函數(shù)概念的本質(zhì)特征,設(shè)計(jì)意圖為使學(xué)生進(jìn)行分組討論,學(xué)會(huì)分析歸納共同點(diǎn),在分組討論的過(guò)程中,體會(huì)到團(tuán)隊(duì)協(xié)作的精神,第四部分變式訓(xùn)練鞏固知識(shí),思考反比例,函數(shù)y=k/x的定義域值域和對(duì)應(yīng)關(guān)系各是什么?請(qǐng)用函數(shù)定義描述這個(gè)函數(shù),這是為了通過(guò)變式使同學(xué)們靈活運(yùn)用所學(xué)知識(shí),有舉一反三的,能更加使學(xué)生鞏固所學(xué)知識(shí),第五部分,深化知識(shí)習(xí)題訓(xùn)練,為了鞏固所學(xué)知識(shí),激發(fā)學(xué)生的求知欲,我將布置三道不同類型,不同難度的做作業(yè),以滿足不同層次的學(xué)生需求,第一題,第二題為基礎(chǔ)題,第三題為選做題,習(xí)題訓(xùn)練復(fù)習(xí)鞏固很重要,樹立夯實(shí)基礎(chǔ)目標(biāo),堅(jiān)持事求是,腳踏實(shí)地。
            基于以上教學(xué)過(guò)程,我設(shè)計(jì)了如下板書,我的說(shuō)課到此完畢,謝謝大家,敬請(qǐng)各位老師批評(píng)指正。
            一元二次方程概念說(shuō)課稿篇二
            每一個(gè)數(shù)學(xué)概念都不是孤立存在的,都存在于一個(gè)相應(yīng)的系統(tǒng)中。把某一概念置于它所存在的相應(yīng)系統(tǒng)中進(jìn)行比較,引出新概念,不但能達(dá)到對(duì)概念的深刻理解,還能深化和發(fā)展概念。本課教學(xué)時(shí),我將一元二次方程與一元一次方程進(jìn)行類比,引出一元二次方程的概念。在類比的過(guò)程中既加深了對(duì)一元二次方程概念的理解又分析了這兩種方程的聯(lián)系和區(qū)別。
            在概念的理解上,教學(xué)時(shí)我從學(xué)生實(shí)際出發(fā),選擇一些簡(jiǎn)單的鞏固練習(xí)來(lái)辨認(rèn)、識(shí)別,幫助學(xué)生掌握概念的外延和內(nèi)涵;通過(guò)變式深化對(duì)概念的理解;通過(guò)新舊概念的對(duì)比,分析概念的矛盾運(yùn)動(dòng)。。
            總之,概念課的引入是概念課教學(xué)的前提,概念的理解是概念課教學(xué)的核心。重視概念教學(xué),運(yùn)用多種方式、方法調(diào)動(dòng)學(xué)生感官、思維的積極性,學(xué)好用好概念是學(xué)好一切知識(shí)的基礎(chǔ)和關(guān)鍵。
            一元二次方程概念說(shuō)課稿篇三
            教學(xué)目標(biāo):
            1、進(jìn)一步理解的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出關(guān)系,列出解析式;
            2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
            3、會(huì)求值,并體會(huì)自變量與值間的對(duì)應(yīng)關(guān)系.
            4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的的自變量的取值范圍的求法.
            5、通過(guò)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
            教學(xué)重點(diǎn):了解的意義,會(huì)求自變量的取值范圍及求值.
            教學(xué)難點(diǎn):概念的抽象性.
            教學(xué)過(guò)程:
            (一)引入新課:
            上一節(jié)課我們講了的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的.
            生活中有很多實(shí)例反映了關(guān)系,你能舉出一個(gè),并指出式中的自變量與嗎?
            1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
            2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
            解:1、y=30n。
            y是,n是自變量。
            2、,n是,a是自變量.
            (二)講授新課。
            剛才所舉例子中的,都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
            例1、求下列中自變量x的取值范圍.。
            (1)(2)。
            (3)(4)。
            (5)(6)。
            分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.
            (3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
            同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
            同理,第(6)小題也是二次根式,是被開方數(shù),。
            解:(1)全體實(shí)數(shù)。
            (2)全體實(shí)數(shù)。
            (3)。
            (4)且。
            (5)。
            (6)。
            小結(jié):從上面的例題中可以看出的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)大于、等于零.
            注意:有些同學(xué)沒(méi)有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零.求出使成立的自變量的取值范圍.二次根式的問(wèn)題也與次類似.
            但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
            一元二次方程概念說(shuō)課稿篇四
            教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說(shuō)”到“對(duì)應(yīng)說(shuō)”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無(wú)疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
            二、教學(xué)目標(biāo)。
            理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
            通過(guò)對(duì)實(shí)際問(wèn)題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
            通過(guò)對(duì)函數(shù)概念形成的探究過(guò)程,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng)新品質(zhì)。
            三、重難點(diǎn)分析確定。
            一、教學(xué)基本思路及過(guò)程。
            本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
            二、學(xué)情分析。
            一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
            函數(shù)在初中雖已講過(guò),不過(guò)較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來(lái)描繪函數(shù)概念,是一個(gè)抽象過(guò)程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來(lái)有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。
            三、教法、學(xué)法。
            1、本節(jié)課采用的方法有:
            直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。
            2、采用這些方法的理論依據(jù):
            我一方面精心設(shè)計(jì)問(wèn)題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問(wèn)題的提出、問(wèn)題的解決為主線,設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過(guò)程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過(guò)程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。
            一元二次方程概念說(shuō)課稿篇五
            各位專家、各位老師:
            大家好!
            今天我說(shuō)課的題目是《函數(shù)的概念》,本課題是人教a版必修1中1.2的內(nèi)容,計(jì)劃安排兩個(gè)課時(shí),本課時(shí)的內(nèi)容為:函數(shù)的概念、三要素及簡(jiǎn)單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評(píng)價(jià)、教學(xué)過(guò)程設(shè)計(jì)、板書設(shè)計(jì)等幾個(gè)方面對(duì)本節(jié)課的教學(xué)加以說(shuō)明。
            一、教學(xué)目標(biāo)。
            1、課程標(biāo)準(zhǔn)。
            課節(jié)內(nèi)容的課標(biāo)要求是:
            (1)通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;了解映射的概念。
            (2)在實(shí)際情景中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
            (3)通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用。
            (4)通過(guò)已學(xué)過(guò)的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
            (5)學(xué)會(huì)運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
            2、課標(biāo)解讀。
            關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:
            (2)強(qiáng)調(diào)對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;
            (3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;
            (4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;
            (5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根。
            (6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認(rèn)識(shí)和理解函數(shù)及其性質(zhì)。
            【依據(jù)意圖】。
            (1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認(rèn)識(shí)和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過(guò)于細(xì)枝末節(jié)的非本質(zhì)問(wèn)題上作過(guò)多的訓(xùn)練,有了定義域和對(duì)應(yīng)關(guān)系,值域自然就定了。此外,“課標(biāo)”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。
            (2)希望通過(guò)方程根與函數(shù)零點(diǎn)的內(nèi)在聯(lián)系,加強(qiáng)對(duì)函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認(rèn)識(shí)和理解。并通過(guò)用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點(diǎn)之間的聯(lián)系具體化。
            (3)二分法是求方程近似根的常用方法,更為一般、簡(jiǎn)單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個(gè)二”解決根的分布問(wèn)題。
            (4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達(dá)到目的的一種手段,一種快速計(jì)算的工具。
            3、教材分析。
            (1)地位作用。
            函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個(gè)高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個(gè)方面:
