在教學過程中,教案扮演著橋梁和紐帶的角色,能夠幫助教師有效地組織和安排課堂活動。教案中的教學活動要靈活多樣,能夠激發(fā)學生的學習興趣。這些教案范例不僅注重認知目標的達成,還注重學生能力和情感的培養(yǎng)。
高一數(shù)學函數(shù)的教案篇一
函數(shù)與方程是中學數(shù)學的重要內(nèi)容,既是初等數(shù)學的基礎(chǔ),又是初等數(shù)學與高等數(shù)學的連接紐帶。在新課程教學中有著不可替代的重要位置.為什么要引進函數(shù)的零點?原因是要用函數(shù)的觀點統(tǒng)帥中學數(shù)學,把解方程問題納入到函數(shù)問題中.引入函數(shù)的零點,解方程的問題就變成了求函數(shù)的零點問題.
就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形.它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的總結(jié)拓展。之后將函數(shù)零點與方程的根的關(guān)系在利用二分法解方程中(3.1.2)加以應(yīng)用,通過建立函數(shù)模型以及模型的求解(3.2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系.即體現(xiàn)了函數(shù)與方程的思想,又滲透了數(shù)形結(jié)合的思想.總之,本節(jié)課滲透著重要的數(shù)學思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學好中學數(shù)學打下一個良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。
2、學生情況分析。
應(yīng)該為學生創(chuàng)設(shè)適當?shù)膯栴}情境,激發(fā)學生的思維引導(dǎo)學生通過觀察、計算、作圖、思考理解問題的本質(zhì)。
1、結(jié)合《課程標準》對本節(jié)的要求,制定本節(jié)課的教學目標為:
(1)、以二次函數(shù)的圖象與對應(yīng)的一元二次方程的關(guān)系為突破口,探究方程的根與函數(shù)的零點的關(guān)系.
(2)、掌握在某區(qū)間上圖象連續(xù)的函數(shù)存在零點的判定方法;學會在某區(qū)間上圖象連續(xù)的函數(shù)存在零點的判定方法。
(3)、讓學生在探究過程中體驗發(fā)現(xiàn)的樂趣,體會數(shù)形結(jié)合的數(shù)學思想,從特殊到一般的歸納思想,培養(yǎng)學生的辨證思維以及分析問題解決問題的能力。
2、教學重點難點設(shè)計。
重點:函數(shù)零點與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。
根據(jù)本節(jié)課的教學任務(wù)以及學生學習的需要,教學媒體設(shè)計如下:
1、多媒體輔助教學。
在對某區(qū)間上圖象連續(xù)的函數(shù)存在零點的判定方法的探究過程中,利用小馬過河的形象實例把抽象的判定定理還原到具體的可觀察可操作的層面上來,弱化純粹的邏輯推理,把“數(shù)”轉(zhuǎn)化到了“形”.
