教案是教學過程中規(guī)范教學行為的工具,有助于確保教學的連貫性和系統(tǒng)性。那么我們該如何編寫一份優(yōu)秀的教案呢?首先要明確教學目標,設定合理的目標是教學成功的關鍵。然后要合理設計教學內容和教學步驟,保證教學過程的連貫性和邏輯性。同時,要精心選擇教學方法和教學手段,以激發(fā)學生的學習興趣和潛能。最后,要合理評估教學效果,及時調整教學策略,以達到良好的教學效果。在編寫教案時,可以參考以下案例,了解如何合理安排教學步驟和教學內容。
圓與圓的位置關系的教案篇一
教學目標:
1.使學生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關系的性質與判定并能夠靈活運用來解決實際問題。
3.培養(yǎng)學生把實際問題轉化為數學問題的能力及分類和化歸的能力。
重點難點:
2.難點:運用直線與圓的位置關系的性質及判定解決相關的問題。
教學過程:
一.復習引入。
(目的:讓學生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)。
二.定義、性質和判定。
1.結合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
圓與圓的位置關系的教案篇二
1、圓的定義:
到定點的距離等于定長的點的集合。
在圓內、在圓上、在圓外(由點和圓心的距離與圓的半徑大小來確定)。
3、弦、直徑、孤、弓形、半圓、同心圓、等圓、等孤等概念。
等弧一定要強調要在同圓或等圓中;半圓不包括直徑。
4、過三點的圓(三角形的外心)。
經過三角形三個頂點的圓叫三角形外接圓;外接圓的圓心叫三角形的外心;三角形的外心是三條邊中垂線的交點,到三個頂點距離相等;直角三角形外心在斜邊上、銳角三角心外心在三角形內、鈍角三角形外心在三角形外。
5、垂徑定理及其推論:
定理及推論1:直線過圓心、垂直弦、平分弦、平分弦所對的優(yōu)弧、平分弦所對的劣弧這五要素中用其中兩個要素做條件就能推導出其它三個要素都成立。若用過圓心、平分弦做條件時要強調被平分的弦不是直徑。
推論2:平行弦所夾的弧相等。
6、圓心角、弦、弦心距、弧的關系:
圓心角、弧、弦、弦心距之間的相等關系必須要在同圓或等圓中才能成立;
弧的度數就等于它所對圓心角的度數。
7、圓周角定理及推論:
圓周角的定義:頂點在圓上,角的兩邊都與圓相交。
圓周角的定理:圓周角等于同弧所對圓心角的一半。
推論1、在同圓或等圓中,同弧或等弧所對的圓周角相等,圓周角相等,它所對的弧也相等。
推論2:直徑和半圓所對的'圓周角等于90度,90度的圓周角所對的弦是直徑,所對的弧是半圓。
推論3、三角形一邊的中線等于這一邊的一半時,這個三角形是直角三角形。
8、圓內接四邊形:
定義:四個頂點都在圓上的四邊形。
定理:圓內接四邊形對角互補。
推論:圓內接四邊形的外角等于它的內對角。
相交、相切、相離(由公共點個數或圓心到直線距離和圓的半徑大小來確定)。
10、切線的判定和性質:
定義:與圓只有一個公共點的直線。
判定定理:經過半徑的外端且垂直于半徑的直線是圓的切線。
性質定理:經過切點的半徑必垂直于切線。
推論1:經過切點且垂直于切線的直線必經過圓心。
推論2:經過圓心且垂直于切線的直線必經過切點。
11、三角形內切圓:
定義:與三角形三邊都相切的圓叫三角形內切圓、內切圓的圓心叫三角形內心。內心是三角形三條角平分線的交點,到三角形三邊距離相等。
12、切線長定理:
定理:圓外一點到圓的兩條切線的長相等,這個點與圓心的連線要平分兩條切線的夾角。
(圓內切四邊形對邊相加相等)。
13、弦切角:
定義:一條邊是圓的切線,頂點是切點,另一條邊與圓相交的角;
定理:弦切角等于它所夾弧對的圓周角。
推論:兩個弦切角所夾的弧相等,這兩個弦切角相等。
14、和圓有關的比例線段:
相交弦定理及推論、切割線定理及推論。
圓與圓的位置關系的教案篇三
一、教學目標:
根據學生已有的認知的基礎及本課的教材的地位、作用,依據教學大綱的確定本課的教學目標為:
(1)知識目標:
a、知道直線和圓相交、相切、相離的定義。
會根據直線和圓相切的定義畫出已知圓的切線。
c、根據圓心到直線的距離與圓的半徑之間的數量關系揭示直線和圓的位置。
2)能力目標:
讓學生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數量關系,揭示直線和圓的關系。此外,通過直線與圓的相對運動,培養(yǎng)學生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。
3)情感目標:
在解決問題中,教師創(chuàng)設情境導入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學生結合學過的知識,把它們抽象出幾何圖形,再表示出來。讓學生感受到實際生活中,存在的直線和圓的三種位置關系,便于學生用運動的觀點觀察圓與直線的位置關系,有利于學生把實際的問題抽象成數學模型,也便于學生觀察直線和圓的公共點的變化。
二.教材的重點難點。
直線和圓的三種位置關系是重點,本課的難點是直線和圓的三種位置關系的性質與判定的應用。
三.在教學中如何突破這個重點和難點。
解決重點的方法主要是:(1)由學生觀察老師展示的一輪紅日從海平面升起的照片提出問題,能不能我們學過的知識把它們抽象出幾何圖形再展示出來(讓學生嘗試通過日出的情境畫出幾種情況),(2)把直線在圓的上下移動,引導學生用運動的觀點觀察直線和圓的位置關系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數,揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關系。是什么?)。
在說直線與圓的位置關系時,如何突破這個難點:(1)突破直線和圓不能有兩個以上的公共點,讓學生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點,那么這與不在同一條直線上的三點就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導學生用運動的觀點觀察直線和圓的位置關系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數,揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關系。
(3)突破直線和圓有唯一一個公共點是直線和圓相切(指直線與圓有一個并且只有一個公共點,它與有一個公共點的含義不同)。
(4)突破直線和圓的位置關系的(如果圓o的半徑為r,圓心到直線的距離為d,
3.直線l與圓o相離=dr。
(上述結論中的符號“=”讀作“等價于”)。
式子的左邊反映是兩個圖形(直線和圓)的位置關系的性質,右邊是反映直線和圓的位置關系的判定。
四、教學程序。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復習點與圓的位置關系,討論它們的數量關系。通過類比,從而得出直線與圓的位置關系的性質定理及判定方法。
[鞏固練習]例1,
出示例題。
(1)r=2cm;(2)r=2.4cm;(3)r=3cm。
由學生填寫下例表格。
公共點個數。
圓心到直線距離d與半徑r關系。
公共點名稱。
直線名稱。
圖形。
補充練習的答案由師生一起歸納填寫。
教學小結。
直線與圓的位置關系,讓學生自己歸納本節(jié)課學習的內容,培養(yǎng)學生用數學語言歸納問題的能力。然后老師在多媒體打出圖表。
本節(jié)課主要采用了歸納、演繹、類比的思想方法,從現(xiàn)實生活中抽象出數學模型,體現(xiàn)了數學產生于生活的思想,并且將新舊知識進行了類比、轉化,充分發(fā)揮了學生的主觀能動性,體現(xiàn)了學生是學習的主體,真正成為學習的主人,轉變了角色。
圓與圓的位置關系的教案篇四
1、圓的公式c==()s=()。
2、已知圓的周長,公式求d=(),求r=()。
3、圓的半徑擴大2倍,直徑就擴大()倍,周長就擴大()倍,面積就擴大()倍。
4、環(huán)形面積s=()。
5、用圓規(guī)畫一個周長50.24厘米的圓,圓規(guī)兩腳尖之間的距離應是()厘米,畫出的這個圓的面積是()平方厘米。
6、大圓半徑是小圓半徑的4倍,大圓周長是小圓周長的()倍,小圓面積是大圓面積的()。
7、圓的半徑增加1/4,圓的周長增加(),圓的面積增加()。
8、一個半圓的周長是20.56分米,這個半圓的面積是()平方分米。
9、將一個圓平均分成1000個完全相同的小扇形,割拼成近似的長方形的周長比原來圓周長長10厘米,這個長方形的面積是()平方厘米。
10、在一個面積是24平方厘米的正方形內畫一個最大的圓,這個圓的面積是()平方厘米;再在這個圓內畫一個最大的正方形,正方形的面積是()平方厘米。
11、大圓半徑是小圓半徑的3倍,大圓面積是84.78平方厘米,則小圓面積為()平方厘米。
12、大圓半徑是小圓半徑的2倍,大圓面積比小圓面積多12平方厘米,小圓面積是()平方厘米。
二.判斷。
(1)通過圓心的線段,叫做圓的直徑。()。
(2)周長是所在圓直徑的3倍多一些。()。
(3)半徑是直徑的一半。()。
(4)任何圓的圓周率都是3.14。()。
(5)半圓的周長等于圓的周長的1/2加直徑的長,所以半個圓的面積等于圓面積的1/2加直徑的長度。()。
(6)圓的半徑擴大5倍,圓的`面積也擴大5倍。()。
(7)半徑是2厘米的圓,周長和面積相等。()。
(8)半圓形紙片的周長就是圓周長的一半。()。
(9)把半徑3厘米的圓等分成十六份,拼成一個近似長方形,長方形的周長比圓的周長長。()。
三、應用題。
1、一個環(huán)形的外圓半徑是8分米,內圓半徑5分米,求環(huán)形的面積?