            3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對(duì)初中所學(xué)函數(shù)概念的一次升華和再認(rèn)識(shí)、對(duì)集合語(yǔ)言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識(shí)的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。
            (2)內(nèi)容與課時(shí)劃分。
            本課題是高中數(shù)學(xué)人教a版必修1中1.2節(jié),計(jì)劃教學(xué)2個(gè)課時(shí),第一課時(shí)內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡(jiǎn)單函數(shù)的定義域及值域的求法;第二課時(shí)內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。
            4、學(xué)情分析。
            (1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過(guò)函數(shù)的概念。
            (2)本班級(jí)學(xué)生個(gè)體差異較明顯。
            基于以上分析,我把本節(jié)課的教學(xué)目標(biāo)和教學(xué)重難點(diǎn)制定如下:
            5、教學(xué)目標(biāo)。
            【依據(jù)意圖】:教學(xué)目標(biāo)的設(shè)計(jì),要簡(jiǎn)潔明了,具有較強(qiáng)的可操作性,容易檢測(cè)目標(biāo)的達(dá)成度,同時(shí)也要體現(xiàn)出新課標(biāo)下對(duì)素質(zhì)教育的要求?;谝陨戏治鲎鳛橐罁?jù),課時(shí)目標(biāo)分解如下:
            【課時(shí)分解目標(biāo)】。
            1、能夠列舉生活中具有函數(shù)關(guān)系的實(shí)例;
            2、能用集合與對(duì)應(yīng)的語(yǔ)言描述函數(shù)的定義,能對(duì)具體函數(shù)指出定義域、對(duì)應(yīng)法則、值域;
            3、會(huì)求一些簡(jiǎn)單函數(shù)(帶根號(hào),分式)的定義域和值域;
            4、能夠從函數(shù)的三要素的角度去判定兩個(gè)函數(shù)是否是同一個(gè)函數(shù)。
            二、教學(xué)重難點(diǎn)。
            重點(diǎn):讓學(xué)生體會(huì)函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。
            難點(diǎn):引導(dǎo)學(xué)生從具體實(shí)例抽象出函數(shù)概念。
            [意圖依據(jù)]:本課時(shí)是概念課,重在概念的理解和形成,但教師應(yīng)把重點(diǎn)放在讓學(xué)生形成概念的過(guò)程中,聯(lián)系舊知、突破難點(diǎn)、生長(zhǎng)新知。為此通過(guò)教學(xué)目標(biāo)和難重點(diǎn)的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標(biāo)去學(xué)習(xí),才能達(dá)到事半功倍的效果。
            三、教法。
            問(wèn)題式教學(xué)法(實(shí)例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)。
            由于本課題是從集合與對(duì)應(yīng)的角度揭示函數(shù)的本質(zhì),無(wú)論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認(rèn)知規(guī)律,我通過(guò)以問(wèn)題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問(wèn)、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。
            [意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個(gè)方面:(1)把集合作為一種語(yǔ)言;(2)對(duì)函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個(gè)平臺(tái),通過(guò)展示實(shí)例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問(wèn)題,引起思考,達(dá)成教學(xué)目標(biāo)。
            四、學(xué)法。
            自主探究、合作交流、展示互評(píng)。
            我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強(qiáng),學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時(shí)間長(zhǎng),需要更多的經(jīng)驗(yàn)積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實(shí)際背景的前提下對(duì)所給出實(shí)例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來(lái)面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力;同時(shí)在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動(dòng)環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑以及思考問(wèn)題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來(lái)設(shè)計(jì)本課題的整體思路。
            [意圖依據(jù)]:本課時(shí)是以問(wèn)題為主線的教學(xué)過(guò)程,著重讓學(xué)生經(jīng)過(guò)對(duì)大量實(shí)例的剖析、了解、歸納而形成概念。在這個(gè)過(guò)程中,教師的作用是引導(dǎo),經(jīng)過(guò)一系列問(wèn)題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。
            五、教學(xué)過(guò)程設(shè)計(jì)。
            本節(jié)內(nèi)容的教學(xué)過(guò)程我設(shè)計(jì)為以下逐層推進(jìn)六個(gè)步驟:
            1、課前預(yù)習(xí)、生成問(wèn)題:
            2、創(chuàng)境設(shè)問(wèn)、引入課題:
            3、觀察分析、探索新知:
            4、思考辨析、深刻理解:
            5、提煉總結(jié)、分享收獲:
            6、布置作業(yè)、拓展延伸.
            一元二次方程概念說(shuō)課稿篇六
            一、引導(dǎo)學(xué)生觀察、類比、聯(lián)想已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識(shí)的產(chǎn)生和發(fā)展過(guò)程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺(jué)得意外,讓學(xué)生跳一跳就可以摘到桃子。
            二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實(shí)于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過(guò)一系列的活動(dòng)來(lái)展開教學(xué),發(fā)展了學(xué)生的思維能力,增強(qiáng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
            四、為了真正做到有效的合作學(xué)習(xí),我在活動(dòng)中大膽地讓學(xué)生自主完成。先讓學(xué)生把問(wèn)題提出來(lái),然后讓學(xué)生帶著問(wèn)題去討論,這樣學(xué)生在討論時(shí)就有目的,就會(huì)事半功倍。也讓不同層次的學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。
            不足之處:引入方面有待加強(qiáng),不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強(qiáng),應(yīng)給學(xué)生做出示范;給學(xué)生思考的時(shí)間還不夠。
            一元二次方程概念說(shuō)課稿篇七
            2)列方程解決問(wèn)題的關(guān)鍵是尋找等量關(guān)系。
            提升:某學(xué)校會(huì)議室的地面是一個(gè)長(zhǎng)方形,長(zhǎng)比寬多一米,用320塊邊長(zhǎng)為25厘米的正方形瓷磚恰好可將地面鋪滿。求會(huì)議室地面的長(zhǎng)和寬。
            作業(yè):
            建構(gòu)主義認(rèn)為,教學(xué)方法的核心是強(qiáng)調(diào)學(xué)習(xí)者是一個(gè)主動(dòng)的積極的知識(shí)構(gòu)建者。本節(jié)課,從審題,到找等量關(guān)系,列方程等一系列活動(dòng)都從學(xué)生實(shí)際出發(fā),借助適當(dāng)?shù)膯?wèn)題情景或?qū)嵗偈箤W(xué)生反思,引起學(xué)生的認(rèn)知沖突,從而讓學(xué)生最終通過(guò)主動(dòng)的思考建構(gòu)起新的認(rèn)知結(jié)構(gòu)。以上是我對(duì)本節(jié)課的理解與構(gòu)思,不到之處請(qǐng)多多指正。
            一元二次方程概念說(shuō)課稿篇八
            一元二次方程根與系數(shù)的關(guān)系是在學(xué)習(xí)了一元二次方程的解法和根的判別式之后引入的。它深化了兩根與系數(shù)之間的關(guān)系,是我們今后繼續(xù)研究一元二次方程根的情況的主要工具,是方程理論的重要組成部分。一元二次方程的根與系數(shù)的關(guān)系,在中考中多以填空,選擇,解答題的形式出現(xiàn),考查的頻率較高,也常與幾何、二次函數(shù)等問(wèn)題結(jié)合考查,是考試的熱點(diǎn)。
            2、提高學(xué)生分析、觀察、歸納的能力和推理論證的能力。
            3、滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律。
            4、通過(guò)學(xué)生探索一元二次方程的根與系數(shù)的關(guān)系,培養(yǎng)學(xué)生觀察分析和綜合、判斷的能力。激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,鼓勵(lì)學(xué)生勇于探索的精神。
            難點(diǎn)的突破方法:由已知兩根構(gòu)造新方程入手,由學(xué)生觀察并發(fā)現(xiàn)一元二次方程根與系數(shù)的關(guān)系,用求根公式再嚴(yán)格加以證明,證明的過(guò)程是一個(gè)再熟悉和再理解的過(guò)程。
            在構(gòu)思這節(jié)課時(shí),感到教材中所提供的方法固然能更加直接的引出根與系數(shù)的關(guān)系,但忽略了定理最初形成的過(guò)程(即:為何要檢驗(yàn)兩根之和,兩根之積?)。因此我根據(jù)前面所學(xué)內(nèi)容,從已知兩根求作方程入手,引導(dǎo)學(xué)生觀察并發(fā)現(xiàn)根與系數(shù)的關(guān)系。此時(shí)所得出的恰好是二次項(xiàng)系數(shù)為1的方程,這種特殊的方程有這種規(guī)律,是不是對(duì)二次項(xiàng)系數(shù)不為1的方程也同樣有這種規(guī)律呢?于是引出下文,并推及到韋達(dá)定理的出現(xiàn)與證明。然后加入對(duì)數(shù)學(xué)家韋達(dá)的介紹,及我國(guó)古代數(shù)學(xué)家在根與系數(shù)關(guān)系上的貢獻(xiàn),激發(fā)學(xué)生的愛(ài)科學(xué),用科學(xué)的情感,提高學(xué)生對(duì)學(xué)習(xí)的興趣。最后,再由學(xué)生自主小結(jié),談體會(huì),給整節(jié)課畫上圓滿的句號(hào)。
            為了體現(xiàn)二期課改中“以學(xué)生為主體”的教育理念,在課程的引入和新授中充分地考慮在學(xué)生已有知識(shí)與新知識(shí)間架起一座橋梁,通過(guò)創(chuàng)設(shè)一定的問(wèn)題情境,注重由學(xué)生自己探索,讓學(xué)生參與韋達(dá)定理的發(fā)現(xiàn)、不完全歸納驗(yàn)證以及演繹證明等整個(gè)數(shù)學(xué)思維過(guò)程。
            學(xué)生通過(guò)對(duì)所提問(wèn)題的求解,在觀察、歸納中發(fā)現(xiàn)一元二次方程的根與系數(shù)間的關(guān)系。從已知兩根構(gòu)造方程引入,積極配合使學(xué)生能觀察出所給出的兩根與所作方程系數(shù)的關(guān)系。比原先求出兩根,驗(yàn)證兩根之和,之積的難度提高了,但數(shù)學(xué)思維品質(zhì)也相對(duì)提高了。實(shí)踐證明,只要教學(xué)語(yǔ)言使用得當(dāng),問(wèn)題情境設(shè)計(jì)得好,學(xué)生是能夠從題目中去獲得發(fā)現(xiàn)的。
            采用電教手段,增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。
            1、復(fù)習(xí)提問(wèn)。
            1)2和32)—4和7。
            3)3和—84)—5和—2。
            2、新課講解:
            猜想:2x2—5x+3=0這個(gè)方程的兩根之和,兩根之積是否滿足這個(gè)特征?