多媒體使用也為學生提供了更廣闊的思維空間,提高了探究活動的質(zhì)量。同時,為有效的指導(dǎo)學生活動,在教學中也使用了實物投影儀,展示學生所做的練習,并在此過程中隊學生進行針對性的評價。
2、設(shè)計合理的板書。
為對本課有一個整體的認識,教學時將重要內(nèi)容進行板書,如:
(一)設(shè)問激疑--創(chuàng)設(shè)情境問題1:求下列方程的根.(1)(2)(3)。
設(shè)計意圖:從學生較為熟悉的方程(一元一次、一元二次方程)出發(fā),再提出稍微難一點的方程符合學生的認知規(guī)律,進而使學生認識到有些復(fù)雜的方程用以前的解題方法求解很不方便,需要尋求新的解決方法,讓學生帶著問題學習,激發(fā)學生的求知欲。
(二)啟發(fā)引導(dǎo),初步探究問題2:作出下列二次函數(shù)的圖象。
由此的出結(jié)論:二次函數(shù)圖象與x軸交點的橫坐標就是相應(yīng)方程的實數(shù)根。
(三)形成概念。
設(shè)計意圖:讓學生從熟悉的環(huán)境中發(fā)現(xiàn)新知識,并與原有的知識形成聯(lián)系,利用方程與函數(shù)的聯(lián)系,培養(yǎng)學生觀察、歸納的能力,并滲透數(shù)形結(jié)合的數(shù)學思想。
高一數(shù)學函數(shù)的教案篇二
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。
【情感態(tài)度與價值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣。
【重點】。
【難點】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;。
(二)新課教學。
(1)偶函數(shù)(evenfunction)。
(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。
2.具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點對稱。
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性(本例由學生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點對稱。
(四)小結(jié)作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的`圖象關(guān)于原點對稱。
高一數(shù)學函數(shù)的教案篇三
知識梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數(shù),與的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、求出,時的函數(shù)值,寫出。
結(jié)論:
(1)、強調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于軸對稱,則這個函數(shù)是___________。
(1)(2)(3)。
(4)(5)。
練習:教材第49頁,練習a第1題。
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式。
例2:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x(1-x),求當時f(x)的解析式。
練習:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數(shù)集上的奇函數(shù)滿足:當x0時,,求的表達式。
題型三:利用奇偶性作函數(shù)圖像。
例3研究函數(shù)的性質(zhì)并作出它的圖像。
練習:教材第49練習a第3,4,5題,練習b第1,2題。
當堂檢測。
1已知是定義在r上的奇函數(shù),則(d)。
a.b.c.d.
2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。
a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。
c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。
3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數(shù)為奇函數(shù),若,則-1。
5若是偶函數(shù),則的單調(diào)增區(qū)間是。
6下列函數(shù)中不是偶函數(shù)的是(d)。
abcd。
7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數(shù)的圖像必經(jīng)過點(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數(shù)為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數(shù),且f(3)_f(-1)。
12、解答題。
已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。
已知分段函數(shù)是奇函數(shù),當時的解析式為,求這個函數(shù)在區(qū)間上的解析表達式。
高一數(shù)學函數(shù)的教案篇四
知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。
過程與方法:通過設(shè)置問題情境培養(yǎng)學生判斷、推斷的能力。
情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操,通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學生善于探索的思維品質(zhì)。
難點:函數(shù)奇偶性的判斷。
學生在獨立思考的基礎(chǔ)上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應(yīng)用采取講練結(jié)合的方式進行處理,使學生邊學邊練,及時鞏固。
1、復(fù)習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
(1)對于函數(shù),其定義域關(guān)于原點對稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
(a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當時,,那么當。
時,=_______。
d7、設(shè)是上的奇函數(shù),,當時,,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。
高一數(shù)學函數(shù)的教案篇五
1、知識與技能:
(1)結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.
(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).
2、過程與方法:
(1)讓學生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.
(2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學習作好鋪墊.
3、情感.態(tài)度與價值觀:使學生通過學習正整數(shù)指數(shù)函數(shù)體會學習指數(shù)函數(shù)的重要意義,增強學習研究函數(shù)的積極性和自信心.
正整數(shù)指數(shù)函數(shù)的定義.教學難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.
:學生觀察、思考、探究.教學方法:探究交流,講練結(jié)合。
(一)新課導(dǎo)入。
[互動過程1]:
(1)請你用列表表示1個細胞分裂次數(shù)分別。
為1,2,3,4,5,6,7,8時,得到的細胞個數(shù);。
(2)請你用圖像表示1個細胞分裂的次數(shù)n()與得到的細。
胞個數(shù)y之間的關(guān)系;。
(3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用。
科學計算器計算細胞分裂15次、20次得到的細胞個數(shù).
解:。
(1)利用正整數(shù)指數(shù)冪的運算法則,可以算出1個細胞分裂1,2,3,。
4,5,6,7,8次后,得到的細胞個數(shù)。
分裂次數(shù)12345678。
細胞個數(shù)248163264128256。
(3)細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為,用科學計算器算得,。
所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.
小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為.細胞個數(shù)隨著分裂次數(shù)的增多而逐漸增多.
