亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        最新數(shù)據(jù)挖掘論文選題 數(shù)據(jù)挖掘論文心得體會(huì)(大全8篇)

        字號(hào):

            在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類(lèi)范文都很熟悉吧。寫(xiě)范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
            數(shù)據(jù)挖掘論文選題篇一
            數(shù)據(jù)挖掘作為一種數(shù)據(jù)分析的方法,在現(xiàn)代社會(huì)的應(yīng)用越來(lái)越廣泛。因此,許多研究者致力于數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用。其中,論文是數(shù)據(jù)挖掘研究最主要的成果之一。良好的數(shù)據(jù)挖掘論文可以促進(jìn)數(shù)據(jù)挖掘的發(fā)展和應(yīng)用,提高數(shù)據(jù)挖掘技術(shù)的效率和可靠性。因此,寫(xiě)一篇優(yōu)秀的數(shù)據(jù)挖掘論文對(duì)于這個(gè)領(lǐng)域的研究人員來(lái)說(shuō)至關(guān)重要。
            第二段:講述數(shù)據(jù)挖掘論文的內(nèi)容需要注意的重點(diǎn)
            在寫(xiě)一篇數(shù)據(jù)挖掘論文時(shí),需要注意幾個(gè)重點(diǎn)。首先,需要明確研究對(duì)象和研究目的,確定原始數(shù)據(jù)的來(lái)源和數(shù)據(jù)處理方法。其次,需要進(jìn)行特征分析,挑選有效的特征進(jìn)行數(shù)據(jù)挖掘。同時(shí),在數(shù)據(jù)挖掘過(guò)程中需要使用合適的算法和模型,以取得優(yōu)秀的預(yù)測(cè)結(jié)果。最后,還需要對(duì)結(jié)果進(jìn)行驗(yàn)證和評(píng)價(jià),以保證數(shù)據(jù)挖掘結(jié)果的準(zhǔn)確性和可靠性。
            第三段:談?wù)撟约涸趯?xiě)數(shù)據(jù)挖掘論文過(guò)程中的體會(huì)
            在我的研究過(guò)程中,我深刻地認(rèn)識(shí)到了數(shù)據(jù)挖掘技術(shù)的重要性和應(yīng)用價(jià)值。我需要詳細(xì)地了解數(shù)據(jù)采集、數(shù)據(jù)清洗、特征選擇和評(píng)估模型等方面的知識(shí),學(xué)習(xí)基本的算法和模型,并靈活運(yùn)用最新的數(shù)據(jù)挖掘技術(shù),以達(dá)到最好的預(yù)測(cè)結(jié)果。同時(shí),我也注意到了不同論文之間的差異,不同研究的方向和方法不同,需要靈活變通和開(kāi)創(chuàng)性思維,才能寫(xiě)出優(yōu)秀的數(shù)據(jù)挖掘論文。
            第四段:探討數(shù)據(jù)挖掘論文的審查標(biāo)準(zhǔn)和要求
            數(shù)據(jù)挖掘的研究范圍和深度不斷擴(kuò)大,論文審查機(jī)構(gòu)和專(zhuān)家對(duì)數(shù)據(jù)挖掘論文的要求也越來(lái)越高。好的數(shù)據(jù)挖掘論文需要有一定的貢獻(xiàn)和創(chuàng)新點(diǎn),同時(shí),還需要展示出數(shù)據(jù)挖掘算法、模型和數(shù)據(jù)特征選擇的能力,具有可操作性和穩(wěn)健性。此外,好的數(shù)據(jù)挖掘論文還需有清晰的圖表展示,數(shù)據(jù)的充分分析和結(jié)論的合理性,撰寫(xiě)格式規(guī)范明確,語(yǔ)言流暢等特點(diǎn)。
            第五段:總結(jié)論文寫(xiě)作的經(jīng)驗(yàn)和啟示
            總之,在撰寫(xiě)優(yōu)秀的數(shù)據(jù)挖掘論文時(shí),應(yīng)該注重掌握所需的關(guān)鍵技術(shù)和知識(shí),同時(shí)宏觀和微觀兩個(gè)方面的考慮都需要。特別注重特征選擇和數(shù)據(jù)模型的設(shè)計(jì)更是必不可少的。此外,要注意相關(guān)專(zhuān)業(yè)期刊的審查標(biāo)準(zhǔn)和要求,并且合理分配時(shí)間, 不斷完善整理論文。相信在不斷讀論文,自己不斷寫(xiě)論文的過(guò)程中,每個(gè)人都可以不斷提高論文的質(zhì)量,為數(shù)據(jù)挖掘技術(shù)的發(fā)展和實(shí)踐做出重要貢獻(xiàn)。
            數(shù)據(jù)挖掘論文選題篇二
            隨著會(huì)計(jì)現(xiàn)代化的發(fā)展,會(huì)計(jì)越來(lái)越多的運(yùn)用計(jì)算機(jī)技術(shù)的拓展。
            數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢(shì)和模式的過(guò)程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫(kù)管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛在有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢(shì)和模式的過(guò)程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫(kù)管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛存有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。