            問(wèn)題2:對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程兩根之和,兩根之積有怎樣的特征?
            引出韋達(dá)定理,并加以嚴(yán)格論證。
            介紹數(shù)學(xué)家韋達(dá)。
            3、鞏固練習(xí):
            1)x2—3x+1=0。
            2)x2—2x=2。
            3)2x2—3x=0。
            4)3x2=0。
            判斷對(duì)錯(cuò),如果錯(cuò)了,說(shuō)明理由。
            1)2x2—11x+4=0兩根之和11,兩根之積4。
            2)4x2+3x=5兩根之和,兩根之積。
            3)x2+2=0兩根之和0,兩根之積2。
            4)x2+x+1=0兩根之和—1,兩根之積1。
            4、學(xué)生自主小結(jié)。
            5、布置作業(yè)。
            一元二次方程概念說(shuō)課稿篇九
            一、說(shuō)課內(nèi)容:
            九年級(jí)數(shù)學(xué)下冊(cè)第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
            二、教材分析:
            1、教材的地位和作用。
            這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的'基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
            2、教學(xué)目標(biāo)和要求:
            (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。
            (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.
            (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
            3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
            4、教學(xué)難點(diǎn):抽象出實(shí)際問(wèn)題中的二次函數(shù)關(guān)系。
            三、教法學(xué)法設(shè)計(jì):
            1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程。
            2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程。
            3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。
            四、教學(xué)過(guò)程:
            (一)復(fù)習(xí)提問(wèn)。
            1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?
            (一次函數(shù),正比例函數(shù),反比例函數(shù))。
            2.它們的形式是怎樣的?
            (y=kx+b,ky=kx,ky=,k0)。
            【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
            (二)引入新課。
            函數(shù)是研究?jī)蓚€(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。
            例1、(1)圓的半徑是r(cm)時(shí),面積與半徑之間的關(guān)系是什么?
            解:s=0)。
            解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
            解:y=100(1+x)2。
            =100(x2+2x+1)。
            =100x2+200x+100(0。
            教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
            (三)講解新課。
            以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
            二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
            1、強(qiáng)調(diào)形如,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
            2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r0)。
            3、為什么二次函數(shù)定義中要求a?
            (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)。
            4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
            5、b和c是否可以為零?
            由例1可知,b和c均可為零.
            若b=0,則y=ax2+c;。
            若c=0,則y=ax2+bx;。
            若b=c=0,則y=ax2.
            注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
            判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
            (1)y=3(x-1)2+1(2)s=3-2t2。
            (3)y=(x+3)2-x2(4)s=10r2。
            (5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
            (四)鞏固練習(xí)。
            1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。
            (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;。
            (2)設(shè)這個(gè)直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
            于x的函數(shù)關(guān)系式。
            【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。
            2.已知正方體的棱長(zhǎng)為xcm,它的表面積為scm2,體積為vcm3。
            (1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
            (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
            【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
            五、評(píng)價(jià)分析。
            本節(jié)的一個(gè)知識(shí)點(diǎn)就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實(shí)際問(wèn)題的數(shù)量關(guān)系并把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型的過(guò)程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的有效模型,增加對(duì)二次函數(shù)的感性認(rèn)識(shí),側(cè)重點(diǎn)通過(guò)兩個(gè)實(shí)際問(wèn)題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進(jìn)一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對(duì)于最大面積問(wèn)題,可給學(xué)生留為課下探究問(wèn)題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵(lì)。
            一元二次方程概念說(shuō)課稿篇十
            導(dǎo)數(shù)是研究現(xiàn)代科學(xué)技術(shù)必不可少的工具,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)和其他自然科學(xué)的基礎(chǔ),在物理學(xué)、經(jīng)濟(jì)學(xué)等領(lǐng)域都有廣泛的應(yīng)用。對(duì)于中學(xué)階段而言,導(dǎo)數(shù)是研究函數(shù)的有力工具,在求函數(shù)的單調(diào)性、極值、曲線的切線以及一些優(yōu)化問(wèn)題時(shí)有著廣泛的應(yīng)用,同時(shí)對(duì)研究幾何、不等式起著重要作用.導(dǎo)數(shù)的概念毫無(wú)疑問(wèn)是教學(xué)的關(guān)鍵,考慮到學(xué)生的可接受性,教材中并沒(méi)有引進(jìn)極限概念,而是通過(guò)實(shí)例引導(dǎo)學(xué)生經(jīng)歷由平均變化率到瞬時(shí)變化率的過(guò)程,直至建立起導(dǎo)數(shù)的數(shù)學(xué)模型。而從平均變化率到瞬時(shí)變化率,教材中所選取的實(shí)例是曲線上一點(diǎn)處的切線和瞬時(shí)速度、瞬時(shí)加速度,筆者以為從學(xué)生的知識(shí)背景出發(fā),與其用切線來(lái)引入導(dǎo)數(shù),還不如將之視為導(dǎo)數(shù)知識(shí)的.幾何解釋,因此教學(xué)處理時(shí)采用數(shù)值逼近、幾何直觀感受、解析式抽象三種方式實(shí)現(xiàn)由平均變化率到瞬時(shí)變化率的過(guò)渡。
            教學(xué)時(shí)需關(guān)注:一是邏輯主線是以問(wèn)題為背景,按照“問(wèn)題情境—建立模型—解釋應(yīng)用與拓展”的程序展開;二是學(xué)生極限思想的形成,需設(shè)計(jì)活動(dòng)讓學(xué)生經(jīng)歷從平均變化率到瞬時(shí)變化率的過(guò)程,先通過(guò)求物體在某一時(shí)刻的平均速度的極限去得出瞬時(shí)速度,再由此抽象出函數(shù)在某點(diǎn)的平均變化率的極限就是瞬時(shí)變化率的的模型,并將瞬時(shí)變化率定義為導(dǎo)數(shù);三是從特殊到一般,通過(guò)若干個(gè)特殊時(shí)刻的瞬時(shí)速度過(guò)渡到任意時(shí)刻的瞬時(shí)速度;從物體運(yùn)動(dòng)的平均速度的極限是瞬時(shí)速度過(guò)渡到函數(shù)的平均變化率的極限是瞬時(shí)變化率。
            1、知識(shí)與技能目標(biāo):
            理解并能復(fù)述導(dǎo)數(shù)的概念,掌握利用求函數(shù)在某點(diǎn)的平均變化率的極限實(shí)現(xiàn)求導(dǎo)數(shù)的基本步驟,初步學(xué)會(huì)求解簡(jiǎn)單函數(shù)在一點(diǎn)處的切線方程。
            2、過(guò)程與方法目標(biāo):
            通過(guò)數(shù)值逼近計(jì)算的方法經(jīng)歷從平均變化率到瞬時(shí)變化率的過(guò)程,并在歸納抽象的過(guò)程中建構(gòu)導(dǎo)數(shù)的概念,嘗試幾何解釋的過(guò)程中領(lǐng)悟數(shù)學(xué)發(fā)現(xiàn)的全過(guò)程。
            3、情感、態(tài)度、價(jià)值觀目標(biāo):
            通過(guò)數(shù)學(xué)建模的過(guò)程感受數(shù)學(xué)研究方法,并在使用手持技術(shù)過(guò)程中改善學(xué)習(xí)方法,即初步形成向技術(shù)學(xué)數(shù)學(xué)的基本理念。
            教學(xué)重點(diǎn)。
            數(shù)值逼近法生成建構(gòu)導(dǎo)數(shù)概念及導(dǎo)數(shù)的計(jì)算。
            教學(xué)難點(diǎn)。
            本節(jié)課需要用到的知識(shí)儲(chǔ)備包括平均變化率、直線的斜率、物理中物體運(yùn)動(dòng)的瞬時(shí)速度、解析幾何中的切線等,而所要用到的歸納、概括、類比、抽象思維能力等也已具備,特別地實(shí)驗(yàn)班的學(xué)生均能熟練操作圖形計(jì)算器,也多次經(jīng)歷過(guò)數(shù)學(xué)再創(chuàng)造的過(guò)程,對(duì)“問(wèn)題情境—建立模型—解釋應(yīng)用與拓展”這樣的學(xué)習(xí)程序并不陌生,這些都是開展本節(jié)課學(xué)習(xí)的基礎(chǔ)。
            一元二次方程概念說(shuō)課稿篇十一
            理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.
