亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        二次函數(shù)教學(xué)設(shè)計(通用16篇)

        字號:

            每個人都可以從總結(jié)中找到自己的進(jìn)步和成就??偨Y(jié)還要注意避免過多的主觀感受,要客觀地分析和總結(jié)所涉及的事物。掌握一些好的總結(jié)范文可以幫助我們提高總結(jié)的質(zhì)量。
            二次函數(shù)教學(xué)設(shè)計篇一
            1.能畫二次函數(shù)的圖象,并能夠比較它們與二次函數(shù)的圖象的異同,理解對二次函數(shù)圖象的影響.
            2.能說出二次函數(shù)圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)、增減性、最值.
            3.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,進(jìn)一步獲得將表格、表達(dá)式、圖象三者聯(lián)系起來的經(jīng)驗,體會數(shù)形結(jié)合思想在數(shù)學(xué)中的應(yīng)用.
            4.通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點(diǎn)的認(rèn)識和對二次函數(shù)性質(zhì)的理解.
            二次函數(shù)教學(xué)設(shè)計篇二
            在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動,讓學(xué)生在動手實踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動要能激發(fā)學(xué)生探求新知識的興趣和欲望,逐步培養(yǎng)他們提問的意識,鼓勵學(xué)生多思考。同時還要關(guān)注他們在數(shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。
            在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對應(yīng)的二次函數(shù)的圖象和x軸的交點(diǎn)的橫坐標(biāo)之間的關(guān)系,給出函數(shù)的零點(diǎn)的概念,并揭示了方程的根與對應(yīng)的函數(shù)的零點(diǎn)之間的關(guān)系。然后,通過探究介紹了判斷一個函數(shù)在某個給定區(qū)間存在零點(diǎn)的方法和二分法。并且,教科書在“用二分法求函數(shù)零點(diǎn)的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。
            二次函數(shù)教學(xué)設(shè)計篇三
            一、教學(xué)目標(biāo):
            1。經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系。
            2。理解拋物線交x軸的點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根。
            二、教學(xué)重點(diǎn)、難點(diǎn):
            教學(xué)重點(diǎn):
            1。體會方程與函數(shù)之間的聯(lián)系。
            教學(xué)難點(diǎn):
            1。探索方程與函數(shù)之間關(guān)系的過程。
            三、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。
            四:教具、學(xué)具:課件。
            五、教學(xué)媒體:計算機(jī)、實物投影。
            六、教學(xué)過程:
            [活動1]檢查預(yù)習(xí)引出課題。
            預(yù)習(xí)作業(yè):
            1。解方程:(1)x2+x―2=0;(2)x2―6x+9=0;(3)x2―x+1=0;(4)x2―2x―2=0。
            師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
            教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
            設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
            [活動2]創(chuàng)設(shè)情境探究新知。
            問題。
            1。課本p16問題。
            (結(jié)合預(yù)習(xí)題1,完成課本p16觀察中的題目。)。
            師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
            二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)。
            兩個交點(diǎn)。
            兩個相異的實數(shù)根。
            b2―4ac0。
            一個交點(diǎn)。
            兩個相等的實數(shù)根。
            b2―4ac=0。
            沒有交點(diǎn)。
            沒有實數(shù)根。
            b2―4ac0。
            教師重點(diǎn)關(guān)注:
            1。學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;。
            2。學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。
            3。學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
            設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
            [活動3]例題學(xué)習(xí)鞏固提高。
            問題:例利用函數(shù)圖象求方程x2―2x―2=0的實數(shù)根(精確到0。1)。
            師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
            教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
            設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
            [活動4]練習(xí)反饋鞏固新知。
            問題:(1)p97。習(xí)題1、2(1)。
            師生行為:教師提出問題,學(xué)生獨(dú)立思考后寫出答案,師生共同評價;問題(2)學(xué)生獨(dú)立思考后同桌交流,實物投影出學(xué)生解題過程,教師強(qiáng)調(diào)正確解題思路。
            教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識解決問題;學(xué)生解題時候暴露的共性問題作針對性的點(diǎn)評,積累解題經(jīng)驗。
            設(shè)計意圖:這兩個題目就是對本節(jié)課知識的鞏固應(yīng)用,讓新知識內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。
            [活動5]自主小結(jié),深化提高:
            1。通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識和方法?