            常用的數(shù)據(jù)挖掘方法主要有決策樹(shù)(decisiontree)、遺傳算法(geneticalgorithms)、關(guān)聯(lián)分析(associationanalysis).聚類(lèi)分析(c~smranalysis)、序列模式分析(sequentialpattern)以及神經(jīng)網(wǎng)絡(luò)(neuralnetworks)等。
            由于數(shù)據(jù)挖掘市場(chǎng)還處于起步的階段,但是發(fā)展很快。在國(guó)外有一些著名的大公司對(duì)數(shù)據(jù)挖掘系統(tǒng)進(jìn)行了開(kāi)發(fā)。
            igentminer這是ibm公司的數(shù)據(jù)挖掘產(chǎn)品,它提供了很多數(shù)據(jù)挖掘算法,包括關(guān)聯(lián)、分類(lèi)、回歸、預(yù)測(cè)模型、偏離檢測(cè)、序列模式分析和聚類(lèi)。有2個(gè)特點(diǎn):一是它的數(shù)據(jù)挖掘算法的可伸縮性;二是它與ibm/db/2關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)緊密地結(jié)合在一起。
            t是由sgi公司開(kāi)發(fā)的,它也提供了多種數(shù)據(jù)挖掘方法,包括關(guān)聯(lián)分析和分類(lèi)以及高級(jí)統(tǒng)計(jì)和可視化工具。特色是它具有的強(qiáng)大的圖形工具,包括規(guī)則可視化工具、樹(shù)可視化工具、地圖可視化工具和多維數(shù)據(jù)分散可視化工具,它們用于實(shí)現(xiàn)數(shù)據(jù)和數(shù)據(jù)挖掘結(jié)果的可視化。
            tine是由isl公司開(kāi)發(fā)的,它為終端用戶和開(kāi)發(fā)者提供提供了一個(gè)集成的數(shù)據(jù)挖掘開(kāi)發(fā)環(huán)境。
            面對(duì)日益激烈的競(jìng)爭(zhēng)環(huán)境,企業(yè)管理者對(duì)決策信息的需求也越來(lái)越高。管理會(huì)計(jì)作為企業(yè)決策支持系統(tǒng)的重要組成部分,提供更多、更有效的有用信息責(zé)無(wú)旁貸。因此,從海量數(shù)據(jù)中挖掘和尋求知識(shí)和信息,為決策提供有力支持成為管理會(huì)計(jì)師使用數(shù)據(jù)挖掘的強(qiáng)大動(dòng)力。例如,數(shù)據(jù)挖掘可以幫助企業(yè)加強(qiáng)成本管理,改進(jìn)產(chǎn)品和服務(wù)質(zhì)量,提高貨品銷(xiāo)量比率,設(shè)計(jì)更好的貨品運(yùn)輸與分銷(xiāo)策略,減少商業(yè)成本。
            實(shí)踐證明數(shù)據(jù)挖掘不僅能明顯改善企業(yè)內(nèi)部流程,而且能夠從戰(zhàn)略的高度對(duì)企業(yè)的競(jìng)爭(zhēng)環(huán)境、市場(chǎng)、顧客和供應(yīng)商進(jìn)行分析,以獲得有價(jià)值的商業(yè)情報(bào),保持和提高企業(yè)持續(xù)競(jìng)爭(zhēng)優(yōu)勢(shì)。如,對(duì)顧客價(jià)值分析能夠?qū)槠髽I(yè)創(chuàng)造80%價(jià)值的20%的顧客區(qū)分出來(lái),對(duì)其提供更優(yōu)質(zhì)的服務(wù),以保持這部分顧客。
            險(xiǎn)
            利用數(shù)據(jù)挖掘技術(shù)可以建立企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型。企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)的發(fā)生并非一蹴而就,而是一個(gè)積累的、漸進(jìn)的過(guò)程,通過(guò)建立財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型,可以隨時(shí)監(jiān)控企業(yè)財(cái)務(wù)狀況,防范財(cái)務(wù)危機(jī)的發(fā)生。另外,也可以利用數(shù)據(jù)挖掘技術(shù),對(duì)企業(yè)籌資和投資過(guò)程中的行為進(jìn)行監(jiān)控,防止惡意的商業(yè)欺詐行為,維護(hù)企業(yè)利益。尤其是在金融企業(yè),通過(guò)數(shù)據(jù)挖掘,可以解決銀行業(yè)面臨的如信用卡的惡意透支及可疑的信用卡交易等欺詐行為。根據(jù)sec的報(bào)告,美國(guó)銀行、美國(guó)第一銀行、聯(lián)邦住房貸款抵押公司等數(shù)家銀行已采用了數(shù)據(jù)挖掘技術(shù)。
            作業(yè)成本法以其對(duì)成本的精確計(jì)算和對(duì)資源的充分利用引起了人們的極大興趣,但其復(fù)雜的操作使得很多管理者望而卻步。利用數(shù)據(jù)挖掘中的回歸分析、分類(lèi)分析等方法能幫助管理會(huì)計(jì)師確定成本動(dòng)因,更加準(zhǔn)確計(jì)算成本。同時(shí),也可以通過(guò)分析作業(yè)與價(jià)值之間的關(guān)系,確定增值作業(yè)和非增值作業(yè),持續(xù)改進(jìn)和優(yōu)化企業(yè)價(jià)值鏈。在thomasg,johnj和il-woonkim的調(diào)查中,數(shù)據(jù)挖掘被用在作業(yè)成本管理中僅占3%。