            理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會(huì)利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
            終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
            一、問(wèn)題.
            1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
            2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與終邊相同的角怎么表示?
            3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?
            4、弧度制下圓的弧長(zhǎng)公式和扇形的面積公式是什么?
            5、任意角的三角函數(shù)的定義是什么?在各象限的符號(hào)怎么確定?
            6、你能在單位圓中畫出正弦、余弦和正切線嗎?
            7、同角三角函數(shù)有哪些基本關(guān)系式?
            二、練習(xí).
            1.給出下列命題:
            (1)小于的角是銳角;
            (2)若是第一象限的角,則必為第一象限的角;
            (3)第三象限的角必大于第二象限的角;
            (4)第二象限的角是鈍角;
            (5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
            (6)角2與角的終邊不可能相同;
            2.設(shè)p點(diǎn)是角終邊上一點(diǎn),且滿足則的值是。
            4.若則角的終邊在象限。
            5.在直角坐標(biāo)系中,若角與角的終邊互為反向延長(zhǎng)線,則角與角之間的關(guān)系是。
            6.若是第三象限的角,則-,的終邊落在何處?
            例1.如圖,分別是角的終邊.
            (1)求終邊落在陰影部分(含邊界)的所有角的集合;
            (2)求終邊落在陰影部分、且在上所有角的集合;
            (3)求始邊在om位置,終邊在on位置的所有角的集合.
            例2.
            (1)已知角的終邊在直線上,求的值;
            (2)已知角的終邊上有一點(diǎn)a,求的值。
            例3.若,則在第象限.
            1、若銳角的終邊上一點(diǎn)的坐標(biāo)為,則角的弧度數(shù)為.
            2、若,又是第二,第三象限角,則的取值范圍是.
            3、一個(gè)半徑為的扇形,如果它的周長(zhǎng)等于弧所在半圓的弧長(zhǎng),那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.
            4、已知點(diǎn)p在第三象限,則角終邊在第象限.
            5、設(shè)角的終邊過(guò)點(diǎn)p,則的值為.
            6、已知角的終邊上一點(diǎn)p且,求和的值.
            1、經(jīng)過(guò)3小時(shí)35分鐘,分針轉(zhuǎn)過(guò)的角的弧度是.時(shí)針轉(zhuǎn)過(guò)的角的弧度數(shù)是.
            2、若點(diǎn)p在第一象限,則在內(nèi)的取值范圍是.
            3、若點(diǎn)p從(1,0)出發(fā),沿單位圓逆時(shí)針?lè)较蜻\(yùn)動(dòng)弧長(zhǎng)到達(dá)q點(diǎn),則q點(diǎn)坐標(biāo)為.
            4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個(gè)角的終邊重合,求角的值.
            一元二次方程概念說(shuō)課稿篇十二
            等比數(shù)列前n項(xiàng)和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗(yàn)修訂本第一冊(cè)第三章第五節(jié)的內(nèi)容,教學(xué)對(duì)象為高一學(xué)生,教學(xué)時(shí)數(shù)2課時(shí)。
            第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來(lái),這是由其在整個(gè)高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。
            1、數(shù)列有著廣泛的實(shí)際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計(jì)、儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等。
            2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實(shí)質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。
            3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運(yùn)用前面的知識(shí)解決數(shù)列中的一些問(wèn)題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。
            本節(jié)課既是本章的重點(diǎn),同時(shí)也是教材的重點(diǎn)。等比數(shù)列前n項(xiàng)和前面承接了數(shù)列的定義、等差數(shù)列的知識(shí)內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。
            本節(jié)的重點(diǎn)是等比數(shù)列前n項(xiàng)和公式及應(yīng)用,難點(diǎn)是公式的推導(dǎo)。
            二、教學(xué)目標(biāo)。
            1、知識(shí)目標(biāo):理解等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法,掌握等比數(shù)列前n項(xiàng)和公式及應(yīng)用。
            2、能力目標(biāo):培養(yǎng)學(xué)生觀察問(wèn)題、思考問(wèn)題的能力,并能靈活運(yùn)用基本概念分析問(wèn)題解決問(wèn)題的能力,鍛煉數(shù)學(xué)思維能力。
            3、思想目標(biāo):培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅(jiān)強(qiáng)意志和勇于創(chuàng)新的精神。
            三、教學(xué)程序設(shè)計(jì)。
            1、導(dǎo)言:
            這樣引入課題有以下三點(diǎn)好處:
            (1)利用學(xué)生求知好奇心理,以一個(gè)小故事為切入點(diǎn),便于調(diào)動(dòng)學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。
            (2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點(diǎn)。
            (3)有利于知識(shí)的遷移,使學(xué)生明確知識(shí)的現(xiàn)實(shí)應(yīng)用性。
            2、講授新課:
            本節(jié)課有兩項(xiàng)主要內(nèi)容,等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)和等比數(shù)列的前n項(xiàng)和公式及應(yīng)用。
            依據(jù)如下:
            (1)從認(rèn)知領(lǐng)域上講,它在陳述性知識(shí)、程序性知識(shí)與策略性知識(shí)的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識(shí)。
            (2)從學(xué)科知識(shí)上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問(wèn)題迎刃而解。
            (3)從心理學(xué)上講,學(xué)生對(duì)這項(xiàng)學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識(shí)薄弱,不易理解。
            突破難點(diǎn)方法:
            (1)明確難點(diǎn)、分解難點(diǎn),采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識(shí)切入,淺化知識(shí)內(nèi)容。比如可以先求麥粒的總數(shù),通過(guò)設(shè)問(wèn)使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點(diǎn),發(fā)現(xiàn)上式中,每一項(xiàng)乘以2后都得它的后一項(xiàng),即有,發(fā)現(xiàn)兩式右邊有62項(xiàng)相同,啟發(fā)同學(xué)們找到解決問(wèn)題的關(guān)鍵是等式左右同時(shí)乘以2,相減得和。從而得知求等比數(shù)列前n項(xiàng)和……+的關(guān)鍵也應(yīng)是等式左右各項(xiàng)乘以公比q,兩式相減去掉相同項(xiàng),得求和公式,也掌握了這種常用的數(shù)列求和方法——錯(cuò)位相減法,說(shuō)明這種方法的用途。
            (2)值得一提的是公式的證明還有兩種方法:
            方法二:由等比數(shù)列的定義得:運(yùn)用連比定理,
            后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
            等比數(shù)列前n項(xiàng)和公式及應(yīng)用是本節(jié)課的重點(diǎn)內(nèi)容。
            依據(jù)如下:
            (1)新大綱中有較高層次的要求。
            (2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
            (3)這項(xiàng)知識(shí)內(nèi)容有廣泛的實(shí)際應(yīng)用,很多問(wèn)題都要轉(zhuǎn)化為等比數(shù)列的求和上來(lái)。
            突出重點(diǎn)方法:
            (1)明確重點(diǎn)。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運(yùn)用比較法來(lái)突出公式的內(nèi)容(彩色粉筆板書):,強(qiáng)調(diào)公式的應(yīng)用范圍:中可知三求二。
            (2)運(yùn)用糾錯(cuò)法對(duì)公式中學(xué)生容易出錯(cuò)的地方,即公式的條件,以精練的語(yǔ)言給予強(qiáng)調(diào),并指出q=1時(shí),。再有就是有些數(shù)列求和的項(xiàng)數(shù)易錯(cuò),例如的項(xiàng)數(shù)是n+1而不是n。
            (3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個(gè)層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實(shí)際應(yīng)用來(lái)突出這一重點(diǎn)。對(duì)應(yīng)用題師生要共同分析討論,從問(wèn)題中抽象出等比數(shù)列,然后用公式求和。
            四、習(xí)題訓(xùn)練。
            本節(jié)課設(shè)置如下兩種類型的習(xí)題:
            1.中知三求二的解答題;。
            2.實(shí)際應(yīng)用題.