            2。這節(jié)課你參與了哪些數(shù)學(xué)活動?談?wù)勀惬@得知識的方法和經(jīng)驗。
            師生活動:學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補(bǔ)充,精彩的適當(dāng)表揚(yáng)。
            設(shè)計意圖:
            1。題促使學(xué)生反思在知識和技能方面的收獲;。
            2。題讓學(xué)生反思自己的學(xué)習(xí)活動、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識的方法,力求不同的學(xué)生有不同的發(fā)展。
            [活動6]分層作業(yè),發(fā)展個性:
            1。(必做題)閱讀教材并完成p97習(xí)題21。2:3、4。
            2。(備選題)p97習(xí)題21。2:5、6。
            設(shè)計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。
            七、教學(xué)反思:
            1。注重知識的發(fā)生過程與思想方法的應(yīng)用。
            《用函數(shù)的觀點(diǎn)看一元二次方程》內(nèi)容比較多,而課時安排只一節(jié),為了在一節(jié)課的時間里更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺得不意外,讓學(xué)生跳一跳就可以摘到桃子。
            探究拋物線交x軸的點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形,從圖象與x軸交點(diǎn)的個數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
            2。關(guān)注學(xué)生學(xué)習(xí)的過程。
            在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動空間、為學(xué)生搭建自主學(xué)習(xí)的平臺;學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實踐、思考、交流、合作的過程,其知識的形成和能力的培養(yǎng)相伴而行,創(chuàng)造海闊憑魚躍,天高任鳥飛的課堂境界。
            3。強(qiáng)化行為反思。
            反思是數(shù)學(xué)的重要活動,是數(shù)學(xué)活動的核心和動力,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計,課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時,領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,數(shù)學(xué)日記就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會。通過日記的方式,學(xué)生可以對他所學(xué)的數(shù)學(xué)內(nèi)容進(jìn)行總結(jié),寫出自己的收獲與困惑。數(shù)學(xué)日記該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯題日記。
            4。優(yōu)化作業(yè)設(shè)計。
            作業(yè)的設(shè)計分必做題和選做題,必做題鞏固本課基礎(chǔ)知識,基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實踐能力。
            二次函數(shù)教學(xué)設(shè)計篇四
            (1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
            (2)注重學(xué)生參與,聯(lián)系實際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。
            重點(diǎn)難點(diǎn):
            能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
            一、試一試。
            ab長x(m)123456789。
            bc長(m)12。
            面積y(m2)48。
            2.x的值是否可以任意???有限定范圍嗎?
            對于1.,可讓學(xué)生根據(jù)表中給出的ab的長,填出相應(yīng)的bc的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:
            (1)從所填表格中,你能發(fā)現(xiàn)什么?
            (2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識:當(dāng)ab的長為5cm,bc的長為10m時,圍成的矩形面積最大;最大面積為50m2。
            二次函數(shù)教學(xué)設(shè)計篇五
            1.能畫二次函數(shù)的圖象,并能夠比較它們與二次函數(shù)的圖象的異同,理解對二次函數(shù)圖象的影響.
            2.能說出二次函數(shù)圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)、增減性、最值.
            3.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,進(jìn)一步獲得將表格、表達(dá)式、圖象三者聯(lián)系起來的經(jīng)驗,體會數(shù)形結(jié)合思想在數(shù)學(xué)中的應(yīng)用.
            4.通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點(diǎn)的認(rèn)識和對二次函數(shù)性質(zhì)的理解.
            二次函數(shù)教學(xué)設(shè)計篇六
            一、說課內(nèi)容:
            九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題(華東師范大學(xué)出版社)。
            二、教材分析:
            1、教材的地位和作用。
            這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
            2、教學(xué)目標(biāo)和要求:
            (1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
            (2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
            (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
            3、教學(xué)重點(diǎn):對二次函數(shù)概念的理解。
            4、教學(xué)難點(diǎn):抽象出實際問題中的二次函數(shù)關(guān)系。
            1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
            2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
            3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
            四、教學(xué)過程:
            (一)復(fù)習(xí)提問。
            1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
            (一次函數(shù),正比例函數(shù),反比例函數(shù))。
            2.它們的形式是怎樣的?
            (y=kx+b,ky=kx,ky=,k0)。
            【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
            (二)引入新課。
            函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
            例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
            解:s=0)。
            解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
            解:y=100(1+x)2。
            =100(x2+2x+1)。
            =100x2+200x+100(0。
            教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
            (三)講解新課。
            以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
            二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
            1、強(qiáng)調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
            2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
            3、為什么二次函數(shù)定義中要求a?
            (若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
            4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
            5、b和c是否可以為零?