            管理會(huì)計(jì)師在很多情況下需要對(duì)未來(lái)進(jìn)行預(yù)測(cè),而預(yù)測(cè)是建立在大量的歷史數(shù)據(jù)和適當(dāng)?shù)哪P突A(chǔ)上的。數(shù)據(jù)挖掘自動(dòng)在大型數(shù)據(jù)庫(kù)中尋找預(yù)測(cè)性信息,利用趨勢(shì)分析、時(shí)間序列分析等方法,建立對(duì)如銷(xiāo)售、成本、資金等的預(yù)測(cè)模型,科學(xué)準(zhǔn)確的預(yù)測(cè)企業(yè)各項(xiàng)指標(biāo),作為決策的依據(jù)。例如對(duì)市場(chǎng)調(diào)查數(shù)據(jù)的分析可以幫助預(yù)測(cè)銷(xiāo)售;根據(jù)歷史資料建立銷(xiāo)售預(yù)測(cè)模型等。
            投資決策分析本身就是一個(gè)非常復(fù)雜的過(guò)程,往往要借助一些工具和模型。數(shù)據(jù)挖掘技術(shù)提供了有效的工具。從公司的財(cái)務(wù)報(bào)告、宏觀的經(jīng)濟(jì)環(huán)境以及行業(yè)基本狀況等大量的數(shù)據(jù)資料中挖掘出與決策相關(guān)的實(shí)質(zhì)性的信息,保證投資決策的正確性和有效性。如利用時(shí)間序列分析模型預(yù)測(cè)股票價(jià)格進(jìn)行投資;用聯(lián)機(jī)分析處理技術(shù)分析公司的信用等級(jí),以預(yù)防投資風(fēng)險(xiǎn)等。
            品種優(yōu)化是選擇適當(dāng)?shù)漠a(chǎn)品組合以實(shí)現(xiàn)最大的利益的過(guò)程,這些利益可以是短期利潤(rùn),也可以是長(zhǎng)期市場(chǎng)占有率,還可以是構(gòu)建長(zhǎng)期客戶群及其綜合體。為了達(dá)到這些目標(biāo),管理會(huì)計(jì)師不僅僅需要價(jià)格和成本數(shù)據(jù)有時(shí)還需要知道替代品的情況,以及在某一市場(chǎng)段位上它們與原產(chǎn)品競(jìng)爭(zhēng)的狀況。另外企業(yè)也需要了解一個(gè)產(chǎn)品是如何刺激另一些產(chǎn)品的銷(xiāo)量的等等。例如,非盈利性產(chǎn)品本身是沒(méi)有利潤(rùn)可言的,但是,如果它帶來(lái)了可觀的客戶流量,并刺激了高利潤(rùn)產(chǎn)品的銷(xiāo)售,那么,這種產(chǎn)品就非常有利可圖,就應(yīng)該包括在產(chǎn)品清單中。這些信息可根據(jù)實(shí)際數(shù)據(jù),通過(guò)關(guān)聯(lián)分析等技術(shù)來(lái)得到。
            管理會(huì)計(jì)師可以利用數(shù)據(jù)挖掘工具來(lái)評(píng)價(jià)企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),建立企業(yè)財(cái)務(wù)危機(jī)預(yù)警模型,進(jìn)行破產(chǎn)預(yù)測(cè)。破產(chǎn)預(yù)測(cè)或稱(chēng)財(cái)務(wù)危機(jī)預(yù)警模型能夠幫助管理者及時(shí)了解企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),提前采取風(fēng)險(xiǎn)防范措施,避免破產(chǎn)。另外,破產(chǎn)預(yù)測(cè)模型還能幫助分析破產(chǎn)原因,對(duì)企業(yè)管理者意義重大。,數(shù)據(jù)挖掘技術(shù)包括多維判別式分析、邏輯回歸分析、遺傳算法、神經(jīng)網(wǎng)絡(luò)以及決策樹(shù)等方法在管理會(huì)計(jì)中得到了廣泛的應(yīng)用。
            數(shù)據(jù)挖掘是個(gè)嶄新的領(lǐng)域,對(duì)于數(shù)字和信息的處理是非常科學(xué)和方便的,也是非常高效率和合理分析的非常好的工具,對(duì)于會(huì)計(jì)管理領(lǐng)域的應(yīng)用在國(guó)際上只是剛剛開(kāi)始,相信隨著會(huì)計(jì)的國(guó)際化的接軌和計(jì)算機(jī)科學(xué)的進(jìn)步,在我國(guó)的會(huì)計(jì)領(lǐng)域中的數(shù)據(jù)挖掘理論會(huì)得到不斷的提升,在管理會(huì)計(jì)實(shí)際應(yīng)用中的數(shù)據(jù)挖掘也越來(lái)越多樣化和普及化。
            數(shù)據(jù)挖掘論文選題篇三
            1.1數(shù)據(jù)挖掘技術(shù)概述
            發(fā)現(xiàn)的是用戶感興趣的知識(shí);發(fā)現(xiàn)的知識(shí)應(yīng)當(dāng)能夠被接受、理解和運(yùn)用。也就是發(fā)現(xiàn)全部相對(duì)的知識(shí),是具有特定前提與條件,面向既定領(lǐng)域的,同時(shí)還容易被用戶接受。數(shù)據(jù)挖掘?qū)儆谝环N新型的商業(yè)信息處理技術(shù),其特點(diǎn)為抽取、轉(zhuǎn)化、分析商業(yè)數(shù)據(jù)庫(kù)中的大規(guī)模業(yè)務(wù)數(shù)據(jù),從中獲得有價(jià)值的商業(yè)數(shù)據(jù)。簡(jiǎn)單來(lái)說(shuō),其實(shí)數(shù)據(jù)挖掘是一種對(duì)數(shù)據(jù)進(jìn)行深入分析的方法。因此,可以描述數(shù)據(jù)挖掘?yàn)椋焊鶕?jù)企業(yè)設(shè)定的工作目標(biāo),探索與分析企業(yè)大量數(shù)據(jù),充分揭示隱藏的、未知的規(guī)律性,并且將其轉(zhuǎn)變?yōu)榭茖W(xué)的方法。數(shù)據(jù)挖掘發(fā)現(xiàn)的最常見(jiàn)知識(shí)包括:
            1.1.1廣義知識(shí)體現(xiàn)相同事物共同性質(zhì)的知識(shí),是指類(lèi)別特點(diǎn)的概括描述知識(shí)。按照數(shù)據(jù)的微觀特點(diǎn)對(duì)其表征的、具有普遍性的、極高概念層次的知識(shí)積極發(fā)現(xiàn),是對(duì)數(shù)據(jù)的高度精煉與抽象。發(fā)現(xiàn)廣義知識(shí)的方法與技術(shù)有很多,例如數(shù)據(jù)立方體和歸約等。
            1.1.2關(guān)聯(lián)知識(shí)體現(xiàn)一個(gè)事件與其他事件之間形成的關(guān)聯(lián)知識(shí)。假如兩項(xiàng)或者更多項(xiàng)之間形成關(guān)聯(lián),則其中一項(xiàng)的屬性數(shù)值就能夠借助其他屬性數(shù)值實(shí)行預(yù)測(cè)。
            1.1.3分類(lèi)知識(shí)體現(xiàn)相同事物共同特點(diǎn)的屬性知識(shí)與不同事物之間差異特點(diǎn)知識(shí)。
            1.2數(shù)據(jù)挖掘過(guò)程
            1.2.1明確業(yè)務(wù)對(duì)象對(duì)業(yè)務(wù)問(wèn)題清楚定義,了解數(shù)據(jù)挖掘的第一步是數(shù)據(jù)挖掘目的。挖掘結(jié)果是無(wú)法預(yù)測(cè)的,但是研究的問(wèn)題是可預(yù)見(jiàn)的,僅為了數(shù)據(jù)挖掘而數(shù)據(jù)挖掘一般會(huì)體現(xiàn)出盲目性,通常也不會(huì)獲得成功。基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘研究劉芬(惠州商貿(mào)旅游高級(jí)職業(yè)技術(shù)學(xué)校,廣東惠州516025)摘要:隨著互聯(lián)網(wǎng)的出現(xiàn),全球范圍內(nèi)電子商務(wù)正在迅速普及與發(fā)展,在這樣的環(huán)境下,電子商務(wù)數(shù)據(jù)挖掘技術(shù)應(yīng)運(yùn)而生。電子商務(wù)數(shù)據(jù)挖掘技術(shù)是近幾年來(lái)數(shù)據(jù)挖掘領(lǐng)域中的研究熱點(diǎn),基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘技術(shù)研究將會(huì)解決大量現(xiàn)實(shí)問(wèn)題,為企業(yè)確定目標(biāo)市場(chǎng)、完善決策、獲得最大競(jìng)爭(zhēng)優(yōu)勢(shì),其應(yīng)用前景廣闊,促使電子商務(wù)企業(yè)更具有競(jìng)爭(zhēng)力。主要分析了電子商務(wù)內(nèi)容、數(shù)據(jù)挖掘技術(shù)和過(guò)程、用戶細(xì)分理論,以及基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘。
            1.2.2數(shù)據(jù)準(zhǔn)備第一選擇數(shù)據(jù):是按照用戶的挖掘目標(biāo),對(duì)全部業(yè)務(wù)內(nèi)外部數(shù)據(jù)信息積極搜索,從數(shù)據(jù)源中獲取和挖掘有關(guān)數(shù)據(jù)。第二預(yù)處理數(shù)據(jù):加工選取的數(shù)據(jù),具體對(duì)數(shù)據(jù)的完整性和一致性積極檢查,并且處理數(shù)據(jù)中的噪音,找出計(jì)算機(jī)丟失的數(shù)據(jù),清除重復(fù)記錄,轉(zhuǎn)化數(shù)據(jù)類(lèi)型等。假如數(shù)據(jù)倉(cāng)庫(kù)是數(shù)據(jù)挖掘的對(duì)象,則在產(chǎn)生數(shù)據(jù)庫(kù)過(guò)程中已經(jīng)形成了數(shù)據(jù)預(yù)處理。
            1.2.3變換數(shù)據(jù)轉(zhuǎn)換數(shù)據(jù)為一個(gè)分析模型。這一分析模型是相對(duì)于挖掘算法構(gòu)建的。構(gòu)建一個(gè)與挖掘算法適合的分析模型是數(shù)據(jù)挖掘獲得成功的重點(diǎn)。可以利用投影數(shù)據(jù)庫(kù)的相關(guān)操作對(duì)數(shù)據(jù)維度有效降低,進(jìn)一步減少數(shù)據(jù)挖掘過(guò)程中數(shù)據(jù)量,提升挖掘算法效率。
            1.2.4挖掘數(shù)據(jù)挖掘獲得的經(jīng)濟(jì)轉(zhuǎn)化的數(shù)據(jù)。除了對(duì)選擇科學(xué)挖掘算法積極完善之外,其余全部工作都自行完成。整體挖掘過(guò)程都是相互的,也就是用戶對(duì)某些挖掘參數(shù)能夠積極控制。
            1.2.5評(píng)價(jià)挖掘結(jié)果這個(gè)過(guò)程劃分為兩個(gè)步驟:表達(dá)結(jié)果和評(píng)價(jià)結(jié)果。第一表達(dá)結(jié)果:用戶能夠理解數(shù)據(jù)挖掘得到的模式,可以通過(guò)可視化數(shù)據(jù)促使用戶對(duì)挖掘結(jié)果積極理解。第二評(píng)價(jià)結(jié)果:用戶與機(jī)器對(duì)數(shù)據(jù)挖掘獲得的模式有效評(píng)價(jià),對(duì)冗余或者無(wú)關(guān)的模式及時(shí)刪除。假如用戶不滿意挖掘模式,可以重新挑選數(shù)據(jù)和挖掘算法對(duì)挖掘過(guò)程科學(xué)執(zhí)行,直到獲得用戶滿意為止。