4、
(1)軋路機前輪直徑1.2米,每分鐘滾動6周。1小時能前進多少米?
圓與圓的位置關系的教案篇五
二、教材分析:
1、教材的地位和作用。
圓是在學習了直線圖形的有關性質的基礎上,來研究的一種特殊曲線圖形。它是常見的幾何圖形之一,在初中數學中占有重要地位,中考中分值占有一定比例,與其它知識綜合性強。而本節(jié)課《圓和圓的位置關系》的第一節(jié),它是在學習點與圓以及直線與圓的位置關系基礎上,對圓與圓的位置關系進行研究.學生親自動手實踐,自主探究圓和圓的位置關系,觀察分析,猜想驗證,完成從感性到理性的發(fā)生發(fā)展的認知過程.然后知識遵循了從實踐走向數學,從數學走向生活,讓學生學以自用,把數學知識與現(xiàn)實生活緊密相聯(lián)。本節(jié)內容共安排2課時,第一課時讓學生明白圓和圓的位置關系,知道五種關系,并能用它解決問題。第二課時強化位置關系的運用,重點解決兩圓相交的推理題、計算題,欣賞中考真題。
2、教學目標:(1)知識目標。
1.經歷探索兩個圓之間位置關系的過程,訓練學生的探索能力.
學生經過操作、實驗、發(fā)現(xiàn)、確認等活動,從探索兩圓位置關系地過程中,體會運動變化的觀點,量變到質變的辯證唯物主義觀點,感受數學中的美感。
3、教材重、難點的處理。
最后輔之一相關練習題,得以鞏固。
4、教法、學法。
三、學情分析:九年級學生對圓有一定的認識,但對圓的相關性質掌握較少,對知識的轉化能力較差,重在要學生參與,主動探究,增加解決實際問題的能力。由于九(1)班有44名學生,他們中一半的學習基礎較好,獨立學習的能力也比較強,能在課前對將要教學內容進行預習,在課堂上也能積極發(fā)言,作業(yè)也能獨立完成;但也有部分學困生在知識的理解和動手的能力上存在問題。因此要求他們對本課的內容進行預習熟知。通過預習將教學的重點和難點應放在兩圓圓心距與兩圓半徑間的數量關系的推導總結上。
大部分學生對這節(jié)課的學習有很高積極性,加上課件動畫中圖片和總結圓和圓的位置關系的定義、圓和圓的位置關系中兩圓圓心距與兩圓半徑間的數量關系動畫效果采用,學生的學習主動性和探求知識的情緒也會很高,運用課件也能激發(fā)他們學習的欲望。
但本班學習相對較困難的學生,對重點和難點的理解可能存在一定困惑。對這種個別現(xiàn)象,不做強制性要求,只幫助他們能理解圓和圓的位置關系并記住兩圓圓心距與兩圓半徑間的數量關系即可。
四、教學過程。
(一)、復習導入:請說出點與圓;直線與圓的位置關系,并分別說出判定方法。
情景創(chuàng)設:我們生活在豐富多彩的圖形世界里,圓與圓組成的圖形是我們生活中最常見的畫面。比如:自行車的兩個輪子、奧運會的會標、皮帶輪、紅綠燈等照片(大屏幕演示),你還能舉出兩個圓組成的圖形嗎?(學生舉例)。
(設計意圖:展現(xiàn)生活中圓與圓組成的圖形并由學生舉出實例,豐富學生對客觀世界中兩個圓之間多種不同位置關系的感受,為學生自主探索提供可能。)。
(二)、新授[活動一]。
教師課前布置好:每人都在紙上畫兩個半徑不等的圓,每個人都準備在紙上移動其中一個圓,讓學生觀察兩圓的位置關系和公共點的個數。
讓學生自己畫出可能會出現(xiàn)的幾種情況,并標清交點的個數(按從遠到近的順序)。
問題2,試一試你能不能描述兩圓的各種位置關系?學生思考回答,師生共同總結:
1.兩個圓沒有公共點,就說這兩個圓相離,如上圖中的(1)、(5)、(6),它們又有何區(qū)別?討論得出其中(1)叫外離,(5)(6)叫內含,(6)是兩圓同心,是兩圓內含的一種特殊情況。
2.兩圓只有一個公共點,就說這兩圓相切,如上圖是的(2)(4),同樣找出它們的區(qū)別,其中(2)叫外切,(4)叫內切。
3.兩圓有兩個公共點,就說這兩個圓相交,如上圖(3)。因此兩園的位置關系為:(大屏幕投影)。
(1)外離:兩個圓沒有公共點,并且每個圓上的點都在另一個圓的外部時,叫做這兩個圓外離.(圖1)。
(2)外切:兩個圓有唯一的公共點,并且除了這個公共點以外,每個圓上的點都在另一個圓的外部時,叫做這兩個圓外切.這個唯一的公共點叫做切點.(圖2)。
(3)相交:兩個圓有兩個公共點,此時叫做這兩個圓相交.(圖3)。
(4)內切:兩個圓有唯一的公共點,并且除了這個公共點以外,一個圓上的點都在另一個圓的內部時,叫做這兩個圓內切.這個唯一的公共點叫做切點.(圖4)。
(5)內含:兩個圓沒有公共點,并且一個圓上的點都在另一個圓的內部時,叫做這兩個圓內含(圖5).兩圓同心是兩圓內含的一個特例.(圖6)。
大屏幕展示圓和圓的五種位置關系:外離、外切、相交、內切、內含。
問題3,兩個圓的位置關系發(fā)生變化的時候,圓心距d與兩個圓的半徑r與r(rr)之間有沒有內在的聯(lián)系?請同學們交流一下(給出一定的時間)大屏幕演示兩圓由遠到近的運動情形,讓學生觀察圓心距d的變化,然后讓學生進行歸納。
教師重點關注:學生思考問題的全面性和準確性,尤其是對兩圓相交時的圓心距的范圍考慮的是否到位。(教師可提示利用三角形三邊之間的關系來解決問題)師生共同總結:(大屏幕出示)。
兩圓外離dr+r。
兩圓外切d=r+r兩圓相交r-r。
兩圓內切d=r-r(rr)兩圓內含dr)。
[活動二]練習鞏固,大屏幕出示:
1、若兩圓有唯一公共點,且兩圓半徑分別為5和2,則兩圓圓心距為。
(2)r=5,r=2,d=1。
(3)r=7,r=3,d(4)r=5,r=2,d=7。
(5)r=4,r=1,d=6。
教師重點關注:學生應用“數量關系”判定兩圓“位置關系”的準確性,尤其注意,只有dr-r或只有d。
(設計意圖:進一步讓學生理解新知,并能熟練準確的應用新知,培養(yǎng)學生全面細致的良好思維品質。)。
3、大屏幕出示問題:
例如圖,oo的半徑為4cm,點p是oo外一點,op=6cm。求(1)以p為圓心作opop與oo外切,小圓op的半徑是多少?(2)以p為圓心作op與oo內切,大圓op的半徑是多少?教師給出圖形、板書解答過程。
(設計意圖:培養(yǎng)學生嚴謹縝密的思維品質,加強“分類討論”數學思想的訓練。)。
(三)、拓展聯(lián)系:試一試:
一塊鐵板,上面有a、b、c三個點,經測量,ab=13cm,bc=14cm,ca=9cm,以各頂點為圓心的三個圓兩兩外切。求各圓的半徑。
教師重點關注:應用新知解決問題的能力,進一步鞏固新知。
(設計意圖:滲透三圓相切的情況,培養(yǎng)學生分析、探究問題的能力。)[活動三]拓展探索:
兩個圓組成的圖形是軸對稱嗎?如果是那么對稱軸是什么?如果兩圓相切,切點與對稱軸有什么關系?提示,學生可以用折紙方法進行探究。(學生分組討論,小組選代表回答問題)大屏幕出示:正確結論。
兩圓組成的圖形是軸對稱圖形,對稱軸是通過兩圓圓心的直線(連心線),兩圓相切時,因為切點是它們唯一的公共點,所以切點一定在連心線上即對稱軸上。
(設計意圖:設計折紙活動實質上是讓學生感知兩圓組成的圖形是軸對稱圖形,并讓學生通過自己的活動從心理上認同經過兩圓圓心的直線(即連心線)是兩圓組成圖形的對稱軸為探索兩相切、兩圓相交的性質創(chuàng)設學習情境。)。
(四)、小結。
這節(jié)課你有哪些收獲?有何體會?你認為自己的表現(xiàn)如何?引導學生回顧、思考、交流。
(五)、作業(yè):
1、課本51頁,習題。
3、
4、5。
2、課下探究:相交兩圓的連心線與公共弦有什么樣的結論。
3、寫一篇數學日記,并解決2—3個問題。
例題板書外離。
dr1+r2外切。
d=r1+r2相交。
r1-r2。
d=r1-r2內含。
d
五、教學反思。