            由例1可知,b和c均可為零.
            若b=0,則y=ax2+c;。
            若c=0,則y=ax2+bx;。
            若b=c=0,則y=ax2.
            注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
            判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
            (1)y=3(x-1)2+1(2)s=3-2t2。
            (3)y=(x+3)2-x2(4)s=10r2。
            (5)y=22+2x(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
            (四)鞏固練習(xí)。
            1.已知一個直角三角形的兩條直角邊長的和是10cm。
            (1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
            (2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
            于x的函數(shù)關(guān)系式。
            【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
            2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
            (1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
            (2)這兩個函數(shù)中,那個是x的二次函數(shù)?
            【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
            五、評價分析。
            本節(jié)的一個知識點(diǎn)就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認(rèn)識,側(cè)重點(diǎn)通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進(jìn)一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
            二次函數(shù)教學(xué)設(shè)計篇七
            教學(xué)目標(biāo)。
            知識技能。
            2、掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項。
            教學(xué)思考。
            1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力。
            2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性。
            3、由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力。
            解決問題。
            在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的感性認(rèn)識。
            情感態(tài)度。
            1、培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識。
            2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識。
            重點(diǎn)。
            難點(diǎn)。
            1、由實際問題向數(shù)學(xué)問題的.轉(zhuǎn)化過程。
            2、正確識別一般式中的“項”及“系數(shù)”。
            教學(xué)流程安排。
            活動流程圖。
            活動內(nèi)容和目的。
            活動1。
            創(chuàng)設(shè)情境引入新課。
            活動2。
            啟發(fā)探究獲得新知。
            活動3。
            運(yùn)用新知體驗成功。
            活動4。
            歸納小結(jié)拓展提高。
            活動5。
            布置作業(yè)分層落實。
            復(fù)習(xí)一元一次方程有關(guān)概念;通過實際問題引入新知。
            通過類比一元一次方程的概念和一般形式,讓學(xué)生獲得一元二次方程的有關(guān)概念。
            回顧梳理本節(jié)內(nèi)容,拓展提高學(xué)生對知識的理解。
            分層次布置作業(yè),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
            二次函數(shù)教學(xué)設(shè)計篇八
            時,函數(shù)值變化情況的區(qū)分.(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.二.學(xué)情分析:學(xué)生在學(xué)習(xí)了函數(shù)概念和函數(shù)性質(zhì)基礎(chǔ)上對函數(shù)有了初步認(rèn)識,但我所教班時平行班,學(xué)生學(xué)習(xí)興趣不濃,積極性高,針對這種情況,教學(xué)時要總層層設(shè)問降低難度,用幾何畫板直觀演示提高學(xué)生學(xué)習(xí)積極性,時學(xué)生主動學(xué)習(xí)。
            三.教學(xué)目標(biāo):
            知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實際應(yīng)用函數(shù)的能力。
            過程與方法:通過觀察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問題的能力。
            情感態(tài)度與價值觀:在指數(shù)函數(shù)的學(xué)習(xí)過程中,體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
            投影儀。
            六.教學(xué)方法。
            啟發(fā)討論研究式。
            七.教學(xué)過程。
            (一)創(chuàng)設(shè)情景。
            學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。
            問題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過一年剩留的質(zhì)量約是原來的84%.求出這種物質(zhì)的剩留量隨時間(單位:年)變化的函數(shù)關(guān)系.設(shè)最初的質(zhì)量為1,時間變量用x表示,剩留量用y表示。
            學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0.84x。