            用戶細(xì)分是指按照不同用戶的屬性劃分用戶集合。目前學(xué)術(shù)界和企業(yè)界一般接受的是基于用戶價(jià)值的細(xì)分理論,其不僅包含了用戶為企業(yè)貢獻(xiàn)歷史利潤(rùn),還包含未來(lái)利潤(rùn),也就是在未來(lái)用戶為企業(yè)可能帶來(lái)的利潤(rùn)總和?;谟脩魞r(jià)值的細(xì)分理論選擇客戶當(dāng)前價(jià)值與客戶潛在價(jià)值兩個(gè)因素評(píng)價(jià)用戶。用戶當(dāng)前價(jià)值是指截止到目前用戶對(duì)企業(yè)貢獻(xiàn)的總體價(jià)值;用戶潛在價(jià)值是指未來(lái)用戶可能為企業(yè)創(chuàng)造的價(jià)值總和。每個(gè)因素還能夠劃分為兩個(gè)高低檔次,進(jìn)一步產(chǎn)生一個(gè)二維的矩陣,把用戶劃分為4組,價(jià)值用戶、次價(jià)值用戶、潛在價(jià)值用戶、低價(jià)值用戶。企業(yè)在推廣過(guò)程中根據(jù)不同用戶應(yīng)當(dāng)形成對(duì)應(yīng)的方法,投入不同的資源。很明顯對(duì)于企業(yè)來(lái)說(shuō)價(jià)值用戶最重要,被認(rèn)為是企業(yè)的玉質(zhì)用戶;其次是次價(jià)值用戶,被認(rèn)為是金質(zhì)用戶,雖然數(shù)量有限,卻為企業(yè)創(chuàng)造了絕大部分的利潤(rùn);其他則是低價(jià)值用戶,對(duì)企業(yè)來(lái)說(shuō)價(jià)值最小,成為鉛質(zhì)用戶,另外一類(lèi)則是潛在價(jià)值用戶。雖然這兩類(lèi)用戶擁有較多的數(shù)量,但是為企業(yè)創(chuàng)造的價(jià)值有限,甚至很小。需要我們注意的是潛在價(jià)值用戶利用再造用戶關(guān)系,將來(lái)極有可能變成價(jià)值用戶。從長(zhǎng)期分析,潛在價(jià)值用戶可以是企業(yè)的隱形財(cái)富,是企業(yè)獲得利潤(rùn)的基礎(chǔ)。將采用數(shù)據(jù)挖掘方法對(duì)這4類(lèi)用戶特點(diǎn)有效挖掘。
            3.1設(shè)計(jì)問(wèn)卷
            研究的關(guān)鍵是電子商務(wù)用戶特征的數(shù)據(jù)挖掘,具體包含了價(jià)值用戶特征、次價(jià)值用戶特征、潛在價(jià)值用戶特征,對(duì)電子商務(wù)用戶的認(rèn)知度、用戶的需求度分析。問(wèn)卷內(nèi)容包括3部分:其一是為被調(diào)查者介紹電子商務(wù)的概念與背景;其二是具體調(diào)查被調(diào)查對(duì)象的個(gè)人信息,包含了性別、年齡、學(xué)歷、感情情況、職業(yè)、工作、生活地點(diǎn)、收入、上網(wǎng)購(gòu)物經(jīng)歷;其三是問(wèn)卷主要部分,是對(duì)用戶對(duì)電子商務(wù)的了解、需求、使用情況的指標(biāo)設(shè)計(jì)。
            3.2調(diào)查方式
            本次調(diào)查的問(wèn)卷主體是電腦上網(wǎng)的人群,采用隨機(jī)抽象的方式進(jìn)行網(wǎng)上訪問(wèn)。一方面采用大眾聊天工具,利用電子郵件和留言的方式發(fā)放問(wèn)卷,另一方面在大眾論壇上邀請(qǐng)其填寫(xiě)問(wèn)卷。
            3.3數(shù)據(jù)挖掘和結(jié)果
            (1)選擇數(shù)據(jù)挖掘的算法利用clementine數(shù)據(jù)挖掘軟件,采用c5.o算法挖掘預(yù)處理之后數(shù)據(jù)。
            (2)用戶數(shù)據(jù)分析
            1)電子商務(wù)用戶認(rèn)知度分析按照調(diào)查問(wèn)卷的問(wèn)題“您知道電子商務(wù)嗎?”得到對(duì)電子商務(wù)用戶認(rèn)知情況的統(tǒng)計(jì),十分了解20.4%,了解30.1%,聽(tīng)過(guò)但不了解具體使用方法40.3%,從未聽(tīng)過(guò)8.9%。很多人僅聽(tīng)過(guò)電子商務(wù),但是并不清楚具體的功能與應(yīng)用方法,甚至有一小部分人沒(méi)有聽(tīng)過(guò)電子商務(wù)。對(duì)調(diào)查問(wèn)卷問(wèn)題“您聽(tīng)過(guò)電子商務(wù)的渠道是什么?”,大部分用戶是利用網(wǎng)了解電子商務(wù)的,占40.2%;僅有76人是利用紙質(zhì)報(bào)刊雜志上知道電子商務(wù)的并且對(duì)其進(jìn)行應(yīng)用;這也表明相較于網(wǎng)絡(luò)宣傳紙質(zhì)媒體推廣電子商務(wù)的方法缺乏有效性。
            2)電子商務(wù)用戶需求用戶希求具體是指使用產(chǎn)品服務(wù)人員對(duì)應(yīng)用產(chǎn)品或服務(wù)形成的需求或者期望。按照問(wèn)題“假如你曾經(jīng)使用電子商務(wù),你覺(jué)得其用途怎樣,假如沒(méi)有使用過(guò),你覺(jué)得其對(duì)自己有用嗎?”得到了認(rèn)為需要和十分需要的數(shù)據(jù),覺(jué)得電子商務(wù)有用的用戶為40.7%,不清楚是否對(duì)自己有用的用戶為56.7%,認(rèn)為不需要的僅有2.4%。
            3)電子商務(wù)用戶應(yīng)用意愿應(yīng)用意愿是指消費(fèi)者對(duì)某一產(chǎn)品服務(wù)進(jìn)行應(yīng)用或者購(gòu)買(mǎi)的一種心理欲望。按照問(wèn)題“假如可以滿足你所關(guān)心的因素,未來(lái)你會(huì)繼續(xù)應(yīng)用電子商務(wù)嗎?”獲得的數(shù)據(jù)可知,在滿足各種因素時(shí),將來(lái)一年之內(nèi)會(huì)應(yīng)用電子商務(wù)的用戶為78.2%,一定不會(huì)應(yīng)用電子商務(wù)的用戶為1.4%。表明用戶形成了較為強(qiáng)烈的應(yīng)用電子商務(wù)欲望,電子商務(wù)發(fā)展前景很好。基于用戶特征的電子商務(wù)數(shù)據(jù)研究,電子商務(wù)企業(yè)通過(guò)這一結(jié)果能夠更好地實(shí)行營(yíng)銷(xiāo)和推廣,對(duì)潛在用戶積極定位,提高用戶體驗(yàn),積極挖掘用戶價(jià)值。分析為企業(yè)準(zhǔn)確營(yíng)銷(xiāo)和推廣企業(yè)提供了一個(gè)有效的借鑒。