由于本節(jié)圓與圓的位置關系是新課,這節(jié)課的內容與上節(jié)“直線和圓的位置關系”有密切的聯(lián)系,但這節(jié)課的兩圓位置關系遠比直線與圓的位置關系復雜。因此,我通過讓學生動手操作類比直線與圓的位置關系,猜測兩圓可能存在的位置關系,然后經過討論,歸納確定兩圓位置關系的各種情況。在與兩圓位置關系相應的三量的數量關系的研究中,鑒于學生已有直線與圓的位置關系中兩量(半徑、圓心到直線的距離)的數量關系的認知基礎,就只運用了類比遷移的方法。這些方法的運用,都是為了充分發(fā)揮學生在探求新知過程中的主體作用。當然也有不足之處,比如:雖然我竭力提醒自己要體現(xiàn)出以學生為本的課改精神,但在具體操作中還是會不自覺地喜歡代學生表達觀點,往往會發(fā)生,學生還沒把話說完,我已經急著歸納了。今后我會更加努力,爭取向課堂要效率。
圓與圓的位置關系的教案篇六
教學目的要求:
知識目標:1、了解圓和圓五種位置的定義,
情感目標:利用多種教學手段來激發(fā)學生學習的興趣,通過鼓勵和肯定學生,培養(yǎng)他們敢于。
想象,勇于探索的學習精神。
教學用具:多媒體。
教學方法:問題、引導、直觀演示、總結。
學法指導:猜想、類比、觀察、歸納、實驗探究、合作交流。
教學過程:
圓與圓的位置關系的教案篇七
尊敬的各位評委,親愛的各位同行,大家好!今天我的說課內容是人教版九年級上冊第二十四章第二節(jié)第二課時的直線與圓的位置關系。下面我將以教什么、怎么樣教、為什么這樣教為思路從教材分析、學情分析、教學目標、學法教法、教學過程和板書設計六個方面對本課進行說明。
一、教材分析。
教材的地位和作用。
圓在平面幾何中占有重要地位,它被安排在初中數學第二十四章,屬于一個提高階段。而直線和圓的位置關系又是本章的一個中心內容。從知識體系上看:它有著承上啟下的作用,既是對點與圓的位置關系的延續(xù)與提高,又是后面學習切線的性質和判定、圓和圓的位置關系及高中繼續(xù)學習幾何知識的基礎。從數學思想方法層面上看:它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯(lián)系,滲透了數形結合、分類討論、類比等數學思想方法,有助于提高學生的數學思維品質。
二、學情分析。
在此之前學生已經學習了點和圓的位置關系,對圓有了一定的感性和理性認識,但在某種程度上特別是平面幾何問題上,學生還是依靠事物的具體直觀形象。加之九年級學生好奇心強,活潑好動,注意力易分散,認知水平大都停留在表面現(xiàn)象,對親身體驗的事物容易激發(fā)求知的渴望,因此要想方設法,引導學生深入思考、主動探究、主動獲取新知識。
三、教學目標:
根據學生已有的認知基礎及本課的教材的地位、作用,結合數學課程標準我將確定如下的教學目標:
(2)通過觀察、實驗、合作交流等數學活動使學生了解探索問題的一般方法;
陪養(yǎng)學生觀察、分析和概括的能力;
(4)體會事物間的相互滲透,感受數學思維的嚴謹性,并在合作學習中體驗成功的喜悅。
教學的重難點:
圓與圓的位置關系的教案篇八
這課節(jié)主要是引導學生進行“回顧與整理”,完成第74-75也“練習與應用”第1-5題?;仡櫯c整理時要組織學生交流本單元的學習體會,交流對小數點位置移動引起小數大小變化的規(guī)律的理解。
教學目標。
1、通過回顧與整理以及練習與應用活動,讓學生進一步鞏固以學過的小數乘除法的計算方法,加深對小數點位置移動引起小數大小變化的規(guī)律的理解。
2、培養(yǎng)學生樂于學習,樂于與同伴合作并分享學習成果的良好學習品質。
教學重點。
與難點加深對小數乘除法計算方法,以及數學規(guī)律的'認識。
教具多媒體課件。
根據學生學習情況隨機板書。
教學過程。
師生雙邊活動。
改進意見。
一、回顧與整理。
這一單元,你了解了什么規(guī)律?學會了哪些計算?
學生小組交流,集體匯報。
二、練習與應用。
1、口算練習。
學生獨立口算,集體訂正。
2、第2題。
引導學生將后面六欄中的兩個因數分別與第一欄進行比較,明確當一個因數不變時,另一個因數乘或除以幾,那么積也隨著乘或除以幾,從而初步體會積的變化規(guī)律。
3、用豎式計算。
學生獨立計算,師計時,并巡視指導,集體交流,指名說說計算方法。
4、第4題。
讓學生根據題目的特點,判斷哪幾題的商小于1,再通過計算驗證開始的判斷是否正確。
5、第5題。
讓學生說說每道題的改寫方法,弄清是乘進率還是除以進率,再決定小數點是向右移動還是向左移動。
三、全課小結。
通過今天的整理與復習,你有哪些收獲?你覺得在計。
教學過程。
師生雙邊活動。
改進意見。
算小數乘、除法時應注意些什么?
學生自由發(fā)表意見,全班交流。
四、作業(yè)。
完成《學習與探究》。
課后小記:
圓與圓的位置關系的教案篇九
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標:
2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。
情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數學教案《數學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。
學生看投影并思考問題。
調動學生積極主動參與數學活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
圓與圓的位置關系的教案篇十
2、過程與方法。
(1)當時,圓與圓相離;
(2)當時,圓與圓外切;
(3)當時,圓與圓相交;
(4)當時,圓與圓內切;
(5)當時,圓與圓內含;
3、情態(tài)與價值觀。
讓學生通過觀察圖形,理解并掌握圓與圓的位置關系,培養(yǎng)學生數形結合的思想、
問題。
設計意圖。
師生活動。
結合學生已有知識以驗,啟發(fā)學生思考,激發(fā)學生學習興趣、
教師引導學生回憶、舉例,并對學生活動進行評價;學生回顧知識點時,可互相交流、
引導學生明確兩圓的位置關系,并發(fā)現(xiàn)判斷和解決兩圓的位置。
問題。
設計意圖。
師生活動。
關系的方法、
學生觀察圖形并思考,發(fā)表自己的解題方法、
3、例3。
你能根據題目,在同一個直角坐標系中畫出兩個方程所表示的圓嗎?你從中發(fā)現(xiàn)了什么?
培養(yǎng)學生“數形結合”的意識、
進一步培養(yǎng)學生解決問題、分析問題的能力、
師:啟發(fā)學生利用圖形的特征,用代數的方法來解決幾何問題、
5、從上面你所畫出的圖形,你能發(fā)現(xiàn)解決兩個圓的位置的其它方法嗎?
進一步激發(fā)學生探求新知的精神,培養(yǎng)學生。
師:指導學生利用兩個圓的圓心坐標、半徑長、連心線長的關系來判別兩個圓的'位置、
師:對于兩個圓的方程,我們應當如何判斷它們的位置關系呢?
7、閱讀例3的兩種解法,解決第137頁的練習題、
鞏固方法,并培養(yǎng)學生解決問題的能力、
師:指導學生完成練習題、
生:閱讀教科書的例3,并完成第137頁的練習題、
問題。
設計意圖。
師生活動。
8、若將兩個圓的方程相減,你發(fā)現(xiàn)了什么?
得出兩個圓的相交弦所在直線的方程、
師:引導并啟發(fā)學生相交弦所在直線的方程的求法、
生:通過判斷、分析,得出相交弦所在直線的方程、
9、兩個圓的位置關系是否可以轉化為一條直線與兩個圓中的一個圓的關系的判定呢?
進一步驗證相交弦的方程、
師:引導學生驗證結論、
生:互相討論、交流,驗證結論、
10、課堂小結:
教師提出下列問題讓學生思考:
(3)如何利用兩個圓的相交弦來判斷它們的位置關系?