            (二)導(dǎo)入新課。
            引導(dǎo)學(xué)生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。設(shè)計意圖:充實實例,突出底數(shù)a的取值范圍,讓學(xué)生體會到數(shù)學(xué)來源于生產(chǎn)生活實際。函數(shù)y=2x、y=0.84x分別以01的數(shù)為底,加深對定義的感性認(rèn)識,為順利引出指數(shù)函數(shù)定義作鋪墊。
            一般地,函數(shù)是r。
            叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域的含義:
            ”如果不這樣規(guī)定會出現(xiàn)什么情況?問題:指數(shù)函數(shù)定義中,為什么規(guī)定“設(shè)計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點(diǎn),為突破難點(diǎn),采取學(xué)生自由討論的形式,達(dá)到互相啟發(fā),補(bǔ)充,活躍氣氛,激發(fā)興趣的目的。
            對于底數(shù)的分類,可將問題分解為:
            (1)若a。
            則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)都無意義)。
            在這里要注意生生之間、師生之間的對話。
            設(shè)計意圖:認(rèn)識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是r;并為學(xué)習(xí)對數(shù)函數(shù),認(rèn)識指數(shù)與對數(shù)函數(shù)關(guān)系打基礎(chǔ)。
            教師還要提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
            1:指出下列函數(shù)那些是指數(shù)函數(shù):
            在同一平面直角坐標(biāo)系內(nèi)畫出下列指數(shù)函數(shù)的圖象。
            畫函數(shù)圖象的步驟:列表、描點(diǎn)、連線思考如何列表取值?教師與學(xué)生共同作出。
            圖像。
            時函數(shù)值變化的不同情況,學(xué)生往往容易混淆,這是教學(xué)中的一個難點(diǎn)。為此,必須利用圖像,數(shù)形結(jié)合。教師親自板演,學(xué)生親自在課前準(zhǔn)備好的坐標(biāo)系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學(xué)生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結(jié)合思想方法打下基礎(chǔ)。
            利用幾何畫板演示函數(shù)特征。由特殊到一般,得出指數(shù)函數(shù)。
            的圖象,觀察分析圖像的共同。
            的圖象特征,進(jìn)一步得出圖象性質(zhì):
            教師組織學(xué)生結(jié)合圖像討論指數(shù)函數(shù)的性質(zhì)。
            設(shè)計意圖:這是本節(jié)課的重點(diǎn)和難點(diǎn),要充分調(diào)動學(xué)生的積極性、主動性,發(fā)揮他們的潛能,盡量由學(xué)生自主得出性質(zhì),以便能夠更深刻的記憶、更熟練的運(yùn)用。
            特別地,函數(shù)值的分布情況如下:
            設(shè)計意圖:再次強(qiáng)調(diào)指數(shù)函數(shù)的單調(diào)性與底數(shù)a的關(guān)系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。3.簡單應(yīng)用(板書)。
            1.利用指數(shù)函數(shù)單調(diào)性比大小.(板書)。
            一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
            例1.比較下列各組數(shù)的大小。
            (1)與;(2)與;。
            (3)與1.(板書)。
            首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
            二次函數(shù)教學(xué)設(shè)計篇九
            【目標(biāo)】。
            1.借助生活實例,引領(lǐng)學(xué)生參與函數(shù)概念的形成過程.
            2.體會從生活實例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實世界中變量之間聯(lián)系的復(fù)雜性.
            【學(xué)習(xí)目標(biāo)】。
            1.初步掌握函數(shù)概念,判斷兩個變量間的關(guān)系是否能看作函數(shù).
            2.初步感受函數(shù)表示的三種形式:表格法、圖象法、解析式法.根據(jù)兩個變量間的關(guān)系式,給定其中一個量,會相應(yīng)地求出另一個量的值.
            3.經(jīng)歷具體實例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力.
            【教學(xué)重點(diǎn)】。
            2.判斷兩個變量之間的關(guān)系是否可看作函數(shù).
            【教學(xué)難點(diǎn)】。
            1.準(zhǔn)確理解函數(shù)概念中“唯一確定”的含義.
            2.能把實際問題抽象概括為函數(shù)問題.
            計意圖】。
            本節(jié)公開課在教師的精心準(zhǔn)備之下,按照djp教學(xué)模式常規(guī)要求,順利完成了教學(xué)目標(biāo)?,F(xiàn)將本節(jié)課中具體作以下幾點(diǎn)反思:
            1.函數(shù)對初中生來是第一次接觸,在教學(xué)設(shè)計的時候,充分列舉生活中有關(guān)變量的例子,讓學(xué)生去感受兩個變量之間的關(guān)系,提高學(xué)生的學(xué)習(xí)興趣.
            2.本節(jié)課屬于概念課,根據(jù)djp教學(xué)模式下概念課的要求,認(rèn)真設(shè)計教學(xué)過程和修改學(xué)案,經(jīng)過教研組多次研討,最終形成此教學(xué)設(shè)計.
            3.本節(jié)課在原有基礎(chǔ)上作出了一些調(diào)整,在情境引入時,列舉生活中的變量,并演示摩天輪模型轉(zhuǎn)動,同時提出問題:在轉(zhuǎn)動過程中,有幾個變量?你了解它們之間的關(guān)系嗎?從而引出本節(jié)課的主題――函數(shù)的概念,并由此進(jìn)入情境1的學(xué)習(xí),此環(huán)節(jié)由教師主講,目的在于為后面學(xué)生講解情境2,3作出示范,特別是在圖像中,判斷兩個變量是否成函數(shù)關(guān)系時,由于學(xué)生還沒學(xué)習(xí)直角坐標(biāo)系,所以通過ppt多次演示,教會學(xué)生判斷方法,為后面的練習(xí)作好鋪墊.