[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設(shè)q0=1.
(1)計算經(jīng)過20,40,60,80,100年,臭氧含量q;。
(2)用圖像表示每隔20年臭氧含量q的變化;。
(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.
(2)用圖像表示每隔20年臭氧含量q的變化如圖所。
示,它的圖像是由一些孤立的點組成.
(3)通過計算和觀察圖形可以知道,隨著時間的增加,。
臭氧含量q在逐漸減少.
探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別。
又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量q隨著。
時間的增加發(fā)生怎樣變化?你從哪里看出?
小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關(guān)系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.
正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.
說明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
(二)、例題:某地現(xiàn)有森林面積為1000,每年增長5%,經(jīng)過年,森林面積為.寫出,間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.
分析:要得到,間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出,間的函數(shù)關(guān)系式.
解:根據(jù)題意,經(jīng)過一年,森林面積為1000(1+5%);經(jīng)過兩年,森林面積為1000(1+5%)2;經(jīng)過三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關(guān)系式為,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
練習:課本練習1,2。
解:一個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%),二個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)2;,三個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)3,,n個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)n;所以n與y之間的關(guān)系為y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數(shù)為y=20xx(1+2.38%)12.
(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
(四)、作業(yè):課本習題3-11,2,3。
高一數(shù)學函數(shù)的教案篇六
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結(jié)合的能力;。
教學重點:型的不等式的解法;。
教學難點:利用絕對值的意義分析、解決問題.
教學過程設(shè)計。
教師活動。
學生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
二、新課。
【提問】如何解絕對值方程?.。
【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
【練習】解下列不等式:
(1)?;
(2)。
【設(shè)問】如果在?中的?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果?中的?是?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
或?。
由?得。
由?得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式?的解集表示為。
畫出數(shù)軸。
思考答案。
不等式?的解集為。
或表示為?,或。
筆答。
(1)。
(2)?,或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。
由淺入深,循序漸進,在?()型絕對值方程的基礎(chǔ)上引出(?)型絕對值方程的解法.。
針對解?(?)絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出?與?(?)絕對值不等式。
高一數(shù)學函數(shù)的教案篇七
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應(yīng)該能輕松的完成本節(jié)課的教學內(nèi)容.
(1).基礎(chǔ)知識目標:理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
(4).個性品質(zhì)目標:通過誘導(dǎo)公式的學習和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
理解并掌握誘導(dǎo)公式.
正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預(yù)期效果等三個方面做如下分析.
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導(dǎo)學生的學法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
1.復(fù)習銳角300,450,600的三角函數(shù)值;。
2.復(fù)習任意角的三角函數(shù)定義;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
2100與sin300之間有什么關(guān)系.
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
高一數(shù)學函數(shù)的教案篇八
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
高一數(shù)學函數(shù)的教案篇九
(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類的定義域.。
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。
(1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
(2)在求定義域中注意運算的合理性與簡潔性.。
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發(fā)展的角度看待數(shù)學的學習.。
1.教材分析。
(1)知識結(jié)構(gòu)。
(2)重點難點分析。
是的定義和符號的認識與使用.。
2.教法建議。
高一數(shù)學函數(shù)的教案篇十
投影儀
自學研究與啟發(fā)討論式.
一、復(fù)習與引入
(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導(dǎo)學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關(guān)系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關(guān)系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應(yīng)的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結(jié)
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結(jié):
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
高一數(shù)學函數(shù)的教案篇十一
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3??傻弥本€與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
高一數(shù)學函數(shù)的教案篇十二
2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
指數(shù)函數(shù)圖象的平移變換.
1.復(fù)習指數(shù)函數(shù)的概念、圖象和性質(zhì)。
練習:函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為.若a1,則當x0時,y1;而當x0時,y1.若00時,y1;而當x0時,y1.
例1解不等式:
(1);(2);。
(3);(4).
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍.
例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
(1);(2);(3);(4).
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移).
練習:
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.
(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是.函數(shù)y=a2x-1的圖象恒過的定點的坐標是.