作業(yè):習題4、2a組:4、7、
圓與圓的位置關系的教案篇十一
一、課程目標分析:
《普通高中數學課程標準》指出:在平面解析幾何初步的教學中,教師應幫助學生經歷如下過程:首先將幾何問題代數化,用代數的語言描述幾何要素及其關系,進而將幾何問題轉化為代數問題;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。這種思想應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數形結合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直線與圓的位置關系》這一節(jié)內容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學主要是讓學生體會到用代數方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應用,也為后一小節(jié)《圓與圓的位置關系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內容,起著貫穿始終、應用反饋的重要作用,而且是貫徹“用代數方法處理幾何問題”思想和“數形結合”方法的重要的反映內容和工具。在本章中的作用非常重要。
2、教材重點、難點。
圓與圓的位置關系的教案篇十二
對于今天的課,同行們褒貶不一,我也有自己的想法。
從前講過多次研究課,都沒有及時寫出課后反思,今天卻例外,因為我感到,在教學多年以后,需要思考的東西卻更多了。
一、教師的主導作用和學生主體地位之間的關系。
最近兩年一直給普通班的學生授課,其中也有幾個數學尖子,可是這個學期,由于畢業(yè)升學考試的需要,按照總體成績排隊,這樣我的學生就是純粹的學習落后生了。為了讓學生能夠在最后的一年里提高對數學的興趣,樹立學習的自信,我放慢進度,給學生創(chuàng)造條件,讓他們親身經歷探索的過程,了解數學的真諦,對基本概念、定理等有深入的研究,知道他們從哪里來,怎么來的,又要用到哪里去。有時候為了讓學生能夠自己去觀察、猜想、驗證、歸納和總結,一節(jié)課不行,我就用兩節(jié)課。經過一段時間的努力,我驚喜地發(fā)現(xiàn),原來從不及格幾乎放棄學習數學的學生,在課堂上流露出自信的微笑,眼中放射出為自己驕傲的光芒。就在期中考試后,有四名學生的成績達到103分以上,在全年級明列前茅,有兩名學生被提高班錄取。也正是他們,讓我感到做一名教師的分量有多重。這也許就是大家所說的教師的主導作用吧。
我想,教師的主導作用應當體現(xiàn)在每一節(jié)課的課堂教學中,更應該體現(xiàn)在整個教學過程中,所以當我面對這樣一批學生的時候,全然不顧大約40位老師的觀摩,時間一點點過去了,在學生終于得出結論的時候,下課的時間到了,預設的練習題沒有做,于是顯得這節(jié)課不夠完整。
同行們針對這節(jié)課的前松后緊,而歸結為忽視教師的主導作用,過分強調學生的主體地位,這一點值得我去思考,如何把握這個度,在以后的教學實踐中,還應該努力去探索。
二、要加強多媒體輔助教學的實效性。
由于學校的條件有限,使用投影布,就遮住了大部分黑板,而且還要關燈,拉窗簾,感覺像是看電影,也容易讓學生感覺困倦、壓抑。所以平時用的時候,都是不得以才用。今天有攝像,又有那么多老師聽課,這些瑣事都不好做了,于是我的課間作的很精細,卻讓我感覺施展不開,很是別扭。
聽過武春蘭老師講過運用幾何畫板作圖形的迭代,很漂亮,可是沒有機會去學習,平時也沒有特別的研究,基本的演示可以做,更多細節(jié)完善的地方就不會了。所以今天的課,我使用了ppt和幾何畫板的超級鏈接,在切換的過程中有點浪費時間,也顯得銜接的不自然。
到了晚上,我又一次打開幾何畫板,仔細打開每一個菜單,還真的弄明白了幾個問題,看來以后要主動學習更多的知識,只有加強各方面的技能,才能夠在教學過程中,靈活運用,真正起到輔助教學的作用。
三、合理設計情境,發(fā)揮教學資源的作用。
我選用的日食圖片及其形成過程,還有套圈游戲的圖片,只是起到了欣賞、直觀感受的'作用,當老師們提到,對于探索能力差的學生來說,如果讓他們在套圈游戲中尋找圓和圓的位置關系,可能比自己畫圖、擺圖形更節(jié)省時間。一個直觀,一個抽象,當然直觀圖形要易于學生掌握。當時在設計的時候,我是想讓學生通過兩圓相對運動來發(fā)現(xiàn)各種位置關系,從而體現(xiàn)運動變化的觀點和體會分類的思想,這樣對于一批學習落后的學生來說,有助于他們日后思維能力的形成,學會觀察,學會思考,能夠用辯證的觀點對待學習和生活,樹立正確的世界觀和人生觀。所以我感覺我的目的還是達到了,同學們都在積極地思維,都有了自己的想法,盡管不夠完美,但畢竟是自己研究的成果,這個過程我認為是最重要的,也體現(xiàn)了課標的要求,讓學生親身經歷探索的過程,獲得愉悅的體驗。
是“綠耕”讓我停下教育的腳步,認真反思過去多年來在教育過程中存在的問題,同樣還是“綠耕”,給我一個提高的機會,讓我站在理論的高度,去展望更好的教育前景?!蚁肓撕芏啵院蟮穆愤€長,需要實踐的東西也太多,不斷努力吧!
將本文的word文檔下載到電腦,方便收藏和打印。
圓與圓的位置關系的教案篇十三
但在本節(jié)課中還存在許多不足之處,主要在以下幾方面:
1、在學生分組活動中,個別學生不能參與進來,今后教學應該多加關注學困生。
2、教學語言應該注意更加規(guī)范。
4、本節(jié)課應該再加大練習量,進一步落實“知識與技能”的目標。
授課后,各位教師直述己見,讓我認識到自己需要繼續(xù)努力.
在授課時,更要注重數學語言的規(guī)范運用,加強學習,進一步充實自己的教學經驗。
圓與圓的位置關系的教案篇十四
"思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。
在《直線和圓的位置關系》一課教學后,感受頗多,現(xiàn)分享如下:
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數學知識,體驗數學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數學,“想”數學,體會到數學知識無處不在,應用數學無處不有。這也符合“數學教學應從生活經驗出發(fā)”的新課程標準要求。
在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。 最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數學語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數學強調人人學有價值的數學,人人學有用的數學,由于此題要學生回到生活中去運用數學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。
一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:
1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。
3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內化知識,充分體現(xiàn)"授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。
圓與圓的位置關系的教案篇十五
《點與圓的位置關系》教學反思本節(jié)課的教學內容是點和圓的位置關系,看似內容少而簡單,但讓學生真正理解如何由圖形關系得出數量關系,以及從數量關系聯(lián)想到圖形的位置關系,卻并非簡單。教師如果忽略了這一過程,學生會做題,卻無法體驗數學的本質,無法體驗數形結合思想。所以本節(jié)課中點和圓的位置關系讓學生經歷了由圖形關系聯(lián)想到數量關系、由數量關系聯(lián)想到圖形關系的過程,是學生真正理解點和圓的位置關系與點到圓心的距離和半徑之間關系的等價。
2、經過一個點可以作幾個圓?
3、經過兩個點可以作幾個圓?圓心有什么特點?
4、經過不在同一直線上的三點可以作幾個圓?
5、過在同一直線上的三點能作圓嗎?如果不能如何證明。
6、經過三角形三個頂點的圓即通過畫圖、觀察、分析、發(fā)現(xiàn)經過一個已知點可以畫無數個圓,經過兩個已知點也可以畫無數個圓,但其圓心分布在連接兩點線段的垂直平分線上,經過不在同一直線上的三點可以確定一個圓。
歸納:點與圓有哪幾種位置關系?點與圓的位置關系可以根據什么來判定?通過這節(jié)課,學生們深切感受到預習在學習中的重要作用,也通過自己的預習對所學知識有理更深入的理解,提高了課堂效率;同時,通過對這節(jié)課的反復推敲設計與反思,我也深切感受到對教材研究的重要性。
圓與圓的位置關系的教案篇十六
:通過觀察、實驗、討論、合作研究等數學活動使學生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數量關系對應等價于直線和圓的位置關系”從而實現(xiàn)位置關系與數量關系的轉化,滲透運動與轉化的數學思想。
:創(chuàng)設問題情景,激發(fā)學生好奇心;體驗數學活動中的探索與創(chuàng)造,感受數學的嚴謹性和數學結論的正確性,在學習活動中獲得成功的體驗;通過“轉化”數學思想的運用,讓學生認識到事物之間是普遍聯(lián)系、相互轉化的辨證唯物主義思想。
二、教學重、難點。
難點:學生能根據圓心到直線的距離d與圓的半徑r之間的數量關系,揭示直線與圓的位置關系;直線與圓的三種位置關系判定方法的運用。
三、教學設計。
問???題。
設計意圖。
師生活動。
2.圖形中的圓與直線的位置都是一樣的嗎?
師:讓學生之間進行討論、交流,引導學生觀察圖形,導入新課.
生:看圖,并說出自己的看法.
師:引導學生利用類比、歸納的思想,總結直線與圓的位置關系的種類,進一步深化“數形結合”的數學思想.
問???題。
設計意圖。
師生活動。
使學生回憶初中的數學知識,培養(yǎng)抽象概括能力.
師:引導學生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.
生:利用圖形,尋找兩種方法的數學思想.
師:指導學生閱讀教科書上的例1.
生:閱讀科書上的例1,并完成教科書第128頁的練習題2.
師;分析例1,并展示解答過程;啟發(fā)學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有總結思考的時間.
生:交流自己總結的步驟.
師:展示解題步驟.
7.通過學習教科書上的例2,你能說明例2中體現(xiàn)出來的數學思想方法嗎?
進一步深化“數形結合”的數學思想.
師:指導學生閱讀并完成教科書上的例2,啟發(fā)學生利用“數形結合”的數學思想解決問題.
問???題。
設計意圖。
師生活動。
8.通過例2的學習,你發(fā)現(xiàn)了什么?
明確弦長的運算方法.
師:引導并啟發(fā)學生探索直線與圓的相交弦的求法.
生:通過分析、抽象、歸納,得出相交弦長的運算方法.
9.完成教科書第128頁的練習題1、2、3、4.
師:引導學生完成練習題.
生:互相討論、交流,完成練習題.
10.課堂小結:
教師提出下列問題讓學生思考:
作業(yè):習題4.2a組:1、3.