            作者簡介:冉龍海,男,1980年4月出生,本科,就職于四川省成都市龍泉驛區(qū)第十中學(xué)校,研究方向:班主任教育工作。
            二次函數(shù)教學(xué)設(shè)計篇十
            1、教材的地位和作用: 函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
            2、教學(xué)的重點(diǎn)和難點(diǎn):根據(jù)這一節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點(diǎn)定為指數(shù)函數(shù)的圖像、性質(zhì)及其運(yùn)用,本節(jié)課的難點(diǎn)是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
            基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo)
            1、知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用。
            2、能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強(qiáng)學(xué)生識圖用圖的能力。
            3、情感目標(biāo)(可持續(xù)性目標(biāo)): 通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
            1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
            2、教學(xué): 貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
            3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況, 本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
            二次函數(shù)教學(xué)設(shè)計篇十一
            冪函數(shù)的圖象和性質(zhì)
            畫冪函數(shù)的圖象并由圖象概括其性質(zhì)
            教學(xué)內(nèi)容問題、任務(wù)師生活動設(shè)計意圖
            1.某種蔬菜每千克1元,若購買千克,需要支付元是函數(shù)嗎?
            2.正方形的邊長為,那么它的面積是的函數(shù)嗎?
            3.立方體的邊長為,那么它的體積是的函數(shù)嗎?
            4.正方形的面積為,那么它的邊長是的函數(shù)嗎?
            5.某人內(nèi)騎車 內(nèi)行進(jìn)了1,那么他騎車的平均速度是函數(shù)嗎?
            6.這五個函數(shù)有什么共同特征?
            7.給出冪函數(shù)的定義
            8.下列函數(shù)是冪函數(shù)嗎?
            9.冪函數(shù)的定義和指數(shù)函數(shù)的定義有什么區(qū)別?
            10. 已知冪函數(shù)的圖象過點(diǎn)(4, ),求這個函數(shù)的解析式?
            11. 觀察冪函數(shù)的圖象
            12.作函數(shù)的圖象。
            13. 作函數(shù)的圖象。
            14.作函數(shù)的圖象。
            15.根據(jù)所作函數(shù)的圖象,分別討論這些函數(shù)的性質(zhì)。
            16.你能證明冪函數(shù)在[0,+ 上是增函數(shù)嗎?
            17.從整體上把握冪函數(shù)的圖象。
            作業(yè)p79習(xí)題1、2、3
            師:投影展示問題,引導(dǎo)學(xué)生根據(jù)函數(shù)的定義進(jìn)行分析。
            生:根據(jù)函數(shù)定義思考并回答。
            師:板書這5個函數(shù)表達(dá)式。
            師生:從形式上分析:是指數(shù)冪的形式,其中底數(shù)是自變量,指數(shù)是常數(shù)。
            師:板書定義。
            生:根據(jù)冪函數(shù)的形式進(jìn)行辨別。
            生:對比指數(shù)函數(shù)的定義,指出區(qū)別。
            師生:用待定系數(shù)法共同完成。
            師:幾何畫板展示冪函數(shù)圖象,隨著指數(shù) 的改變,冪函數(shù)圖象的形態(tài)和位置都發(fā)生改變。
            生:觀察指數(shù)的變化和圖象的變化
            師:冪函數(shù)的圖象因指數(shù) 不同而形態(tài)各異,遠(yuǎn)比指數(shù)函數(shù)的.圖象復(fù)雜。但我們可以通過討論其中有代表性的幾個函數(shù)來了解冪函數(shù)的圖象特征。生:在同一坐標(biāo)系中作出三個函數(shù)的圖象。
            師:巡視指導(dǎo)。
            師:用幾何畫板作出三個函數(shù)的圖象。
            生:對照檢查,注意所作圖象的特征。
            師:提示橫坐標(biāo)取值: 。巡視學(xué)生作圖情況。
            生:列表,并描點(diǎn)作圖。
            師:投影函數(shù)圖象。
            師:指導(dǎo)作圖:取橫坐標(biāo)0。
            生:作圖。
            師:投影圖象。