小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對稱變換規(guī)律.
例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.
例4求函數(shù)的最小值以及取得最小值時的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
練習:
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
(2)函數(shù)y=2x的值域為;。
(4)當x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
2.指數(shù)型函數(shù)的定點問題;。
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
課本p55-6,7.
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為.
(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
高一數(shù)學函數(shù)的教案篇十三
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
高一數(shù)學函數(shù)的教案篇十四
在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。在函數(shù)的教學中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
2.注重“數(shù)學結(jié)合”的教學。
數(shù)形結(jié)合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。
(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
(3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
過程與方法目標。
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數(shù)的圖象和性質(zhì)。
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
高一數(shù)學函數(shù)的教案篇十五
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學的重點。
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。
(1)對數(shù)函數(shù)在引入時,就應(yīng)從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
高一數(shù)學函數(shù)的教案篇一
函數(shù)與方程是中學數(shù)學的重要內(nèi)容,既是初等數(shù)學的基礎(chǔ),又是初等數(shù)學與高等數(shù)學的連接紐帶。在新課程教學中有著不可替代的重要位置.為什么要引進函數(shù)的零點?原因是要用函數(shù)的觀點統(tǒng)帥中學數(shù)學,把解方程問題納入到函數(shù)問題中.引入函數(shù)的零點,解方程的問題就變成了求函數(shù)的零點問題.
就本章而言,本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形.它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的總結(jié)拓展。之后將函數(shù)零點與方程的根的關(guān)系在利用二分法解方程中(3.1.2)加以應(yīng)用,通過建立函數(shù)模型以及模型的求解(3.2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系.即體現(xiàn)了函數(shù)與方程的思想,又滲透了數(shù)形結(jié)合的思想.總之,本節(jié)課滲透著重要的數(shù)學思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學好中學數(shù)學打下一個良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。
2、學生情況分析。
應(yīng)該為學生創(chuàng)設(shè)適當?shù)膯栴}情境,激發(fā)學生的思維引導(dǎo)學生通過觀察、計算、作圖、思考理解問題的本質(zhì)。
1、結(jié)合《課程標準》對本節(jié)的要求,制定本節(jié)課的教學目標為:
(1)、以二次函數(shù)的圖象與對應(yīng)的一元二次方程的關(guān)系為突破口,探究方程的根與函數(shù)的零點的關(guān)系.
(2)、掌握在某區(qū)間上圖象連續(xù)的函數(shù)存在零點的判定方法;學會在某區(qū)間上圖象連續(xù)的函數(shù)存在零點的判定方法。
(3)、讓學生在探究過程中體驗發(fā)現(xiàn)的樂趣,體會數(shù)形結(jié)合的數(shù)學思想,從特殊到一般的歸納思想,培養(yǎng)學生的辨證思維以及分析問題解決問題的能力。
2、教學重點難點設(shè)計。
重點:函數(shù)零點與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。
根據(jù)本節(jié)課的教學任務(wù)以及學生學習的需要,教學媒體設(shè)計如下:
1、多媒體輔助教學。
在對某區(qū)間上圖象連續(xù)的函數(shù)存在零點的判定方法的探究過程中,利用小馬過河的形象實例把抽象的判定定理還原到具體的可觀察可操作的層面上來,弱化純粹的邏輯推理,把“數(shù)”轉(zhuǎn)化到了“形”.