圓與圓的位置關系的教案篇一
教學目標:
1.使學生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關系的性質與判定并能夠靈活運用來解決實際問題。
3.培養(yǎng)學生把實際問題轉化為數學問題的能力及分類和化歸的能力。
重點難點:
2.難點:運用直線與圓的位置關系的性質及判定解決相關的問題。
教學過程:
一.復習引入。
(目的:讓學生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)。
二.定義、性質和判定。
1.結合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
圓與圓的位置關系的教案篇二
1、圓的定義:
到定點的距離等于定長的點的集合。
在圓內、在圓上、在圓外(由點和圓心的距離與圓的半徑大小來確定)。
3、弦、直徑、孤、弓形、半圓、同心圓、等圓、等孤等概念。
等弧一定要強調要在同圓或等圓中;半圓不包括直徑。
4、過三點的圓(三角形的外心)。
經過三角形三個頂點的圓叫三角形外接圓;外接圓的圓心叫三角形的外心;三角形的外心是三條邊中垂線的交點,到三個頂點距離相等;直角三角形外心在斜邊上、銳角三角心外心在三角形內、鈍角三角形外心在三角形外。
5、垂徑定理及其推論:
定理及推論1:直線過圓心、垂直弦、平分弦、平分弦所對的優(yōu)弧、平分弦所對的劣弧這五要素中用其中兩個要素做條件就能推導出其它三個要素都成立。若用過圓心、平分弦做條件時要強調被平分的弦不是直徑。
推論2:平行弦所夾的弧相等。
6、圓心角、弦、弦心距、弧的關系:
圓心角、弧、弦、弦心距之間的相等關系必須要在同圓或等圓中才能成立;
弧的度數就等于它所對圓心角的度數。
7、圓周角定理及推論:
圓周角的定義:頂點在圓上,角的兩邊都與圓相交。
圓周角的定理:圓周角等于同弧所對圓心角的一半。
推論1、在同圓或等圓中,同弧或等弧所對的圓周角相等,圓周角相等,它所對的弧也相等。
推論2:直徑和半圓所對的'圓周角等于90度,90度的圓周角所對的弦是直徑,所對的弧是半圓。
推論3、三角形一邊的中線等于這一邊的一半時,這個三角形是直角三角形。
8、圓內接四邊形:
定義:四個頂點都在圓上的四邊形。
定理:圓內接四邊形對角互補。
推論:圓內接四邊形的外角等于它的內對角。
相交、相切、相離(由公共點個數或圓心到直線距離和圓的半徑大小來確定)。
10、切線的判定和性質:
定義:與圓只有一個公共點的直線。
判定定理:經過半徑的外端且垂直于半徑的直線是圓的切線。
性質定理:經過切點的半徑必垂直于切線。
推論1:經過切點且垂直于切線的直線必經過圓心。
推論2:經過圓心且垂直于切線的直線必經過切點。
11、三角形內切圓:
定義:與三角形三邊都相切的圓叫三角形內切圓、內切圓的圓心叫三角形內心。內心是三角形三條角平分線的交點,到三角形三邊距離相等。
12、切線長定理:
定理:圓外一點到圓的兩條切線的長相等,這個點與圓心的連線要平分兩條切線的夾角。
(圓內切四邊形對邊相加相等)。
13、弦切角:
定義:一條邊是圓的切線,頂點是切點,另一條邊與圓相交的角;
定理:弦切角等于它所夾弧對的圓周角。
推論:兩個弦切角所夾的弧相等,這兩個弦切角相等。
14、和圓有關的比例線段:
相交弦定理及推論、切割線定理及推論。
圓與圓的位置關系的教案篇三
一、教學目標:
根據學生已有的認知的基礎及本課的教材的地位、作用,依據教學大綱的確定本課的教學目標為:
(1)知識目標:
a、知道直線和圓相交、相切、相離的定義。
會根據直線和圓相切的定義畫出已知圓的切線。
c、根據圓心到直線的距離與圓的半徑之間的數量關系揭示直線和圓的位置。
2)能力目標:
讓學生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數量關系,揭示直線和圓的關系。此外,通過直線與圓的相對運動,培養(yǎng)學生運動變化的辨證唯物主義觀點,通過對研究過程的反思,進一步強化對分類和歸納的思想的認識。
3)情感目標:
在解決問題中,教師創(chuàng)設情境導入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學生結合學過的知識,把它們抽象出幾何圖形,再表示出來。讓學生感受到實際生活中,存在的直線和圓的三種位置關系,便于學生用運動的觀點觀察圓與直線的位置關系,有利于學生把實際的問題抽象成數學模型,也便于學生觀察直線和圓的公共點的變化。
二.教材的重點難點。
直線和圓的三種位置關系是重點,本課的難點是直線和圓的三種位置關系的性質與判定的應用。
三.在教學中如何突破這個重點和難點。
解決重點的方法主要是:(1)由學生觀察老師展示的一輪紅日從海平面升起的照片提出問題,能不能我們學過的知識把它們抽象出幾何圖形再展示出來(讓學生嘗試通過日出的情境畫出幾種情況),(2)把直線在圓的上下移動,引導學生用運動的觀點觀察直線和圓的位置關系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數,揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關系。是什么?)。
在說直線與圓的位置關系時,如何突破這個難點:(1)突破直線和圓不能有兩個以上的公共點,讓學生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點,那么這與不在同一條直線上的三點就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導學生用運動的觀點觀察直線和圓的位置關系,并讓他們發(fā)現(xiàn)直線與圓的公共點的個數,揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關系。
(3)突破直線和圓有唯一一個公共點是直線和圓相切(指直線與圓有一個并且只有一個公共點,它與有一個公共點的含義不同)。
(4)突破直線和圓的位置關系的(如果圓o的半徑為r,圓心到直線的距離為d,
3.直線l與圓o相離=dr。
(上述結論中的符號“=”讀作“等價于”)。
式子的左邊反映是兩個圖形(直線和圓)的位置關系的性質,右邊是反映直線和圓的位置關系的判定。
四、教學程序。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復習點與圓的位置關系,討論它們的數量關系。通過類比,從而得出直線與圓的位置關系的性質定理及判定方法。
[鞏固練習]例1,
出示例題。
(1)r=2cm;(2)r=2.4cm;(3)r=3cm。
由學生填寫下例表格。
公共點個數。
圓心到直線距離d與半徑r關系。
公共點名稱。
直線名稱。
圖形。
補充練習的答案由師生一起歸納填寫。
教學小結。
直線與圓的位置關系,讓學生自己歸納本節(jié)課學習的內容,培養(yǎng)學生用數學語言歸納問題的能力。然后老師在多媒體打出圖表。
本節(jié)課主要采用了歸納、演繹、類比的思想方法,從現(xiàn)實生活中抽象出數學模型,體現(xiàn)了數學產生于生活的思想,并且將新舊知識進行了類比、轉化,充分發(fā)揮了學生的主觀能動性,體現(xiàn)了學生是學習的主體,真正成為學習的主人,轉變了角色。
圓與圓的位置關系的教案篇四
1、圓的公式c==()s=()。
2、已知圓的周長,公式求d=(),求r=()。
3、圓的半徑擴大2倍,直徑就擴大()倍,周長就擴大()倍,面積就擴大()倍。
4、環(huán)形面積s=()。
5、用圓規(guī)畫一個周長50.24厘米的圓,圓規(guī)兩腳尖之間的距離應是()厘米,畫出的這個圓的面積是()平方厘米。
6、大圓半徑是小圓半徑的4倍,大圓周長是小圓周長的()倍,小圓面積是大圓面積的()。
7、圓的半徑增加1/4,圓的周長增加(),圓的面積增加()。
8、一個半圓的周長是20.56分米,這個半圓的面積是()平方分米。
9、將一個圓平均分成1000個完全相同的小扇形,割拼成近似的長方形的周長比原來圓周長長10厘米,這個長方形的面積是()平方厘米。
10、在一個面積是24平方厘米的正方形內畫一個最大的圓,這個圓的面積是()平方厘米;再在這個圓內畫一個最大的正方形,正方形的面積是()平方厘米。
11、大圓半徑是小圓半徑的3倍,大圓面積是84.78平方厘米,則小圓面積為()平方厘米。
12、大圓半徑是小圓半徑的2倍,大圓面積比小圓面積多12平方厘米,小圓面積是()平方厘米。
二.判斷。
(1)通過圓心的線段,叫做圓的直徑。()。
(2)周長是所在圓直徑的3倍多一些。()。
(3)半徑是直徑的一半。()。
(4)任何圓的圓周率都是3.14。()。
(5)半圓的周長等于圓的周長的1/2加直徑的長,所以半個圓的面積等于圓面積的1/2加直徑的長度。()。
(6)圓的半徑擴大5倍,圓的`面積也擴大5倍。()。
(7)半徑是2厘米的圓,周長和面積相等。()。
(8)半圓形紙片的周長就是圓周長的一半。()。
(9)把半徑3厘米的圓等分成十六份,拼成一個近似長方形,長方形的周長比圓的周長長。()。
三、應用題。
1、一個環(huán)形的外圓半徑是8分米,內圓半徑5分米,求環(huán)形的面積?
4、
(1)軋路機前輪直徑1.2米,每分鐘滾動6周。1小時能前進多少米?