            互聯(lián)網(wǎng)中數(shù)據(jù)是最寶貴的資源之一,大量數(shù)據(jù)中包含了很大的潛在價(jià)值,對(duì)這些數(shù)據(jù)深入挖掘?qū)ヂ?lián)網(wǎng)商務(wù)、企業(yè)推廣、傳播信息發(fā)揮了巨大的作用。近些年來(lái),數(shù)據(jù)挖掘技術(shù)獲得了信息產(chǎn)業(yè)的極大重視,具體原因是出現(xiàn)了大量的數(shù)據(jù),能夠廣泛應(yīng)用,并且需要轉(zhuǎn)化數(shù)據(jù)成為有價(jià)值的信息知識(shí)。通過(guò)基于用戶特征的電子商務(wù)數(shù)據(jù)挖掘研究,促使電子商務(wù)獲得巨大發(fā)展機(jī)會(huì),發(fā)現(xiàn)潛在用戶,促使電子商務(wù)企業(yè)精準(zhǔn)營(yíng)銷(xiāo)。
            數(shù)據(jù)挖掘論文選題篇四
            數(shù)據(jù)挖掘技術(shù)在金融業(yè)、醫(yī)療保健業(yè)、市場(chǎng)業(yè)、零售業(yè)和制造業(yè)等很多領(lǐng)域都得到了很好的應(yīng)用。針對(duì)交通安全領(lǐng)域中交通事故數(shù)據(jù)利用率低的現(xiàn)狀,可以通過(guò)數(shù)據(jù)挖掘?qū)ο嚓P(guān)交通事故數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,從而發(fā)現(xiàn)其中的關(guān)聯(lián),這對(duì)提升交通安全水平具有非常重要的意義。
            數(shù)據(jù)挖掘(datamining)即對(duì)大量數(shù)據(jù)進(jìn)行有效的分類(lèi)統(tǒng)計(jì),從而整理出有規(guī)律的、有價(jià)值的、潛在的未知信息。一般來(lái)講,這些數(shù)據(jù)存在極大的隨機(jī)性和不完全性,其包括各行各業(yè)各個(gè)方面的數(shù)據(jù)。數(shù)據(jù)挖掘是一個(gè)結(jié)合了數(shù)據(jù)庫(kù)、人工智能、機(jī)器學(xué)習(xí)的學(xué)科,涉及統(tǒng)計(jì)數(shù)據(jù)和技術(shù)理論等領(lǐng)域。
            關(guān)聯(lián)分析作為數(shù)據(jù)挖掘中的重要組成部分,其主要作用就是通過(guò)數(shù)據(jù)之間的相互關(guān)聯(lián)從而發(fā)現(xiàn)數(shù)據(jù)集中某種未知的聯(lián)系。關(guān)聯(lián)分析最初是在20世紀(jì)90年代初被提出來(lái)的,一直備受關(guān)注。已被廣泛應(yīng)用于各行各業(yè),包括醫(yī)療體檢、電子商務(wù)、商業(yè)金融等各個(gè)領(lǐng)域。關(guān)聯(lián)規(guī)則的挖掘一般可分成兩個(gè)步驟[1]:
            (1)找出頻繁項(xiàng)集,不小于最小支持度的項(xiàng)集;
            (2)生成強(qiáng)關(guān)聯(lián)規(guī)則,不小于最小置信度的關(guān)聯(lián)規(guī)則。相對(duì)于生成強(qiáng)關(guān)聯(lián)規(guī)則,找出頻繁項(xiàng)集這一步比較麻煩。l等人在1994年提出的apriori算法是生成頻繁項(xiàng)集的經(jīng)典算法[2]。apriori算法使用了level-wise搜索的迭代方法,即用k-項(xiàng)集探索(k+1)-項(xiàng)集。apriori算法在整體上可分為兩個(gè)部分。
            (1)發(fā)現(xiàn)頻集。這個(gè)部分是最重要的,開(kāi)銷(xiāo)相繼產(chǎn)生了各種各樣的頻集算法,專(zhuān)門(mén)用于發(fā)現(xiàn)頻集,以降低其復(fù)雜度、提高發(fā)現(xiàn)頻集的效率。
            (2)利用所獲得的頻繁項(xiàng)集各種算法主要致力產(chǎn)生強(qiáng)關(guān)聯(lián)規(guī)則。當(dāng)然頻集構(gòu)成的聯(lián)規(guī)則未必是強(qiáng)關(guān)聯(lián)規(guī)則,還要檢驗(yàn)構(gòu)成的關(guān)聯(lián)規(guī)則的支持度和支持度是否超過(guò)它們的閾值。apriori算法找出頻繁項(xiàng)集分為兩步:連接和剪枝。
            (1)連接。集合lk-1為頻繁k-1項(xiàng)集的集合,它通過(guò)與自身連接就可以生成候選k項(xiàng)集的集合,記作ck。
            (2)剪枝。頻繁k項(xiàng)集的集合lk是ck的子集。剪枝首先利用apriori算法的性質(zhì)(頻繁項(xiàng)集的所有非空子集都是頻繁的,如果不滿足這個(gè)條件,就從候選集合ck中刪除)對(duì)ck進(jìn)行壓縮;然后,通過(guò)掃描所有的事務(wù),確定壓縮后ck中的每個(gè)候選的支持度;最后與設(shè)定的最小支持度進(jìn)行比較,如果支持度不小于最小支持度,則認(rèn)為該候選項(xiàng)是頻繁的。目前,在互聯(lián)網(wǎng)技術(shù)及科學(xué)技術(shù)的快速發(fā)展下,人工智能、機(jī)器識(shí)別等技術(shù)興起,關(guān)聯(lián)分析也被越來(lái)越多應(yīng)用其中,并在不斷發(fā)展中提出了大量的改進(jìn)算法。