多媒體使用也為學生提供了更廣闊的思維空間,提高了探究活動的質(zhì)量。同時,為有效的指導(dǎo)學生活動,在教學中也使用了實物投影儀,展示學生所做的練習,并在此過程中隊學生進行針對性的評價。
2、設(shè)計合理的板書。
為對本課有一個整體的認識,教學時將重要內(nèi)容進行板書,如:
(一)設(shè)問激疑--創(chuàng)設(shè)情境問題1:求下列方程的根.(1)(2)(3)。
設(shè)計意圖:從學生較為熟悉的方程(一元一次、一元二次方程)出發(fā),再提出稍微難一點的方程符合學生的認知規(guī)律,進而使學生認識到有些復(fù)雜的方程用以前的解題方法求解很不方便,需要尋求新的解決方法,讓學生帶著問題學習,激發(fā)學生的求知欲。
(二)啟發(fā)引導(dǎo),初步探究問題2:作出下列二次函數(shù)的圖象。
由此的出結(jié)論:二次函數(shù)圖象與x軸交點的橫坐標就是相應(yīng)方程的實數(shù)根。
(三)形成概念。
設(shè)計意圖:讓學生從熟悉的環(huán)境中發(fā)現(xiàn)新知識,并與原有的知識形成聯(lián)系,利用方程與函數(shù)的聯(lián)系,培養(yǎng)學生觀察、歸納的能力,并滲透數(shù)形結(jié)合的數(shù)學思想。
高一數(shù)學函數(shù)的教案篇二
【過程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。
【情感態(tài)度與價值觀】。
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣。
【重點】。
【難點】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;。
(二)新課教學。
(1)偶函數(shù)(evenfunction)。
(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱)。
2.具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點對稱。
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性(本例由學生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的圖象關(guān)于原點對稱。
(四)小結(jié)作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;。
奇函數(shù)的`圖象關(guān)于原點對稱。
高一數(shù)學函數(shù)的教案篇三
知識梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數(shù),與的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、求出,時的函數(shù)值,寫出。
結(jié)論:
(1)、強調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于軸對稱,則這個函數(shù)是___________。
(1)(2)(3)。
(4)(5)。
練習:教材第49頁,練習a第1題。
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式。
例2:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x(1-x),求當時f(x)的解析式。
練習:若f(x)是定義在r上的奇函數(shù),當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數(shù)集上的奇函數(shù)滿足:當x0時,,求的表達式。
題型三:利用奇偶性作函數(shù)圖像。
例3研究函數(shù)的性質(zhì)并作出它的圖像。
練習:教材第49練習a第3,4,5題,練習b第1,2題。
當堂檢測。
1已知是定義在r上的奇函數(shù),則(d)。
a.b.c.d.
2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。
a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。
c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。
3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數(shù)為奇函數(shù),若,則-1。
5若是偶函數(shù),則的單調(diào)增區(qū)間是。
6下列函數(shù)中不是偶函數(shù)的是(d)。
abcd。
7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數(shù)的圖像必經(jīng)過點(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數(shù)為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數(shù),且f(3)_f(-1)。
12、解答題。
已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。
已知分段函數(shù)是奇函數(shù),當時的解析式為,求這個函數(shù)在區(qū)間上的解析表達式。
高一數(shù)學函數(shù)的教案篇四
知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。
過程與方法:通過設(shè)置問題情境培養(yǎng)學生判斷、推斷的能力。
情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操,通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學生善于探索的思維品質(zhì)。
難點:函數(shù)奇偶性的判斷。
學生在獨立思考的基礎(chǔ)上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應(yīng)用采取講練結(jié)合的方式進行處理,使學生邊學邊練,及時鞏固。
1、復(fù)習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說出圖象的對稱性。
(1)對于函數(shù),其定義域關(guān)于原點對稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性;偶函數(shù)在對稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
(a)軸對稱(b)軸對稱(c)原點對稱(d)以上均不對。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當時,,那么當。
時,=_______。
d7、設(shè)是上的奇函數(shù),,當時,,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。
高一數(shù)學函數(shù)的教案篇五
1、知識與技能:
(1)結(jié)合實例,了解正整數(shù)指數(shù)函數(shù)的概念.
(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進一步研究其性質(zhì).
2、過程與方法:
(1)讓學生借助實例,了解正整數(shù)指數(shù)函數(shù),體會從具體到一般,從個別到整體的研究過程和研究方法.
(2)從圖像上觀察體會正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學習作好鋪墊.
3、情感.態(tài)度與價值觀:使學生通過學習正整數(shù)指數(shù)函數(shù)體會學習指數(shù)函數(shù)的重要意義,增強學習研究函數(shù)的積極性和自信心.