圓與圓的位置關系的教案篇五
二、教材分析:
1、教材的地位和作用。
圓是在學習了直線圖形的有關性質的基礎上,來研究的一種特殊曲線圖形。它是常見的幾何圖形之一,在初中數學中占有重要地位,中考中分值占有一定比例,與其它知識綜合性強。而本節(jié)課《圓和圓的位置關系》的第一節(jié),它是在學習點與圓以及直線與圓的位置關系基礎上,對圓與圓的位置關系進行研究.學生親自動手實踐,自主探究圓和圓的位置關系,觀察分析,猜想驗證,完成從感性到理性的發(fā)生發(fā)展的認知過程.然后知識遵循了從實踐走向數學,從數學走向生活,讓學生學以自用,把數學知識與現(xiàn)實生活緊密相聯(lián)。本節(jié)內容共安排2課時,第一課時讓學生明白圓和圓的位置關系,知道五種關系,并能用它解決問題。第二課時強化位置關系的運用,重點解決兩圓相交的推理題、計算題,欣賞中考真題。
2、教學目標:(1)知識目標。
1.經歷探索兩個圓之間位置關系的過程,訓練學生的探索能力.
學生經過操作、實驗、發(fā)現(xiàn)、確認等活動,從探索兩圓位置關系地過程中,體會運動變化的觀點,量變到質變的辯證唯物主義觀點,感受數學中的美感。
3、教材重、難點的處理。
最后輔之一相關練習題,得以鞏固。
4、教法、學法。
三、學情分析:九年級學生對圓有一定的認識,但對圓的相關性質掌握較少,對知識的轉化能力較差,重在要學生參與,主動探究,增加解決實際問題的能力。由于九(1)班有44名學生,他們中一半的學習基礎較好,獨立學習的能力也比較強,能在課前對將要教學內容進行預習,在課堂上也能積極發(fā)言,作業(yè)也能獨立完成;但也有部分學困生在知識的理解和動手的能力上存在問題。因此要求他們對本課的內容進行預習熟知。通過預習將教學的重點和難點應放在兩圓圓心距與兩圓半徑間的數量關系的推導總結上。
大部分學生對這節(jié)課的學習有很高積極性,加上課件動畫中圖片和總結圓和圓的位置關系的定義、圓和圓的位置關系中兩圓圓心距與兩圓半徑間的數量關系動畫效果采用,學生的學習主動性和探求知識的情緒也會很高,運用課件也能激發(fā)他們學習的欲望。
但本班學習相對較困難的學生,對重點和難點的理解可能存在一定困惑。對這種個別現(xiàn)象,不做強制性要求,只幫助他們能理解圓和圓的位置關系并記住兩圓圓心距與兩圓半徑間的數量關系即可。
四、教學過程。
(一)、復習導入:請說出點與圓;直線與圓的位置關系,并分別說出判定方法。
情景創(chuàng)設:我們生活在豐富多彩的圖形世界里,圓與圓組成的圖形是我們生活中最常見的畫面。比如:自行車的兩個輪子、奧運會的會標、皮帶輪、紅綠燈等照片(大屏幕演示),你還能舉出兩個圓組成的圖形嗎?(學生舉例)。
(設計意圖:展現(xiàn)生活中圓與圓組成的圖形并由學生舉出實例,豐富學生對客觀世界中兩個圓之間多種不同位置關系的感受,為學生自主探索提供可能。)。
(二)、新授[活動一]。
教師課前布置好:每人都在紙上畫兩個半徑不等的圓,每個人都準備在紙上移動其中一個圓,讓學生觀察兩圓的位置關系和公共點的個數。
讓學生自己畫出可能會出現(xiàn)的幾種情況,并標清交點的個數(按從遠到近的順序)。
問題2,試一試你能不能描述兩圓的各種位置關系?學生思考回答,師生共同總結:
1.兩個圓沒有公共點,就說這兩個圓相離,如上圖中的(1)、(5)、(6),它們又有何區(qū)別?討論得出其中(1)叫外離,(5)(6)叫內含,(6)是兩圓同心,是兩圓內含的一種特殊情況。
2.兩圓只有一個公共點,就說這兩圓相切,如上圖是的(2)(4),同樣找出它們的區(qū)別,其中(2)叫外切,(4)叫內切。
3.兩圓有兩個公共點,就說這兩個圓相交,如上圖(3)。因此兩園的位置關系為:(大屏幕投影)。
(1)外離:兩個圓沒有公共點,并且每個圓上的點都在另一個圓的外部時,叫做這兩個圓外離.(圖1)。
(2)外切:兩個圓有唯一的公共點,并且除了這個公共點以外,每個圓上的點都在另一個圓的外部時,叫做這兩個圓外切.這個唯一的公共點叫做切點.(圖2)。
(3)相交:兩個圓有兩個公共點,此時叫做這兩個圓相交.(圖3)。
(4)內切:兩個圓有唯一的公共點,并且除了這個公共點以外,一個圓上的點都在另一個圓的內部時,叫做這兩個圓內切.這個唯一的公共點叫做切點.(圖4)。
(5)內含:兩個圓沒有公共點,并且一個圓上的點都在另一個圓的內部時,叫做這兩個圓內含(圖5).兩圓同心是兩圓內含的一個特例.(圖6)。
大屏幕展示圓和圓的五種位置關系:外離、外切、相交、內切、內含。
問題3,兩個圓的位置關系發(fā)生變化的時候,圓心距d與兩個圓的半徑r與r(rr)之間有沒有內在的聯(lián)系?請同學們交流一下(給出一定的時間)大屏幕演示兩圓由遠到近的運動情形,讓學生觀察圓心距d的變化,然后讓學生進行歸納。
教師重點關注:學生思考問題的全面性和準確性,尤其是對兩圓相交時的圓心距的范圍考慮的是否到位。(教師可提示利用三角形三邊之間的關系來解決問題)師生共同總結:(大屏幕出示)。
兩圓外離dr+r。
兩圓外切d=r+r兩圓相交r-r。
兩圓內切d=r-r(rr)兩圓內含dr)。
[活動二]練習鞏固,大屏幕出示:
1、若兩圓有唯一公共點,且兩圓半徑分別為5和2,則兩圓圓心距為。
(2)r=5,r=2,d=1。
(3)r=7,r=3,d(4)r=5,r=2,d=7。
(5)r=4,r=1,d=6。
教師重點關注:學生應用“數量關系”判定兩圓“位置關系”的準確性,尤其注意,只有dr-r或只有d。
(設計意圖:進一步讓學生理解新知,并能熟練準確的應用新知,培養(yǎng)學生全面細致的良好思維品質。)。
3、大屏幕出示問題:
例如圖,oo的半徑為4cm,點p是oo外一點,op=6cm。求(1)以p為圓心作opop與oo外切,小圓op的半徑是多少?(2)以p為圓心作op與oo內切,大圓op的半徑是多少?教師給出圖形、板書解答過程。
(設計意圖:培養(yǎng)學生嚴謹縝密的思維品質,加強“分類討論”數學思想的訓練。)。
(三)、拓展聯(lián)系:試一試:
一塊鐵板,上面有a、b、c三個點,經測量,ab=13cm,bc=14cm,ca=9cm,以各頂點為圓心的三個圓兩兩外切。求各圓的半徑。
教師重點關注:應用新知解決問題的能力,進一步鞏固新知。
(設計意圖:滲透三圓相切的情況,培養(yǎng)學生分析、探究問題的能力。)[活動三]拓展探索:
兩個圓組成的圖形是軸對稱嗎?如果是那么對稱軸是什么?如果兩圓相切,切點與對稱軸有什么關系?提示,學生可以用折紙方法進行探究。(學生分組討論,小組選代表回答問題)大屏幕出示:正確結論。
兩圓組成的圖形是軸對稱圖形,對稱軸是通過兩圓圓心的直線(連心線),兩圓相切時,因為切點是它們唯一的公共點,所以切點一定在連心線上即對稱軸上。
(設計意圖:設計折紙活動實質上是讓學生感知兩圓組成的圖形是軸對稱圖形,并讓學生通過自己的活動從心理上認同經過兩圓圓心的直線(即連心線)是兩圓組成圖形的對稱軸為探索兩相切、兩圓相交的性質創(chuàng)設學習情境。)。
(四)、小結。
這節(jié)課你有哪些收獲?有何體會?你認為自己的表現(xiàn)如何?引導學生回顧、思考、交流。
(五)、作業(yè):
1、課本51頁,習題。
3、
4、5。
2、課下探究:相交兩圓的連心線與公共弦有什么樣的結論。
3、寫一篇數學日記,并解決2—3個問題。
例題板書外離。
dr1+r2外切。
d=r1+r2相交。
r1-r2。
d=r1-r2內含。
d
五、教學反思。