            師:引導(dǎo)學(xué)生根據(jù)函數(shù)的圖象,指出函數(shù)的性質(zhì)。
            生:指出函數(shù)性質(zhì)并完成課本第78頁表格。
            生:嘗試證明。
            師生:共同完成證明。
            師:幾何畫板動態(tài)展示冪函數(shù)在第一象限的圖象,引導(dǎo)學(xué)生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數(shù) :猛增:增函數(shù) :緩增通過實際問題,引入冪函數(shù)。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數(shù)函數(shù)混淆。進(jìn)一步加強(qiáng)理解冪函數(shù)定義。對冪函數(shù)的圖象作整體感知,了解冪函數(shù)的圖象和性質(zhì)與指數(shù) 關(guān)系密切。三個函數(shù)都是初中學(xué)過的,描三個點(diǎn)作出簡圖,把握圖象的主要特征。數(shù)形結(jié)合。
            二次函數(shù)教學(xué)設(shè)計篇十二
            結(jié)合課程標(biāo)準(zhǔn)的要求,參照教材的安排,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我制定了如下教學(xué)目標(biāo):
            (1)通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型。
            (2)能畫出具體對數(shù)函數(shù)的圖象,學(xué)生通過自己動手作圖,分組討論對數(shù)函數(shù)的性質(zhì),提高動手能力、合作學(xué)習(xí)能力以及分析解決問題的能力。
            難點(diǎn):難點(diǎn)是探究底數(shù)對對數(shù)函數(shù)圖象及性質(zhì)變化的影響。
            二、學(xué)生學(xué)習(xí)情況分析。
            剛從初中升入高一的學(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對數(shù)運(yùn)算為基礎(chǔ),同時,初中函數(shù)教學(xué)要求降低,初中生運(yùn)算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學(xué)的難度。尤其作為對數(shù)函數(shù)的第一課時,教師在教學(xué)中要控制難度,關(guān)注學(xué)生學(xué)習(xí)過程的體驗。
            三、設(shè)計思想。
            本節(jié)課以建構(gòu)主義基本理論為指導(dǎo),以新課標(biāo)基本理念為依據(jù)進(jìn)行設(shè)計的,針對學(xué)生現(xiàn)有的認(rèn)知水平,對數(shù)函數(shù)的教學(xué)首先要挖掘其知識背景貼近學(xué)生實際,讓學(xué)生充分體驗到數(shù)學(xué)的應(yīng)用價值;其次,激發(fā)學(xué)生的學(xué)習(xí)熱情,引導(dǎo)他們找到學(xué)習(xí)對數(shù)函數(shù)的思路(類比學(xué)習(xí)指數(shù)函數(shù)的思路),然后把學(xué)習(xí)的主動權(quán)交給學(xué)生,為他們提供自主探究、合作交流的機(jī)會,改以前滿堂教的方式為讓學(xué)生滿堂學(xué),讓學(xué)生學(xué)會學(xué)習(xí)。
            四、教學(xué)基本流程:
            五、教學(xué)過程:
            根據(jù)新課標(biāo)的要求我將本節(jié)課分為五個環(huán)節(jié):創(chuàng)設(shè)情境,形成概念。
            (一)創(chuàng)設(shè)情境,形成概念。
            本節(jié)課我是從課本中給出的“考古實例”和學(xué)生熟悉的“細(xì)胞分裂”實例這樣兩個材料引出對數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實世界的又一重要數(shù)學(xué)模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)。我的引入材料是這樣的:1.請同學(xué)們認(rèn)真閱讀材料,解決材料中提出的問題:材料1:考古實例(材料1給出后面的觀察提供必要的感性材料)材料2:細(xì)胞分裂實例。
            過程,既化解難點(diǎn),又為第一問引導(dǎo)學(xué)生有目的用生成細(xì)胞個數(shù)x表示出細(xì)胞分裂次數(shù)y,緊接著問學(xué)生:這是一個函數(shù)嗎?將知識遷移到函數(shù)的定義,即對于任意一個y是否都有唯一的x與之相對應(yīng),為了幫助學(xué)生理解,可以借助指數(shù)函數(shù)圖像加以解釋,從而得到x=log2y是一個函數(shù),但它又和我們平時所見過的函數(shù)形式不一樣,我們習(xí)慣上用x來表示自變量,y表示函數(shù),所以將其改寫成y=log2x,這樣的函數(shù)稱之為對數(shù)函數(shù),引出本節(jié)課題。
            2.這兩個函數(shù)有什么共同特征?(引導(dǎo)學(xué)生觀察這兩個函數(shù)的特征)有了學(xué)習(xí)指數(shù)函數(shù)的經(jīng)驗,再結(jié)合以上兩個實例,學(xué)生不難歸納總結(jié)出對數(shù)函數(shù)的一般定義。
            3.給出對數(shù)函數(shù)的定義(提煉出對數(shù)函數(shù)的概念,明確對數(shù)函數(shù)的結(jié)構(gòu)特征)想一想:字母a、x、y的含義及取值范圍。
            1.你能類比指數(shù)函數(shù)的研究思路,說說對數(shù)函數(shù)的研究思路嗎?