正整數(shù)指數(shù)函數(shù)的定義.教學難點:正整數(shù)指數(shù)函數(shù)的解析式的確定.
:學生觀察、思考、探究.教學方法:探究交流,講練結(jié)合。
(一)新課導(dǎo)入。
[互動過程1]:
(1)請你用列表表示1個細胞分裂次數(shù)分別。
為1,2,3,4,5,6,7,8時,得到的細胞個數(shù);。
(2)請你用圖像表示1個細胞分裂的次數(shù)n()與得到的細。
胞個數(shù)y之間的關(guān)系;。
(3)請你寫出得到的細胞個數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用。
科學計算器計算細胞分裂15次、20次得到的細胞個數(shù).
解:。
(1)利用正整數(shù)指數(shù)冪的運算法則,可以算出1個細胞分裂1,2,3,。
4,5,6,7,8次后,得到的細胞個數(shù)。
分裂次數(shù)12345678。
細胞個數(shù)248163264128256。
(3)細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為,用科學計算器算得,。
所以細胞分裂15次、20次得到的細胞個數(shù)分別為32768和1048576.
小結(jié):從本題中可以看出我們得到的細胞分裂個數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù).細胞個數(shù)與分裂次數(shù)之間的關(guān)系式為.細胞個數(shù)隨著分裂次數(shù)的增多而逐漸增多.
[互動過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量q近似滿足關(guān)系式q=q00.9975t,其中q0是臭氧的初始量,t是時間(年),這里設(shè)q0=1.
(1)計算經(jīng)過20,40,60,80,100年,臭氧含量q;。
(2)用圖像表示每隔20年臭氧含量q的變化;。
(3)試分析隨著時間的增加,臭氧含量q是增加還是減少.
(2)用圖像表示每隔20年臭氧含量q的變化如圖所。
示,它的圖像是由一些孤立的點組成.
(3)通過計算和觀察圖形可以知道,隨著時間的增加,。
臭氧含量q在逐漸減少.
探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別。
又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量q隨著。
時間的增加發(fā)生怎樣變化?你從哪里看出?
小結(jié):從本題中可以看出我們得到的臭氧含量q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù).臭氧含量q近似滿足關(guān)系式q=0.9975t,隨著時間的增加,臭氧含量q在逐漸減少.
正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù)叫作正整數(shù)指數(shù)函數(shù),其中是自變量,定義域是正整數(shù)集.
說明:1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
(二)、例題:某地現(xiàn)有森林面積為1000,每年增長5%,經(jīng)過年,森林面積為.寫出,間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.
分析:要得到,間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出,間的函數(shù)關(guān)系式.
解:根據(jù)題意,經(jīng)過一年,森林面積為1000(1+5%);經(jīng)過兩年,森林面積為1000(1+5%)2;經(jīng)過三年,森林面積為1000(1+5%)3;所以與之間的函數(shù)關(guān)系式為,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
練習:課本練習1,2。
解:一個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%),二個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)2;,三個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)3,,n個月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)n;所以n與y之間的關(guān)系為y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的錢數(shù)為y=20xx(1+2.38%)12.
(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點,這是因為函數(shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
(四)、作業(yè):課本習題3-11,2,3。
高一數(shù)學函數(shù)的教案篇六
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學生數(shù)形結(jié)合的能力;。
教學重點:型的不等式的解法;。
教學難點:利用絕對值的意義分析、解決問題.
教學過程設(shè)計。
教師活動。
學生活動。
設(shè)計意圖。
一、導(dǎo)入新課。
【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】。
口答。
二、新課。
【提問】如何解絕對值方程?.。
【質(zhì)疑】?的解集有幾部分?為什么?也是它的解集?
【練習】解下列不等式:
(1)?;
(2)。
【設(shè)問】如果在?中的?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
所以,原不等式的解集是。
【設(shè)問】如果?中的?是?,也就是?怎樣解?