            這樣設(shè)置主要依據(jù):
            (1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點(diǎn)、難點(diǎn)有相對(duì)應(yīng)的匹配關(guān)系。
            (2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
            (3)應(yīng)用題比較切合對(duì)智力技能進(jìn)行檢測(cè),有利于數(shù)學(xué)能力的提高。同時(shí),它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動(dòng)性。
            五、策略、方法與手段。
            根據(jù)高一學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問(wèn)題解決策略,即“案例—公式—應(yīng)用”,簡(jiǎn)稱“例—規(guī)”法。
            案例為淺層次要求,使學(xué)生有概括印象。
            公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。
            應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。
            其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識(shí),舉一反三。
            在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問(wèn)層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀完整的板書、棋盤教具和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過(guò)“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實(shí)好教學(xué)任務(wù)。
            六、個(gè)人見解。
            在提倡教育改革的今天,對(duì)學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項(xiàng)教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國(guó)范圍內(nèi)展開,等比數(shù)列就是一個(gè)進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)??梢园凑読ntel未來(lái)教育計(jì)劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個(gè)研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過(guò)完成多媒體演示文稿和網(wǎng)頁(yè)制作來(lái)共同解決這一問(wèn)題。這樣不僅培養(yǎng)了學(xué)生主動(dòng)探究問(wèn)題、解決問(wèn)題的能力,而且還提高了他們的創(chuàng)新意識(shí)和團(tuán)結(jié)協(xié)作的精神。
            一元二次方程概念說(shuō)課稿篇十三
            學(xué)習(xí)一元二次方程的解法,最終是要落實(shí)到它的應(yīng)用上。本節(jié)課通過(guò)學(xué)習(xí)列一元二次方程解應(yīng)用題,解決兩類問(wèn)題:面積問(wèn)題及增長(zhǎng)率問(wèn)題,使學(xué)生體驗(yàn)“知識(shí)來(lái)自實(shí)踐,又作用于實(shí)踐”的辯證唯物主義觀點(diǎn)。史老師圍繞這一知識(shí)應(yīng)用開展課堂教學(xué)?,F(xiàn)就本節(jié)課的課堂教學(xué)評(píng)價(jià)如下:
            首先,從教學(xué)目標(biāo)制訂來(lái)看,本節(jié)課的教學(xué)目標(biāo)是掌握列一元二次方程解應(yīng)用題的一般步驟:審--設(shè)--列--解--驗(yàn)--答;學(xué)會(huì)列一元二次方程解應(yīng)用題。學(xué)會(huì)尋找增長(zhǎng)率問(wèn)題中的等量關(guān)系;了解數(shù)學(xué)源于生活,從數(shù)學(xué)的無(wú)窮奧秘,感受生活的豐富多采。培養(yǎng)學(xué)生理解問(wèn)題、解決問(wèn)題的能力。
            這一目標(biāo)比較全面、具體、適宜,能從知識(shí)、能力、思想情感等幾個(gè)方面確定,并且知識(shí)目標(biāo)有量化要求,能力、思想情感目標(biāo)要有明確要求,體現(xiàn)學(xué)科特點(diǎn)。同時(shí)確定的教學(xué)目標(biāo),能以大綱為指導(dǎo),體現(xiàn)年級(jí)、單元教材特點(diǎn),符合學(xué)生年齡實(shí)際和認(rèn)識(shí)規(guī)律,難易適度。從目標(biāo)達(dá)成來(lái)看,教學(xué)目標(biāo)體現(xiàn)在每一教學(xué)環(huán)節(jié)中,教學(xué)手段都緊密地圍繞目標(biāo),為實(shí)現(xiàn)目標(biāo)服務(wù)。
            史老師對(duì)這一節(jié)課的知識(shí)教授比較準(zhǔn)確科學(xué),教師在教材處理上做了一些文章,從課前學(xué)習(xí)配備一定量的復(fù)習(xí)練習(xí),回憶鞏固列方程解應(yīng)用題的一般步驟,通過(guò)模仿練習(xí),提升學(xué)習(xí)的量,并在教法選擇上突出了重點(diǎn),突破了難點(diǎn),抓住了關(guān)鍵。
            (一)看教學(xué)思路設(shè)計(jì)。
            教學(xué)思路是教師上課的脈絡(luò)和主線,它是根據(jù)教學(xué)內(nèi)容和學(xué)生水平兩個(gè)方面的實(shí)際情況設(shè)計(jì)出來(lái)的。它反映一系列教學(xué)措施怎樣編排組合,怎樣銜接過(guò)渡,怎樣安排詳略,怎樣安排講練等。
            因此史老師在教學(xué)思路設(shè)計(jì)上符合教學(xué)內(nèi)容實(shí)際,符合學(xué)生實(shí)際,并設(shè)計(jì)合作與探究給學(xué)生以新鮮的感受,在課堂上教學(xué)思路實(shí)際運(yùn)作的效果比較好。
            (二)看課堂結(jié)構(gòu)安排。
            教學(xué)思路側(cè)重教材處理,反映教師課堂教學(xué)縱向教學(xué)脈絡(luò),而課堂結(jié)構(gòu)側(cè)重教法設(shè)計(jì),反映教學(xué)橫向的層次和環(huán)節(jié)。它是指一節(jié)課的教學(xué)過(guò)程各部分的確立,以及它們之間的聯(lián)系、順序和時(shí)間分配。課堂結(jié)構(gòu)也稱為教學(xué)環(huán)節(jié)或步驟。
            1、從教學(xué)環(huán)節(jié)的時(shí)間分配看,本節(jié)課前面時(shí)間安排多,內(nèi)容多,后面時(shí)間少,內(nèi)容密度大,講與練時(shí)間搭配還不夠合理,講地多,練得少。
            2、從教師活動(dòng)與學(xué)生活動(dòng)看,占用時(shí)間過(guò)多,學(xué)生活動(dòng)時(shí)間不夠多。
            3、從學(xué)生的個(gè)人活動(dòng)時(shí)間與學(xué)生集體活動(dòng)時(shí)間的分配看,學(xué)生個(gè)人活動(dòng),小組活動(dòng)和全班活動(dòng)時(shí)間分配不夠合理,集體活動(dòng)過(guò)多,學(xué)生個(gè)人自學(xué)、獨(dú)立思考、獨(dú)立完成作業(yè)時(shí)間不夠。
            4、從優(yōu)差生活動(dòng)時(shí)間看,學(xué)生情況我們不是很熟悉,難以判斷。
            5、從非教學(xué)時(shí)間看,史老師控制較好,基本沒(méi)有浪費(fèi)寶貴的課堂時(shí)間的現(xiàn)象。
            什么是教學(xué)方法?它包括教師“教學(xué)活動(dòng)方式,還包括學(xué)生在教師指導(dǎo)下”“學(xué)”的方式,是“教”的.方法與“學(xué)”的方法的統(tǒng)一。
            一種好的教學(xué)方法總是相對(duì)而言的,它總是因課程,因?qū)W生,因教師自身特點(diǎn)而相應(yīng)變化的。也就是說(shuō)教學(xué)方法的選擇要量體裁衣,靈活運(yùn)用。本節(jié)課采用任務(wù)驅(qū)動(dòng)下的學(xué)生自主學(xué)習(xí)與教師輔導(dǎo)相結(jié)合的模式,設(shè)計(jì)思路較好,具體實(shí)施時(shí)仍舊感覺(jué)到傳統(tǒng)教法占優(yōu)。
            現(xiàn)代化教學(xué)呼喚現(xiàn)代化手段。“一支粉筆一本書,一塊黑板一張嘴”的陳舊單一教學(xué)手段應(yīng)該成為歷史。本節(jié)課適當(dāng)運(yùn)用了投影儀、計(jì)算機(jī)等現(xiàn)代化教學(xué)手段,提高了課堂的容量。
            1、看板書。