            引導(dǎo)學(xué)生回顧指數(shù)函數(shù)的研究思路,強(qiáng)調(diào)數(shù)形結(jié)合,強(qiáng)調(diào)函數(shù)圖象在研究性質(zhì)中的作用。
            關(guān)于如何得到對數(shù)函數(shù)圖像我的想法是這樣的:一方面描點(diǎn)法畫圖是學(xué)生需要掌握的一類重要的畫圖方法,而且讓學(xué)生去親身經(jīng)歷畫出對數(shù)函數(shù)圖像的過程,這樣記憶會更深刻,所以我決定將課堂交給學(xué)生,讓他們自主探究,然后通過實物投影全班同學(xué)一起交流,對學(xué)生們的共同問題集中解決。2.在同一坐標(biāo)系中作出下列對數(shù)函數(shù)的圖象:
            (1)(2)(3)(4)。
            我們估計學(xué)生可能遇到的困難是對數(shù)運(yùn)算,所以我們坐標(biāo)紙上附了列表(列表的用意:多描點(diǎn),使圖像更準(zhǔn)確;便于底數(shù)分部規(guī)律、對稱性等的發(fā)現(xiàn).)請完成x,y的對應(yīng)值表,并用描點(diǎn)法畫出函數(shù)圖像.
            二次函數(shù)教學(xué)設(shè)計篇十三
            函數(shù)。
            教學(xué)。
            目標(biāo):
            1.理解函數(shù)的概念,了解函數(shù)三要素.2.通過對函數(shù)抽象符號的理解與使用,使學(xué)生在符號表示方面的水平得以提升.3.通過函數(shù)定義由變量觀點(diǎn)向映射觀點(diǎn)得過渡,使學(xué)生能從發(fā)展與聯(lián)系的角度看待數(shù)學(xué)學(xué)習(xí).教學(xué)重點(diǎn)難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解函數(shù)的概念;難點(diǎn)是對函數(shù)抽象符號的理解與使用.教學(xué)用具:投影儀教學(xué)方法:自學(xué)研究與啟發(fā)討論式.教學(xué)過程:
            而(3)定義域是,值域是,法則是乘2減1,與完全相同.求解后要求學(xué)生明確判斷兩個函數(shù)是否相同應(yīng)看定義域和對應(yīng)法則完全一致,這時三要素的又一作用.(2)判斷兩個函數(shù)是否相同.(板書)下面我們研究一下如何表示函數(shù),以前我們學(xué)習(xí)時雖然會表示函數(shù),但沒有相系統(tǒng)研究函數(shù)的表示法,其實表示法有很多,不過首先應(yīng)從函數(shù)記號說起.4.對函數(shù)符號的理解(板書)首先讓學(xué)生知道與的含義是一樣的,它們都表示是的函數(shù),其中是自變量,是函數(shù)值,連接的紐帶是法則,所以這個符號本身也說明函數(shù)是三要素構(gòu)成的整體.下面我們舉例說明.例例33已知函數(shù)試求(板書)分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再實行計算.含義1:當(dāng)自變量取3時,對應(yīng)的函數(shù)值即;含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,僅僅中一個特殊值.最后指出在剛才的題目中是用一個具體的解析式表示的,而以后研究的函數(shù)不一定能用一個解析式表示,此時我們需要用其他的方法表示,具體的方法下節(jié)課再進(jìn)一步研究.。
            三、
            小結(jié)1.函數(shù)的定義2.對函數(shù)三要素的理解3.對函數(shù)符號的理解四、作業(yè)(略)。
            二次函數(shù)教學(xué)設(shè)計篇十四
            正比例函數(shù)是本章的重點(diǎn)內(nèi)容,是學(xué)生在初中階段第一次接觸的函數(shù),這部分內(nèi)容的學(xué)習(xí)是在學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)的概念及圖像的基礎(chǔ)之上進(jìn)行的。它是對前面所學(xué)知識的應(yīng)用,又為后面學(xué)習(xí)做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。
            學(xué)情分析。
            學(xué)習(xí)本節(jié)課之前,學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)等知識。在描點(diǎn)法的學(xué)習(xí)中初步感受了通過描點(diǎn)法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學(xué)習(xí)做好準(zhǔn)備,所以本節(jié)課的學(xué)習(xí)問題不大。
            知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個變量是否構(gòu)成正比例函數(shù)關(guān)系。
            數(shù)學(xué)思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學(xué)習(xí)和探究,感知數(shù)行結(jié)合思想。