【點撥】可以把?看成一個整體,也就是把?看成?,按照?的解法來解.。
或?。
由?得。
由?得。
所以,原不等式的解集是。
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).。
畫出數(shù)軸,思考答案。
不等式?的解集表示為。
畫出數(shù)軸。
思考答案。
不等式?的解集為。
或表示為?,或。
筆答。
(1)。
(2)?,或。
筆答。
筆答。
根據(jù)絕對值的意義自然引出絕對值方程?(?)的解法.。
由淺入深,循序漸進,在?()型絕對值方程的基礎(chǔ)上引出(?)型絕對值方程的解法.。
針對解?(?)絕對值不等式學生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.。
落實會正確解出?與?(?)絕對值不等式。
高一數(shù)學函數(shù)的教案篇七
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應(yīng)該能輕松的完成本節(jié)課的教學內(nèi)容.
(1).基礎(chǔ)知識目標:理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
(4).個性品質(zhì)目標:通過誘導(dǎo)公式的學習和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
理解并掌握誘導(dǎo)公式.
正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預(yù)期效果等三個方面做如下分析.
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導(dǎo)學生的學法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
1.復(fù)習銳角300,450,600的三角函數(shù)值;。
2.復(fù)習任意角的三角函數(shù)定義;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
2100與sin300之間有什么關(guān)系.
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
高一數(shù)學函數(shù)的教案篇八
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
高一數(shù)學函數(shù)的教案篇九
(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類的定義域.。
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.。
(1)對記號有正確的理解,準確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系;
(2)在求定義域中注意運算的合理性與簡潔性.。
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發(fā)展的角度看待數(shù)學的學習.。
1.教材分析。
(1)知識結(jié)構(gòu)。
(2)重點難點分析。
是的定義和符號的認識與使用.。
2.教法建議。
高一數(shù)學函數(shù)的教案篇十
投影儀
自學研究與啟發(fā)討論式.
一、復(fù)習與引入
(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導(dǎo)學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關(guān)系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關(guān)系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應(yīng)的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結(jié)
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結(jié):
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
高一數(shù)學函數(shù)的教案篇十一
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3??傻弥本€與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
高一數(shù)學函數(shù)的教案篇十二
2.能較熟練地運用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問題;。
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;。
指數(shù)函數(shù)圖象的平移變換.
1.復(fù)習指數(shù)函數(shù)的概念、圖象和性質(zhì)。
練習:函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過的定點坐標為.若a1,則當x0時,y1;而當x0時,y1.若00時,y1;而當x0時,y1.
例1解不等式:
(1);(2);。
(3);(4).
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運用,關(guān)鍵是底數(shù)所在的范圍.
例2說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關(guān)系,并畫出它們的示意圖:
(1);(2);(3);(4).
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移).
練習:
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)的圖象.
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)的圖象.
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是.
(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是.函數(shù)y=a2x-1的圖象恒過的定點的坐標是.
小結(jié):指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口.
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x-1|的圖象?
小結(jié):函數(shù)圖象的對稱變換規(guī)律.
例3已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1-2x,試畫出此函數(shù)的圖象.
例4求函數(shù)的最小值以及取得最小值時的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來求解其最值.
練習:
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;。
(2)函數(shù)y=2x的值域為;。
(4)當x0時,函數(shù)f(x)=(a2-1)x的值總大于1,求實數(shù)a的取值范圍.
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;。
2.指數(shù)型函數(shù)的定點問題;。
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
課本p55-6,7.
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)的定義域為.
(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較的大小.
高一數(shù)學函數(shù)的教案篇十三
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
高一數(shù)學函數(shù)的教案篇十四
在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。在函數(shù)的教學中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
2.注重“數(shù)學結(jié)合”的教學。
數(shù)形結(jié)合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
(1)讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。
(2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
(3)注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。
目標。
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
過程與方法目標。
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
一次函數(shù)的圖象和性質(zhì)。
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
高一數(shù)學函數(shù)的教案篇十五
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學的重點。
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。
(1)對數(shù)函數(shù)在引入時,就應(yīng)從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。