            字跡工整美觀,板畫嫻熟。因書寫地方少,體現(xiàn)不出教師的真實(shí)水平。
            2、看教態(tài)。
            據(jù)心理學(xué)研究表明:人的表達(dá)靠55%的面部表情+38%的聲音+7%的言詞。教師課堂上的教態(tài)應(yīng)該是明朗、快活、莊重,富有感染力。儀表端莊,舉止從容,態(tài)度熱情,熱愛(ài)學(xué)生,師生情感交融。這一方面對(duì)我們每一個(gè)教師都應(yīng)該加強(qiáng)。
            3、看語(yǔ)言。
            教學(xué)也是一種語(yǔ)言的藝術(shù)。教師的語(yǔ)言有時(shí)關(guān)系到一節(jié)課的成敗。史老師語(yǔ)言準(zhǔn)確清楚,說(shuō)普通話,精當(dāng)簡(jiǎn)煉,有啟發(fā)性。教學(xué)語(yǔ)言的語(yǔ)調(diào)高低適宜,快慢適度,富于變化。
            4、看教法。
            史老師運(yùn)用教具,操作投影議、微機(jī)等比較熟練。
            課堂效果評(píng)析包括以下幾個(gè)方面。一是教學(xué)效率高,學(xué)生思維活躍,氣氛熱烈。二是學(xué)生受益面大,不同程度的學(xué)生在原有基礎(chǔ)上都有進(jìn)步。知識(shí)、能力、思想情操目標(biāo)達(dá)成。三是有效利用45分鐘,學(xué)生學(xué)得輕松愉快,積極性高,當(dāng)堂問(wèn)題當(dāng)堂解決,學(xué)生負(fù)擔(dān)合理。應(yīng)該說(shuō)本節(jié)課基本達(dá)到了預(yù)期的教學(xué)效果。
            一元二次方程概念說(shuō)課稿篇十四
            張老師這節(jié)課從學(xué)案的編寫到實(shí)施,在形式和內(nèi)容上都體現(xiàn)了新課程改革的特征,符合新課標(biāo)的基本精神,展示了新課程理念,采用了新課堂模式。針對(duì)這節(jié)課我著重從以下幾個(gè)方面談?wù)剛€(gè)人的意見。
            教學(xué)方法是實(shí)現(xiàn)教學(xué)目標(biāo),體現(xiàn)教學(xué)內(nèi)容的手段,教學(xué)方法運(yùn)用是否得當(dāng),主要看能否充分發(fā)揮教師的主導(dǎo)作用和學(xué)生的主體地位,能否最大限度地提高課堂教學(xué)效率。本堂課教師在處理好數(shù)學(xué)知識(shí)結(jié)構(gòu)與學(xué)生認(rèn)知結(jié)構(gòu)的關(guān)系的基礎(chǔ)上,按由易到難的順序安排教學(xué)內(nèi)容,注重思想訓(xùn)練與思維能力的培養(yǎng)。課堂上學(xué)生緊緊圍繞著學(xué)案結(jié)合老師的指導(dǎo),展開自主的學(xué)習(xí)。在引導(dǎo)學(xué)生得出用配方法來(lái)解一元二次方程方法步驟后,接著引導(dǎo)學(xué)生加強(qiáng)訓(xùn)練,對(duì)出現(xiàn)的問(wèn)題立即進(jìn)行矯正并反思總結(jié),不但能提高學(xué)生運(yùn)算能力,而且對(duì)培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣起到很大的作用。
            教學(xué)內(nèi)容規(guī)定著教什么和學(xué)什么的問(wèn)題,恰當(dāng)?shù)剡x擇和處理教學(xué)內(nèi)容是實(shí)現(xiàn)教學(xué)目標(biāo)的重要保證。這節(jié)課從本節(jié)課的教學(xué)內(nèi)容始終圍繞目標(biāo)、反映目標(biāo),能分清主次,準(zhǔn)確地確定讓學(xué)生明白如何利用配方法來(lái)解一元二次方程,以及利用配方法來(lái)解一元二次方程方法步驟這一重點(diǎn)、難點(diǎn)、關(guān)鍵點(diǎn),處理好新舊知識(shí)的結(jié)合點(diǎn),抓住知識(shí)的生長(zhǎng)點(diǎn)。講授具有啟發(fā)性、層次性、詳略得當(dāng);本堂課師生互動(dòng),共同探索,結(jié)合多媒體較好地處理了這個(gè)重點(diǎn)。同時(shí),注意發(fā)揮練習(xí)題的作用,加強(qiáng)對(duì)學(xué)生解題方法和過(guò)程的指導(dǎo),使傳授知識(shí)和培養(yǎng)能力容為一體。通過(guò)對(duì)問(wèn)題的處理,學(xué)生在不知不覺(jué)中得到了用配方法解一元二次方程的方法,真可謂潛移默化、水到渠成。
            本節(jié)課始終以如何用配方法解一元二次方程為主線加強(qiáng)對(duì)學(xué)生知識(shí)、技能、方法、能力等的培養(yǎng),目標(biāo)的達(dá)成,達(dá)到了比較理想的程度。在課堂結(jié)構(gòu)上堂體現(xiàn)了自主、合作、檢測(cè)的主體框架,嚴(yán)謹(jǐn)順暢,理念新穎,課堂營(yíng)造的`學(xué)習(xí)氛圍比較輕松活潑;內(nèi)容上,新舊知識(shí)的前后聯(lián)系,多種解法系統(tǒng)而完整,學(xué)到了新知識(shí),還讓學(xué)生體驗(yàn)到了成功的快樂(lè)。教學(xué)中靈活使用多媒體資源,提高了教學(xué)效果也是本節(jié)課的一個(gè)亮點(diǎn)。
            本節(jié)課針對(duì)學(xué)科特點(diǎn),結(jié)合本課內(nèi)容,制定了明確的教學(xué)目標(biāo),而且在這堂課中順利的完成了目標(biāo),使學(xué)生學(xué)會(huì)用配方法解一元二次方程方法,做到理解其算理,掌握其算法;并進(jìn)一步培養(yǎng)學(xué)生觀察比較、分析、綜合的能力,進(jìn)一步提高學(xué)生的計(jì)算能力,培養(yǎng)思維的靈活性。同時(shí)還培養(yǎng)學(xué)生參與數(shù)學(xué)學(xué)活動(dòng)的積極性,體驗(yàn)在學(xué)習(xí)活動(dòng)中探索和創(chuàng)造的樂(lè)趣,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性、數(shù)學(xué)結(jié)論的確定性,養(yǎng)成認(rèn)真仔細(xì)的良好學(xué)習(xí)習(xí)慣。本節(jié)課教學(xué)目標(biāo)明確,教學(xué)過(guò)程始終圍繞這個(gè)目標(biāo)展開,重點(diǎn)內(nèi)容的教學(xué)得到保證,重點(diǎn)知識(shí)和技能得到鞏固和強(qiáng)化。而教學(xué)效果是課堂教學(xué)的落腳點(diǎn)。張老師這節(jié)課不但在規(guī)定的時(shí)間內(nèi)完成了教學(xué)任務(wù)而且在知識(shí)的傳授、能力的培養(yǎng)、思想與道德教育等方面都實(shí)現(xiàn)了目標(biāo)要求,在學(xué)生的方面,學(xué)生聽課的注意力非常集中,他們學(xué)習(xí)積極而主動(dòng),能準(zhǔn)確地完成課堂練習(xí),能對(duì)一堂課歸納出主要內(nèi)容,獨(dú)立的進(jìn)行課堂小結(jié)與反思,并對(duì)自己的學(xué)習(xí)情況進(jìn)行準(zhǔn)確的自我評(píng)價(jià)等。
            本節(jié)課基本能做到“以學(xué)生的發(fā)展”為本,使數(shù)學(xué)教育面向全體學(xué)生,不同的人在數(shù)學(xué)上得到不同的發(fā)展,這也是當(dāng)前數(shù)學(xué)教學(xué)改革的重要課題之一,這節(jié)課如果能適當(dāng)分層照顧全體,注重知識(shí)的形成過(guò)程,注重思維品質(zhì)的培養(yǎng),使每一位學(xué)生都有所獲都有所得,是每一個(gè)學(xué)生都得到不同的發(fā)展,那么這節(jié)課就更加精彩。
            一元二次方程概念說(shuō)課稿篇十五
            各位老師,今天我說(shuō)課的內(nèi)容是:22.3實(shí)際問(wèn)題與一元二次方程第二課時(shí),下面,我從教材分析、教學(xué)目的分析、教法分析、教材處理、教學(xué)流程等方面對(duì)本課的設(shè)計(jì)進(jìn)行簡(jiǎn)要說(shuō)明:
            1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來(lái)解決實(shí)際問(wèn)題。本節(jié)仍是進(jìn)一步討論如何建立和利用一元二次方程模型來(lái)解決實(shí)際問(wèn)題,只是在問(wèn)題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。
            2、教學(xué)目標(biāo)要求:
            (2)能根據(jù)具體問(wèn)題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理;
            (4)通過(guò)用一元二次方程解決身邊的問(wèn)題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用。
            3、教學(xué)重點(diǎn)和難點(diǎn):
            (1)重點(diǎn):列一元二次方程解與面積有關(guān)問(wèn)題的應(yīng)用題。
            (2)難點(diǎn):發(fā)現(xiàn)問(wèn)題中的等量關(guān)系。