            近年來(lái),我國(guó)越來(lái)越多的學(xué)者將數(shù)據(jù)挖掘關(guān)聯(lián)分析應(yīng)用于道路交通事故的研究中,主要是分析道路、車(chē)輛、行人以及環(huán)境等因素與交通事故之間的某種聯(lián)系。pande和abdel-aty[3]通過(guò)關(guān)聯(lián)分析研究了美國(guó)佛羅里達(dá)州20xx年非交叉口發(fā)生的道路交通事故,重點(diǎn)分析了各個(gè)不同的影響因素與交通事故之間的內(nèi)在聯(lián)系,通過(guò)研究得出如下結(jié)論,道路照明條件不足是引發(fā)道路交通事故的主要因素,除此之外,還發(fā)現(xiàn)天氣惡劣的環(huán)境下道路彎道的直線段也極易發(fā)生交通事故。graves[4]利用數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)規(guī)則對(duì)歐洲道路交通事故進(jìn)行了分析,主要研究了交通事故與道路設(shè)施狀況之間的關(guān)聯(lián),通過(guò)研究發(fā)現(xiàn)了易導(dǎo)致交通事故發(fā)生的各個(gè)道路設(shè)施狀況因素,此研究為歐洲路面建設(shè)及投資提供了強(qiáng)大的決策支持。我國(guó)學(xué)者董立巖在研究道路交通事故數(shù)據(jù)的文獻(xiàn)中,將粗糙集與關(guān)聯(lián)分析進(jìn)行了融合,提出了基于偏好信息的決策規(guī)則簡(jiǎn)約算法并將其應(yīng)用其中,通過(guò)分析發(fā)現(xiàn)了道路交通事故的未知規(guī)律。王艷玲通過(guò)關(guān)聯(lián)分析中的因子關(guān)聯(lián)樹(shù)模型重點(diǎn)分析了影響道路交通事故最重要的因子,發(fā)現(xiàn)在道路交通事故常見(jiàn)的誘因人、車(chē)、路及環(huán)境中對(duì)事故影響最大的因子是環(huán)境。許卉瑩等利用關(guān)聯(lián)分析、聚類(lèi)分析以及決策樹(shù)分析三種數(shù)據(jù)挖掘技術(shù)對(duì)道路交通事故數(shù)據(jù)進(jìn)行分析,最終得出了科學(xué)的道路交通事故預(yù)防和交通安全管理決策依據(jù)。尚威等在研究中,對(duì)大量的道路交通數(shù)據(jù)進(jìn)行了有效整合,并在此基礎(chǔ)上按照交通事故相關(guān)因素的不同特點(diǎn)整理出與事故發(fā)生有關(guān)的字段數(shù)據(jù),形成新的事故數(shù)據(jù)記錄表,然后再根據(jù)多維關(guān)聯(lián)規(guī)則對(duì)記錄的相關(guān)數(shù)據(jù)進(jìn)行分析,從而發(fā)現(xiàn)了事故誘導(dǎo)因素記錄字段值和事故結(jié)果字段值組成的道路交通事故頻繁字段的組合。張聽(tīng)等在充分掌握聚類(lèi)數(shù)據(jù)挖掘理論與方法的基礎(chǔ)上,提出了多目標(biāo)聚類(lèi)分析框架和一個(gè)啟發(fā)式的聚類(lèi)算法k-wanmi,并將其用在道路交通事故的聚類(lèi)研究中對(duì)不同權(quán)重的屬性進(jìn)行了多目標(biāo)分析。同樣,許宏科也利用該方法對(duì)公路隧道交通流數(shù)據(jù)進(jìn)行了聚類(lèi)分析,其在研究中不僅明確了隧道交通流的峰值規(guī)律,而且還根據(jù)這種規(guī)律制訂了隧道監(jiān)控設(shè)備的不同控制方案,對(duì)提高隧道交通安全的水平做了極大的貢獻(xiàn)。徐磊和方源敏在研究中,提出了由簡(jiǎn)化信息熵構(gòu)造的改進(jìn)c4.5決策樹(shù)算法,并將其應(yīng)用在交通事故數(shù)據(jù)的研究中,對(duì)交通數(shù)據(jù)進(jìn)行了正確分類(lèi),發(fā)現(xiàn)了一些隱藏的規(guī)則和知識(shí),為交通管理提供了依據(jù)。劉軍、艾力斯木吐拉、馬曉松運(yùn)用多維關(guān)聯(lián)規(guī)則分析交通事故記錄,從而找到導(dǎo)致交通事故發(fā)生次數(shù)多的主要原因,并且指導(dǎo)相關(guān)部門(mén)作出相應(yīng)的決策。楊希剛運(yùn)用關(guān)聯(lián)規(guī)則為現(xiàn)實(shí)中的交通事故的預(yù)防提供依據(jù)。吉林大學(xué)的吳昊等人,基于關(guān)聯(lián)規(guī)則的理論基礎(chǔ),定義了公路交通事故屬性模型,并結(jié)合改進(jìn)后的apriori算法,分析了交通事故歷史數(shù)據(jù)信息,為有關(guān)單位和用戶尋找道路黑點(diǎn)(即事故多發(fā)點(diǎn))提供了技術(shù)支援和決策幫助。
            通過(guò)數(shù)據(jù)挖掘中的關(guān)聯(lián)分析方法雖然能夠?qū)Φ缆方煌ㄊ鹿实南嚓P(guān)因素進(jìn)行清晰的分析,但是目前在這一方面的研究仍有不足之處。因?yàn)殛P(guān)聯(lián)分析在道路交通事故的研究中往往只能片面發(fā)現(xiàn)某一種或幾種因素影響交通事故的規(guī)律,很難將所有影響因素結(jié)合起來(lái)進(jìn)行全面系統(tǒng)的分析。然而道路交通事故的發(fā)生通常都是由相應(yīng)因素導(dǎo)致,而后事故當(dāng)事人意識(shí)到危險(xiǎn)源的存在并采取措施,直到事故發(fā)生的連續(xù)過(guò)程,整體來(lái)看體現(xiàn)了時(shí)序性。也就是說(shuō),道路交通事故是受到一系列按照時(shí)間先后順序排列的影響因素組合共同作用而發(fā)生的,從整體的角度出發(fā)研究事故發(fā)生機(jī)理更加科學(xué)。
            數(shù)據(jù)挖掘論文選題篇五