由于本節(jié)圓與圓的位置關系是新課,這節(jié)課的內容與上節(jié)“直線和圓的位置關系”有密切的聯(lián)系,但這節(jié)課的兩圓位置關系遠比直線與圓的位置關系復雜。因此,我通過讓學生動手操作類比直線與圓的位置關系,猜測兩圓可能存在的位置關系,然后經過討論,歸納確定兩圓位置關系的各種情況。在與兩圓位置關系相應的三量的數量關系的研究中,鑒于學生已有直線與圓的位置關系中兩量(半徑、圓心到直線的距離)的數量關系的認知基礎,就只運用了類比遷移的方法。這些方法的運用,都是為了充分發(fā)揮學生在探求新知過程中的主體作用。當然也有不足之處,比如:雖然我竭力提醒自己要體現(xiàn)出以學生為本的課改精神,但在具體操作中還是會不自覺地喜歡代學生表達觀點,往往會發(fā)生,學生還沒把話說完,我已經急著歸納了。今后我會更加努力,爭取向課堂要效率。
圓與圓的位置關系的教案篇六
教學目的要求:
知識目標:1、了解圓和圓五種位置的定義,
情感目標:利用多種教學手段來激發(fā)學生學習的興趣,通過鼓勵和肯定學生,培養(yǎng)他們敢于。
想象,勇于探索的學習精神。
教學用具:多媒體。
教學方法:問題、引導、直觀演示、總結。
學法指導:猜想、類比、觀察、歸納、實驗探究、合作交流。
教學過程:
圓與圓的位置關系的教案篇七
尊敬的各位評委,親愛的各位同行,大家好!今天我的說課內容是人教版九年級上冊第二十四章第二節(jié)第二課時的直線與圓的位置關系。下面我將以教什么、怎么樣教、為什么這樣教為思路從教材分析、學情分析、教學目標、學法教法、教學過程和板書設計六個方面對本課進行說明。
一、教材分析。
教材的地位和作用。
圓在平面幾何中占有重要地位,它被安排在初中數學第二十四章,屬于一個提高階段。而直線和圓的位置關系又是本章的一個中心內容。從知識體系上看:它有著承上啟下的作用,既是對點與圓的位置關系的延續(xù)與提高,又是后面學習切線的性質和判定、圓和圓的位置關系及高中繼續(xù)學習幾何知識的基礎。從數學思想方法層面上看:它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯(lián)系,滲透了數形結合、分類討論、類比等數學思想方法,有助于提高學生的數學思維品質。
二、學情分析。
在此之前學生已經學習了點和圓的位置關系,對圓有了一定的感性和理性認識,但在某種程度上特別是平面幾何問題上,學生還是依靠事物的具體直觀形象。加之九年級學生好奇心強,活潑好動,注意力易分散,認知水平大都停留在表面現(xiàn)象,對親身體驗的事物容易激發(fā)求知的渴望,因此要想方設法,引導學生深入思考、主動探究、主動獲取新知識。
三、教學目標:
根據學生已有的認知基礎及本課的教材的地位、作用,結合數學課程標準我將確定如下的教學目標:
(2)通過觀察、實驗、合作交流等數學活動使學生了解探索問題的一般方法;
陪養(yǎng)學生觀察、分析和概括的能力;
(4)體會事物間的相互滲透,感受數學思維的嚴謹性,并在合作學習中體驗成功的喜悅。
教學的重難點:
圓與圓的位置關系的教案篇八
這課節(jié)主要是引導學生進行“回顧與整理”,完成第74-75也“練習與應用”第1-5題?;仡櫯c整理時要組織學生交流本單元的學習體會,交流對小數點位置移動引起小數大小變化的規(guī)律的理解。
教學目標。
1、通過回顧與整理以及練習與應用活動,讓學生進一步鞏固以學過的小數乘除法的計算方法,加深對小數點位置移動引起小數大小變化的規(guī)律的理解。
2、培養(yǎng)學生樂于學習,樂于與同伴合作并分享學習成果的良好學習品質。
教學重點。
與難點加深對小數乘除法計算方法,以及數學規(guī)律的'認識。
教具多媒體課件。
根據學生學習情況隨機板書。
教學過程。
師生雙邊活動。
改進意見。
一、回顧與整理。
這一單元,你了解了什么規(guī)律?學會了哪些計算?
學生小組交流,集體匯報。
二、練習與應用。
1、口算練習。
學生獨立口算,集體訂正。
2、第2題。
引導學生將后面六欄中的兩個因數分別與第一欄進行比較,明確當一個因數不變時,另一個因數乘或除以幾,那么積也隨著乘或除以幾,從而初步體會積的變化規(guī)律。
3、用豎式計算。
學生獨立計算,師計時,并巡視指導,集體交流,指名說說計算方法。
4、第4題。
讓學生根據題目的特點,判斷哪幾題的商小于1,再通過計算驗證開始的判斷是否正確。
5、第5題。
讓學生說說每道題的改寫方法,弄清是乘進率還是除以進率,再決定小數點是向右移動還是向左移動。
三、全課小結。
通過今天的整理與復習,你有哪些收獲?你覺得在計。
教學過程。
師生雙邊活動。
改進意見。
算小數乘、除法時應注意些什么?
學生自由發(fā)表意見,全班交流。
四、作業(yè)。
完成《學習與探究》。
課后小記:
圓與圓的位置關系的教案篇九
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標:
2.通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。
情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數學教案《數學教案-直線和圓的位置關系(公開課)》。引導學生從公共點個數和圓心到直線的.距離兩方面體會直線和圓的不同位置關系。
學生看投影并思考問題。
調動學生積極主動參與數學活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
圓與圓的位置關系的教案篇十
2、過程與方法。
(1)當時,圓與圓相離;
(2)當時,圓與圓外切;
(3)當時,圓與圓相交;
(4)當時,圓與圓內切;
(5)當時,圓與圓內含;
3、情態(tài)與價值觀。
讓學生通過觀察圖形,理解并掌握圓與圓的位置關系,培養(yǎng)學生數形結合的思想、
問題。
設計意圖。
師生活動。
結合學生已有知識以驗,啟發(fā)學生思考,激發(fā)學生學習興趣、
教師引導學生回憶、舉例,并對學生活動進行評價;學生回顧知識點時,可互相交流、
引導學生明確兩圓的位置關系,并發(fā)現(xiàn)判斷和解決兩圓的位置。
問題。
設計意圖。
師生活動。
關系的方法、
學生觀察圖形并思考,發(fā)表自己的解題方法、
3、例3。
你能根據題目,在同一個直角坐標系中畫出兩個方程所表示的圓嗎?你從中發(fā)現(xiàn)了什么?
培養(yǎng)學生“數形結合”的意識、
進一步培養(yǎng)學生解決問題、分析問題的能力、
師:啟發(fā)學生利用圖形的特征,用代數的方法來解決幾何問題、
5、從上面你所畫出的圖形,你能發(fā)現(xiàn)解決兩個圓的位置的其它方法嗎?
進一步激發(fā)學生探求新知的精神,培養(yǎng)學生。
師:指導學生利用兩個圓的圓心坐標、半徑長、連心線長的關系來判別兩個圓的'位置、
師:對于兩個圓的方程,我們應當如何判斷它們的位置關系呢?
7、閱讀例3的兩種解法,解決第137頁的練習題、
鞏固方法,并培養(yǎng)學生解決問題的能力、
師:指導學生完成練習題、
生:閱讀教科書的例3,并完成第137頁的練習題、
問題。
設計意圖。
師生活動。
8、若將兩個圓的方程相減,你發(fā)現(xiàn)了什么?
得出兩個圓的相交弦所在直線的方程、
師:引導并啟發(fā)學生相交弦所在直線的方程的求法、
生:通過判斷、分析,得出相交弦所在直線的方程、
9、兩個圓的位置關系是否可以轉化為一條直線與兩個圓中的一個圓的關系的判定呢?
進一步驗證相交弦的方程、
師:引導學生驗證結論、
生:互相討論、交流,驗證結論、
10、課堂小結:
教師提出下列問題讓學生思考:
(3)如何利用兩個圓的相交弦來判斷它們的位置關系?