            1、本節(jié)課的設(shè)計(jì)中除了探究3教師參與多一些外,其余時(shí)間都堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的'主觀能動(dòng)性。教學(xué)過(guò)程中,教師只注重點(diǎn)、引、激、評(píng),注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過(guò)程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。
            2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問(wèn)題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來(lái)解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動(dòng)都由生生交流,兵教兵從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
            本節(jié)課是新授課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),整個(gè)課堂教學(xué)流程大致可分為:
            1、活動(dòng)1復(fù)習(xí)回顧解決課前參與。
            2、活動(dòng)2封面設(shè)計(jì)問(wèn)題的探究。
            3、活動(dòng)3草坪規(guī)劃問(wèn)題的延伸。
            4、活動(dòng)4課堂回眸。
            這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
            活動(dòng)1復(fù)習(xí)回顧解決課前參與,由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問(wèn)題。
            活動(dòng)2封面設(shè)計(jì)問(wèn)題的探究,通過(guò)學(xué)生自己獨(dú)立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對(duì)“正中央矩形與封面長(zhǎng)寬比例相同”題意的理解,使學(xué)生明白中央矩形長(zhǎng)寬比為9:7,從而進(jìn)一步突破難點(diǎn):上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡(jiǎn)便設(shè)法及解法的指導(dǎo)與評(píng)價(jià)。
            活動(dòng)3草坪規(guī)劃問(wèn)題的延伸,放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。
            活動(dòng)4課堂回眸,本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。
            5、作業(yè)布置:共3個(gè)題目,前兩個(gè)為必做題,全員均作;最后一個(gè)選作題,可供學(xué)有余力學(xué)生能力提升用。
            一元二次方程概念說(shuō)課稿篇十六
            對(duì)于一元二次方程,學(xué)生在前面已經(jīng)學(xué)習(xí)過(guò)一元一次方程、二元一次方程和分式方程的知識(shí),也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。是初中教材中一個(gè)重要的內(nèi)容,通過(guò)這節(jié)課的教學(xué)我有如下幾點(diǎn)體會(huì):
            問(wèn):那它們和一元一次方程有什么相同點(diǎn)和不同點(diǎn)?接著啟發(fā):如果給它們命名,將怎么命名?這樣很自然就引入課題。再比如,為鞏固一元二次方程的概念設(shè)置6個(gè)方程,從中選出一元二次方程。
            再比如過(guò)渡到講一元二次方程的一般形式時(shí),將上題中最后一個(gè)小題追問(wèn):你是怎么判斷的?這樣的使一元二次方程美觀嗎?從數(shù)學(xué)的整潔美的角度讓學(xué)生明白需要把方程整理為左邊按未知數(shù)的次數(shù)從高到低排列,且右邊為零的形式。對(duì)整理后的四個(gè)方程總結(jié):任何關(guān)于x的一元二次方程都可以化成一般形式:ax2+bx+c=0,問(wèn)a能取任何數(shù)嗎?為什么不能取零?b、c可以為零嗎?進(jìn)而滲透了從特殊到一般的數(shù)學(xué)思想。
            第二、本節(jié)課知識(shí)的呈現(xiàn)作了重大調(diào)整,不是以講解為主方式也不是以單一的知識(shí)為線條,而是在突出數(shù)學(xué)知識(shí)的同時(shí),將數(shù)學(xué)知識(shí)和結(jié)論溶于數(shù)學(xué)活動(dòng)之中,這樣學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程就成了進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的過(guò)程,成了“做學(xué)問(wèn)”的過(guò)程。在這樣的探究學(xué)習(xí)過(guò)程中,學(xué)生得到的數(shù)學(xué)知識(shí)是通過(guò)自己實(shí)驗(yàn)、觀察、討論、歸納得到的。比如講一元二次方程的一般形式時(shí)不是我們硬塞給學(xué)生的,而是從鞏固概念環(huán)節(jié)的6個(gè)方程中的.最后一元二次方程作為銜接入口,現(xiàn)在要給它們洗漱整理后統(tǒng)一著裝,要求使方程的左邊按未知數(shù)的次數(shù)從高到低排列,且右邊為零的形式,這樣的連接比較自然。在這個(gè)整理活動(dòng)之中學(xué)生親自體驗(yàn)、觀察、歸納,討論出一元二次方程的一般形式ax2+bx+c=0。再比如過(guò)度到一元二次方程解的概念時(shí),利用了前面練習(xí)的最后一個(gè)小題的方程,告訴學(xué)生老師的年齡就是這個(gè)方程中x的取值,這樣既引出了解的概念,也激發(fā)了學(xué)生解決問(wèn)題的興趣。
            當(dāng)然本節(jié)課還有許多不足之處和困惑:
            一、情景創(chuàng)設(shè)時(shí)的4個(gè)例子中,最后一個(gè)與前面三個(gè)沒(méi)有任何聯(lián)系,當(dāng)時(shí)沒(méi)有認(rèn)真考慮設(shè)置與前面類似的背景。說(shuō)明備課時(shí)還需認(rèn)真,必須為學(xué)生的學(xué)服務(wù),來(lái)不得半點(diǎn)馬虎。
            二、引出一元二次方程的一般形式時(shí),說(shuō)是為了方程的整潔美,我感覺(jué)不妥,應(yīng)該怎么解釋,還需要同行與專家的指點(diǎn)。
            三、一元二次方程的一般形式中的a為什么不能等于0,我覺(jué)得教學(xué)中缺少學(xué)生的自我領(lǐng)悟,也就是缺少一個(gè)合理的學(xué)生活動(dòng)的過(guò)程。
            四、小結(jié)時(shí)比較死板,沒(méi)起到畫龍點(diǎn)睛的作用。
            一元二次方程概念說(shuō)課稿篇十七
            史老師采用“學(xué)生自主學(xué)習(xí)與教師指導(dǎo)相結(jié)合”的任務(wù)驅(qū)動(dòng)教學(xué)模式,讓學(xué)生課前學(xué)習(xí),然后教師采用填空設(shè)問(wèn)方法,學(xué)與教同步,使學(xué)生較好的了解了列一元二次方程解應(yīng)用題的一般步驟,適合學(xué)生承受能力;課堂習(xí)題的編排,符合學(xué)生的認(rèn)知結(jié)構(gòu),有助于學(xué)生對(duì)于所學(xué)知識(shí)點(diǎn)的'充分理解和進(jìn)一步的鞏固;“模仿與實(shí)踐”題的設(shè)置,具有較強(qiáng)的層次性,由淺入深,由簡(jiǎn)到難,滿足了不同層次學(xué)生的不同要求,培養(yǎng)了學(xué)生的創(chuàng)新思維,激發(fā)了學(xué)生的學(xué)習(xí)興趣,激活了課堂的教學(xué)氛圍。
            整節(jié)課教師輕松而自如,教師語(yǔ)言親切清晰,條理清楚,能言善辯,使學(xué)生的學(xué)習(xí)效果達(dá)到了預(yù)期目的,不同的學(xué)生在原有的基礎(chǔ)上學(xué)習(xí)有進(jìn)步,學(xué)生思維活躍,是成功的一課。
            一元二次方程概念說(shuō)課稿篇十八
            學(xué)生在七年級(jí)和八年級(jí)已經(jīng)學(xué)習(xí)了一元一次方程、二元一次方程,以及一次函數(shù)的相關(guān)知識(shí)及應(yīng)用,在九年級(jí)學(xué)習(xí)了一元二次方程的相關(guān)解法,初步體會(huì)了一元二次方程在解決實(shí)際問(wèn)題中的.具體應(yīng)用,可以說(shuō)一元二次方程是以前學(xué)過(guò)的方程知識(shí)的延續(xù)和深化,它在現(xiàn)實(shí)生活以及數(shù)學(xué)中有著廣泛的應(yīng)用,也是學(xué)習(xí)其他數(shù)學(xué)知識(shí)(如二次函數(shù)等)的基礎(chǔ).