            解決問題:1、能夠要求運(yùn)用“列表法”和“兩點(diǎn)法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學(xué)問題。
            情感態(tài)度:1、結(jié)合描點(diǎn)作圖,培養(yǎng)學(xué)生認(rèn)真、細(xì)心、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。2、通過正比率函數(shù)概念的引入,使學(xué)生進(jìn)一步認(rèn)識數(shù)學(xué)是由于人們需要而產(chǎn)生的,與現(xiàn)實世界密切相關(guān)。同時滲透熱愛自然和生活的教育。
            教學(xué)重點(diǎn)和難點(diǎn)。
            重點(diǎn):正比率函數(shù)的概念。
            難點(diǎn):正比率函數(shù)的性質(zhì)。
            二次函數(shù)教學(xué)設(shè)計篇十五
            1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進(jìn)行一個全方位的研究,不僅僅是通過對比總結(jié)得到指數(shù)函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
            2.教學(xué)中借助信息技術(shù)可以彌補(bǔ)傳統(tǒng)教學(xué)在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學(xué)難點(diǎn)、突破教學(xué)重點(diǎn)、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學(xué)生直觀觀察底數(shù)對指數(shù)函數(shù)單調(diào)性的影響。
            二次函數(shù)教學(xué)設(shè)計篇十六
            “指數(shù)函數(shù)”的教學(xué)共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質(zhì);第二課時為指數(shù)函數(shù)的應(yīng)用?!爸笖?shù)函數(shù)”第一課時是在學(xué)習(xí)指數(shù)概念的基礎(chǔ)上學(xué)習(xí)指數(shù)函數(shù)的概念和性質(zhì),通過學(xué)習(xí)指數(shù)函數(shù)的定義,圖像及性質(zhì),可以進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學(xué)習(xí)對數(shù)函數(shù)作好準(zhǔn)備。
            在講解指數(shù)函數(shù)的定義前,復(fù)習(xí)有關(guān)指數(shù)知識及簡單運(yùn)算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復(fù)雜且不夠精確,并且是本節(jié)課的教學(xué)關(guān)鍵,教學(xué)中,我借助電腦手段,通過描點(diǎn)作圖,觀察圖像,引導(dǎo)學(xué)生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質(zhì),提高學(xué)生的形數(shù)結(jié)合的能力。
            大部分學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力,思維能力等方面參差不齊;同時學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高。針對這種情況,在教學(xué)中,我注意面向全體,發(fā)揮學(xué)生的主體性,引導(dǎo)學(xué)生積極地觀察問題,分析問題,激發(fā)學(xué)生的求知欲和學(xué)習(xí)積極性,指導(dǎo)學(xué)生積極思維、主動獲取知識,養(yǎng)成良好的學(xué)習(xí)方法。并逐步學(xué)會獨(dú)立提出問題、解決問題。總之,調(diào)動學(xué)生的非智力因素來促進(jìn)智力因素的發(fā)展,引導(dǎo)學(xué)生積極開動腦筋,思考問題和解決問題,從而發(fā)揚(yáng)鉆研精神、勇于探索創(chuàng)新。
            為了調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生變被動學(xué)習(xí)為主動愉快的學(xué)習(xí)。教學(xué)中我引導(dǎo)學(xué)生從實例出發(fā)啟發(fā)出指數(shù)函數(shù)的定義,在概念理解上,用步步設(shè)問、課堂討論來加深理解。在指數(shù)函數(shù)圖像的畫法上,我借助電腦,演示作圖過程及圖像變化的動畫過程,從而使學(xué)生直接地接受并提高學(xué)生的學(xué)習(xí)興趣和積極性,很好地突破難點(diǎn)和提高教學(xué)效率,從而增大教學(xué)的容量和直觀性、準(zhǔn)確性??傊?,本堂課充分體現(xiàn)了“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。