作業(yè):習題4、2a組:4、7、
圓與圓的位置關系的教案篇十一
一、課程目標分析:
《普通高中數學課程標準》指出:在平面解析幾何初步的教學中,教師應幫助學生經歷如下過程:首先將幾何問題代數化,用代數的語言描述幾何要素及其關系,進而將幾何問題轉化為代數問題;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。這種思想應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數形結合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直線與圓的位置關系》這一節(jié)內容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學主要是讓學生體會到用代數方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應用,也為后一小節(jié)《圓與圓的位置關系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內容,起著貫穿始終、應用反饋的重要作用,而且是貫徹“用代數方法處理幾何問題”思想和“數形結合”方法的重要的反映內容和工具。在本章中的作用非常重要。
2、教材重點、難點。
圓與圓的位置關系的教案篇十二
對于今天的課,同行們褒貶不一,我也有自己的想法。
從前講過多次研究課,都沒有及時寫出課后反思,今天卻例外,因為我感到,在教學多年以后,需要思考的東西卻更多了。
一、教師的主導作用和學生主體地位之間的關系。
最近兩年一直給普通班的學生授課,其中也有幾個數學尖子,可是這個學期,由于畢業(yè)升學考試的需要,按照總體成績排隊,這樣我的學生就是純粹的學習落后生了。為了讓學生能夠在最后的一年里提高對數學的興趣,樹立學習的自信,我放慢進度,給學生創(chuàng)造條件,讓他們親身經歷探索的過程,了解數學的真諦,對基本概念、定理等有深入的研究,知道他們從哪里來,怎么來的,又要用到哪里去。有時候為了讓學生能夠自己去觀察、猜想、驗證、歸納和總結,一節(jié)課不行,我就用兩節(jié)課。經過一段時間的努力,我驚喜地發(fā)現(xiàn),原來從不及格幾乎放棄學習數學的學生,在課堂上流露出自信的微笑,眼中放射出為自己驕傲的光芒。就在期中考試后,有四名學生的成績達到103分以上,在全年級明列前茅,有兩名學生被提高班錄取。也正是他們,讓我感到做一名教師的分量有多重。這也許就是大家所說的教師的主導作用吧。
我想,教師的主導作用應當體現(xiàn)在每一節(jié)課的課堂教學中,更應該體現(xiàn)在整個教學過程中,所以當我面對這樣一批學生的時候,全然不顧大約40位老師的觀摩,時間一點點過去了,在學生終于得出結論的時候,下課的時間到了,預設的練習題沒有做,于是顯得這節(jié)課不夠完整。
同行們針對這節(jié)課的前松后緊,而歸結為忽視教師的主導作用,過分強調學生的主體地位,這一點值得我去思考,如何把握這個度,在以后的教學實踐中,還應該努力去探索。
二、要加強多媒體輔助教學的實效性。
由于學校的條件有限,使用投影布,就遮住了大部分黑板,而且還要關燈,拉窗簾,感覺像是看電影,也容易讓學生感覺困倦、壓抑。所以平時用的時候,都是不得以才用。今天有攝像,又有那么多老師聽課,這些瑣事都不好做了,于是我的課間作的很精細,卻讓我感覺施展不開,很是別扭。
聽過武春蘭老師講過運用幾何畫板作圖形的迭代,很漂亮,可是沒有機會去學習,平時也沒有特別的研究,基本的演示可以做,更多細節(jié)完善的地方就不會了。所以今天的課,我使用了ppt和幾何畫板的超級鏈接,在切換的過程中有點浪費時間,也顯得銜接的不自然。
到了晚上,我又一次打開幾何畫板,仔細打開每一個菜單,還真的弄明白了幾個問題,看來以后要主動學習更多的知識,只有加強各方面的技能,才能夠在教學過程中,靈活運用,真正起到輔助教學的作用。
三、合理設計情境,發(fā)揮教學資源的作用。
我選用的日食圖片及其形成過程,還有套圈游戲的圖片,只是起到了欣賞、直觀感受的'作用,當老師們提到,對于探索能力差的學生來說,如果讓他們在套圈游戲中尋找圓和圓的位置關系,可能比自己畫圖、擺圖形更節(jié)省時間。一個直觀,一個抽象,當然直觀圖形要易于學生掌握。當時在設計的時候,我是想讓學生通過兩圓相對運動來發(fā)現(xiàn)各種位置關系,從而體現(xiàn)運動變化的觀點和體會分類的思想,這樣對于一批學習落后的學生來說,有助于他們日后思維能力的形成,學會觀察,學會思考,能夠用辯證的觀點對待學習和生活,樹立正確的世界觀和人生觀。所以我感覺我的目的還是達到了,同學們都在積極地思維,都有了自己的想法,盡管不夠完美,但畢竟是自己研究的成果,這個過程我認為是最重要的,也體現(xiàn)了課標的要求,讓學生親身經歷探索的過程,獲得愉悅的體驗。
是“綠耕”讓我停下教育的腳步,認真反思過去多年來在教育過程中存在的問題,同樣還是“綠耕”,給我一個提高的機會,讓我站在理論的高度,去展望更好的教育前景?!蚁肓撕芏啵院蟮穆愤€長,需要實踐的東西也太多,不斷努力吧!
將本文的word文檔下載到電腦,方便收藏和打印。
圓與圓的位置關系的教案篇十三
但在本節(jié)課中還存在許多不足之處,主要在以下幾方面:
1、在學生分組活動中,個別學生不能參與進來,今后教學應該多加關注學困生。
2、教學語言應該注意更加規(guī)范。
4、本節(jié)課應該再加大練習量,進一步落實“知識與技能”的目標。
授課后,各位教師直述己見,讓我認識到自己需要繼續(xù)努力.
在授課時,更要注重數學語言的規(guī)范運用,加強學習,進一步充實自己的教學經驗。
圓與圓的位置關系的教案篇十四
"思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。
在《直線和圓的位置關系》一課教學后,感受頗多,現(xiàn)分享如下:
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數學知識,體驗數學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數學,“想”數學,體會到數學知識無處不在,應用數學無處不有。這也符合“數學教學應從生活經驗出發(fā)”的新課程標準要求。
在探索直線和圓位置關系所對應的數量關系時,我先引導學生回顧點和圓的位置關系所對應的數量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結論更準確。 最后由學生小結這一知識點,我板書在黑板上,培養(yǎng)學生用數學語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數學強調人人學有價值的數學,人人學有用的數學,由于此題要學生回到生活中去運用數學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數學學習變得有滋有味,使學生體會到學數學的重要性,體驗“生活中處處用數學”。
一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:
1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調動學生的積極性,使學生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。
3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結,致使部分學生在解決實際問題時思路不明確。這里教師要根據情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內化知識,充分體現(xiàn)"授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。
圓與圓的位置關系的教案篇十五
《點與圓的位置關系》教學反思本節(jié)課的教學內容是點和圓的位置關系,看似內容少而簡單,但讓學生真正理解如何由圖形關系得出數量關系,以及從數量關系聯(lián)想到圖形的位置關系,卻并非簡單。教師如果忽略了這一過程,學生會做題,卻無法體驗數學的本質,無法體驗數形結合思想。所以本節(jié)課中點和圓的位置關系讓學生經歷了由圖形關系聯(lián)想到數量關系、由數量關系聯(lián)想到圖形關系的過程,是學生真正理解點和圓的位置關系與點到圓心的距離和半徑之間關系的等價。
2、經過一個點可以作幾個圓?
3、經過兩個點可以作幾個圓?圓心有什么特點?
4、經過不在同一直線上的三點可以作幾個圓?
5、過在同一直線上的三點能作圓嗎?如果不能如何證明。
6、經過三角形三個頂點的圓即通過畫圖、觀察、分析、發(fā)現(xiàn)經過一個已知點可以畫無數個圓,經過兩個已知點也可以畫無數個圓,但其圓心分布在連接兩點線段的垂直平分線上,經過不在同一直線上的三點可以確定一個圓。
歸納:點與圓有哪幾種位置關系?點與圓的位置關系可以根據什么來判定?通過這節(jié)課,學生們深切感受到預習在學習中的重要作用,也通過自己的預習對所學知識有理更深入的理解,提高了課堂效率;同時,通過對這節(jié)課的反復推敲設計與反思,我也深切感受到對教材研究的重要性。
圓與圓的位置關系的教案篇十六
:通過觀察、實驗、討論、合作研究等數學活動使學生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數量關系對應等價于直線和圓的位置關系”從而實現(xiàn)位置關系與數量關系的轉化,滲透運動與轉化的數學思想。
:創(chuàng)設問題情景,激發(fā)學生好奇心;體驗數學活動中的探索與創(chuàng)造,感受數學的嚴謹性和數學結論的正確性,在學習活動中獲得成功的體驗;通過“轉化”數學思想的運用,讓學生認識到事物之間是普遍聯(lián)系、相互轉化的辨證唯物主義思想。
二、教學重、難點。
難點:學生能根據圓心到直線的距離d與圓的半徑r之間的數量關系,揭示直線與圓的位置關系;直線與圓的三種位置關系判定方法的運用。
三、教學設計。
問???題。
設計意圖。
師生活動。
2.圖形中的圓與直線的位置都是一樣的嗎?
師:讓學生之間進行討論、交流,引導學生觀察圖形,導入新課.
生:看圖,并說出自己的看法.
師:引導學生利用類比、歸納的思想,總結直線與圓的位置關系的種類,進一步深化“數形結合”的數學思想.
問???題。
設計意圖。
師生活動。
使學生回憶初中的數學知識,培養(yǎng)抽象概括能力.
師:引導學生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.
生:利用圖形,尋找兩種方法的數學思想.
師:指導學生閱讀教科書上的例1.
生:閱讀科書上的例1,并完成教科書第128頁的練習題2.
師;分析例1,并展示解答過程;啟發(fā)學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有總結思考的時間.
生:交流自己總結的步驟.
師:展示解題步驟.
7.通過學習教科書上的例2,你能說明例2中體現(xiàn)出來的數學思想方法嗎?
進一步深化“數形結合”的數學思想.
師:指導學生閱讀并完成教科書上的例2,啟發(fā)學生利用“數形結合”的數學思想解決問題.
問???題。
設計意圖。
師生活動。
8.通過例2的學習,你發(fā)現(xiàn)了什么?
明確弦長的運算方法.
師:引導并啟發(fā)學生探索直線與圓的相交弦的求法.
生:通過分析、抽象、歸納,得出相交弦長的運算方法.
9.完成教科書第128頁的練習題1、2、3、4.
師:引導學生完成練習題.
生:互相討論、交流,完成練習題.
10.課堂小結:
教師提出下列問題讓學生思考:
作業(yè):習題4.2a組:1、3.