            作者:童孝彬作者單位:南京市共青團(tuán)路中學(xué),江蘇,南京,210000刊名:考試周刊英文刊名:kaoshizhoukan年,卷(期):“”(6)分類號(hào):g63關(guān)鍵詞:
            一元二次方程概念說(shuō)課稿篇十九
            教學(xué)內(nèi)容:
            六年制小學(xué)數(shù)學(xué)第十二冊(cè)課本第55頁(yè)例1.例2.作業(yè)本第31(29)。
            教學(xué)目標(biāo):
            1.使學(xué)生理解比例的意義。
            2.使學(xué)生能應(yīng)用比例尺的知識(shí)求平面圖的比例尺,以及根據(jù)比例尺求圖上距離和實(shí)際距離。
            3.培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力和創(chuàng)新能力。
            教學(xué)重點(diǎn):
            理解比例尺的意義。
            教學(xué)難點(diǎn):
            根據(jù)比例尺求圖上距離和實(shí)際距離。
            教具準(zhǔn)備:
            多媒體課件一套。
            教學(xué)過(guò)程:
            一、問(wèn)題的情景:
            1.出示郵票。問(wèn):你能同樣大小的把它畫在圖紙上嗎?
            讓同學(xué)們畫一畫,再拿出郵票的長(zhǎng),比一比,怎么樣?
            歸納:(同樣長(zhǎng))得:圖上的長(zhǎng)和實(shí)際的長(zhǎng)的比是1:1。
            2.教室的長(zhǎng)是9米,你能同樣長(zhǎng)的畫在圖紙上嗎?更大一些呢?
            4.導(dǎo)入新課:人們?cè)诶L制地圖和平面圖時(shí),往往因?yàn)榧埖拇笮∮邢蓿豢赡馨磳?shí)際的大小畫在圖紙上,經(jīng)常需要把實(shí)際距離縮小一定的倍數(shù)以后再畫成圖。象手表等機(jī)器零件比較小,又得把實(shí)際長(zhǎng)度擴(kuò)大一定的倍數(shù)以后,才能畫到圖紙上去。這就.需要涉及到一種新的知識(shí)。也就是今天我們一起來(lái)研究比例尺的問(wèn)題。
            板書:比例尺。
            二、問(wèn)題解決:
            5.一個(gè)教室長(zhǎng)是9米,如果我們要畫這個(gè)教室的平面圖,為了看圖和攜帶方便,就需要把實(shí)際距離縮小一定的倍數(shù)后畫在平面圖上,縮小多少倍由你自己決定,你打算設(shè)計(jì):用幾厘米表示9米。請(qǐng)四人小組討論并設(shè)計(jì)。
            6.小組回報(bào)設(shè)計(jì)方案,教師選擇以下四種方案。
            (1).用9厘米表示9米。
            (2).用4.5厘米表示9米。
            (3).用3厘米表示9米。
            (4).用1厘米表示9米。
            7.說(shuō)說(shuō)以上方案是圖上距離比實(shí)際距離縮小了多少倍?
            算一算,每幅圖圖上距離和實(shí)際距離的比。
            (1).9厘米9米=9900=1100。
            (2).4.5厘米9米=4.5900=1200。
            (3).3厘米9米=3900=1300。
            (4).1厘米9米=1900。
            8.這四個(gè)比的前項(xiàng)代表什么?(圖上距離),后項(xiàng)代表什么?(實(shí)際距離),我們把這樣的`比,叫比例尺。
            齊讀:比例尺是圖上距離與實(shí)際距離的比,化簡(jiǎn)后得到最簡(jiǎn)整數(shù)比。
            比例尺怎樣求:(看上述四個(gè)比例式得出):
            圖上距離實(shí)際距離=比例尺或圖上距離。
            實(shí)際距離。
            9.討論匯報(bào):上面四幅圖,比例尺是多少圖最大?
            比例尺是多少圖再???為什么?
            10.練習(xí):
            (1).甲、乙兩座城市相距120千米,在地圖上量得兩城市的距離是4厘米。求這幅地圖的比例尺。
            (2).學(xué)校里修建運(yùn)動(dòng)場(chǎng),在設(shè)計(jì)圖上用25厘米長(zhǎng)線段來(lái)表示操場(chǎng)的實(shí)際長(zhǎng)度150米。求圖上距離和實(shí)際距離的比。
            (3).一張中國(guó)圖,圖上4厘米表示實(shí)際距離1040千米,求這幅地圖的比例尺?
            (4).一張緊密圖紙中,圖上1厘米表示實(shí)際1毫米,求這幅精密圖紙的比例尺?
            (觀察精密零件如果要畫在圖紙上,怎么辦?(放大)。那這幅精密圖紙的比例尺會(huì)求嗎?
            上述四題分層練習(xí),后講評(píng)。
            11.比較(3)、(4)兩題的比例尺有什么不同?
            教師小結(jié):一般把縮小圖的比例尺寫成前項(xiàng)是1的比,而把放大圖的比例尺寫成后項(xiàng)是1的長(zhǎng)。
            12.比例尺有多少種表示方法?讓生說(shuō)一說(shuō)。
            (常見的有:比的形式分?jǐn)?shù)的形式線段形式)。
            三、問(wèn)題的應(yīng)用:
            根據(jù)比例尺的關(guān)系式,求實(shí)際距離。
            (學(xué)生獨(dú)立解答,同時(shí)抽一生板演)。
            解:設(shè)上海到北京的實(shí)際距離為x厘米,
            x=105000000。
            105000000厘米=1050千米。
            答:上海到北京的實(shí)際距離大約是1050千米。
            (2).分析講述:
            根據(jù)比例尺的計(jì)算公式,已知圖上距離和比例尺求實(shí)際距離,用方程解。
            (先設(shè)x,再根據(jù)比例尺的計(jì)算公式列出方程。)。
            (3).圖上距離和實(shí)際距離的單位要統(tǒng)一,一般都統(tǒng)一為低級(jí)單位厘米。
            (4)怎樣設(shè)x,.教師指出:設(shè)未知數(shù)時(shí),單位要與已知單位統(tǒng)一,后再化聚到問(wèn)題單位。
            (5)嘗試練習(xí)第57頁(yè)試一試。
            一元二次方程概念說(shuō)課稿篇二十
            出一元二次方程,讓學(xué)生充分感受知識(shí)的產(chǎn)生和發(fā)展過(guò)程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺(jué)得意外,讓學(xué)生跳一跳就可以摘到桃子。
            二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實(shí)于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過(guò)一系列的活動(dòng)來(lái)展開教學(xué),發(fā)展了學(xué)生的思維能力,增強(qiáng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
            四、為了真正做到有效的合作學(xué)習(xí),我在活動(dòng)中大膽地讓學(xué)生自主完成。先讓學(xué)生把問(wèn)題提出來(lái),然后讓學(xué)生帶著問(wèn)題去討論,這樣學(xué)生在討論時(shí)就有目的,就會(huì)事半功倍。也讓不同層次的學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。
            不足之處:引入方面有待加強(qiáng),不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強(qiáng),應(yīng)給學(xué)生做出示范;給學(xué)生思考的時(shí)間還不夠。