            隨著互聯(lián)網(wǎng)技術(shù)的迅速發(fā)展,尤其移動(dòng)互聯(lián)網(wǎng)的爆發(fā)性發(fā)展,越來(lái)越多的公司憑借其備受歡迎的系統(tǒng)和app如雨后春筍般發(fā)展起來(lái),如滴滴打車(chē)、共享單車(chē)等。海量數(shù)據(jù)自此不再是google等大公司的專(zhuān)利,越來(lái)越多的中小型企業(yè)也可以擁有海量數(shù)據(jù)。如何從浩如煙海的數(shù)據(jù)中挖掘出令人感興趣和有用的知識(shí),成為越來(lái)越多的公司急需解決的問(wèn)題。因此,他們對(duì)數(shù)據(jù)挖掘分析師求賢若渴。在這一社會(huì)需求下,培養(yǎng)出優(yōu)秀的數(shù)據(jù)挖掘分析師,是各個(gè)高校目前急需完成的一項(xiàng)任務(wù)。
            目前,各大高等院校本科階段爭(zhēng)相開(kāi)設(shè)數(shù)據(jù)挖掘課程。然而,該課程是一門(mén)相對(duì)較新的交叉學(xué)科,涵蓋了概率統(tǒng)計(jì)、機(jī)器學(xué)習(xí)、數(shù)據(jù)庫(kù)等學(xué)科的知識(shí)內(nèi)容,難度較大。因此,大部分高校一般將此課程開(kāi)設(shè)在研究生階段,在本科生中開(kāi)設(shè)此課程的學(xué)校相對(duì)較少。另外,不同的學(xué)校將其歸入不同的專(zhuān)業(yè)中,如計(jì)算機(jī)專(zhuān)業(yè)、信息管理專(zhuān)業(yè)、統(tǒng)計(jì)學(xué)、醫(yī)學(xué)等??梢哉f(shuō),這一課程基本上處于探索的過(guò)程中。我院災(zāi)害信息系于20xx年在信息管理與信息系統(tǒng)本科學(xué)生中首次開(kāi)設(shè)了該課程。通過(guò)開(kāi)設(shè)此課程,學(xué)生能夠掌握數(shù)據(jù)挖掘的基本原理和各種挖掘算法等,掌握數(shù)據(jù)分析和處理、高級(jí)數(shù)據(jù)庫(kù)編程等技能,達(dá)到數(shù)據(jù)聚類(lèi)、分類(lèi)、關(guān)聯(lián)分析的目的。然而,通過(guò)前期教學(xué)過(guò)程,我們發(fā)現(xiàn)教學(xué)效果不理想,存在很多問(wèn)題。
            1、數(shù)據(jù)內(nèi)驅(qū)力差
            以往數(shù)據(jù)挖掘課程重點(diǎn)講授數(shù)據(jù)挖掘算法,對(duì)數(shù)據(jù)源的獲取和處理極少獲取。目前各大教材都在使用一些公共數(shù)據(jù)資源,這些數(shù)據(jù)資源有些已經(jīng)非常陳舊了,比如20世紀(jì)80年代的加州房?jī)r(jià)數(shù)據(jù)。這些數(shù)據(jù)脫離現(xiàn)實(shí),分析這些數(shù)據(jù),學(xué)生沒(méi)有任何興趣和學(xué)習(xí)動(dòng)力,也就無(wú)法發(fā)現(xiàn)價(jià)值。
            2、過(guò)于強(qiáng)調(diào)學(xué)習(xí)數(shù)據(jù)挖掘理論及算法的學(xué)習(xí)
            大量具有難度的數(shù)據(jù)挖掘算法的學(xué)習(xí),使學(xué)生喪失了學(xué)習(xí)興趣,學(xué)完即忘,不知所用。
            3、忽視對(duì)數(shù)據(jù)預(yù)處理過(guò)程的學(xué)習(xí)
            以往所使用的公共數(shù)據(jù)源或軟件自帶數(shù)據(jù)源,數(shù)據(jù)量小,需要的預(yù)處理工作比較少;這部分內(nèi)容基本只安排一次理論課、一次實(shí)驗(yàn)課。而實(shí)際通過(guò)爬蟲(chóng)獲取的數(shù)據(jù)源數(shù)據(jù)量大;這部分工作量比較大,需要占到整個(gè)數(shù)據(jù)挖掘工作量的一半以上。因此,一次理論課和一次實(shí)驗(yàn)課是無(wú)法讓學(xué)生掌握數(shù)據(jù)預(yù)處理技能的。
            4、算法編程實(shí)現(xiàn)難度較大
            要求學(xué)生學(xué)習(xí)一門(mén)新的編程語(yǔ)言,如r語(yǔ)言、python語(yǔ)言,對(duì)本科非計(jì)算機(jī)專(zhuān)業(yè)的學(xué)生來(lái)說(shuō)難度是非常大的,尤其是課時(shí)安排只有48課時(shí)。
            5、數(shù)據(jù)挖掘分析及應(yīng)用技能較差
            學(xué)生能夠理解課堂案例,但在實(shí)際應(yīng)用中,無(wú)法完成整個(gè)數(shù)據(jù)分析流程。
            該課程的教學(xué)對(duì)象是信息管理與信息系統(tǒng)專(zhuān)業(yè)本科大四學(xué)生。因此,培養(yǎng)實(shí)際應(yīng)用人才,使其完成整個(gè)實(shí)際數(shù)據(jù)挖掘分析流程是教師的教學(xué)目的。筆者對(duì)智聯(lián)招聘、中華英才網(wǎng)、51job等幾個(gè)大型招聘網(wǎng)站的幾百個(gè)數(shù)據(jù)挖掘分析師相關(guān)職位進(jìn)行分析,主要分析了相關(guān)職位的工作內(nèi)容、職位要求以及需求企業(yè)。數(shù)據(jù)分析師主要利用數(shù)據(jù)挖掘工具對(duì)運(yùn)營(yíng)數(shù)據(jù)等多種數(shù)據(jù)源進(jìn)行預(yù)處理、建模、挖掘、分析及優(yōu)化。該職位是受業(yè)務(wù)驅(qū)動(dòng)的,特點(diǎn)是將現(xiàn)有數(shù)據(jù)與業(yè)務(wù)相結(jié)合,最大程度地變現(xiàn)數(shù)據(jù)價(jià)值。該職位對(duì)計(jì)算機(jī)編程等相關(guān)技術(shù)不作要求,但是需要有深厚的數(shù)據(jù)挖掘理論基礎(chǔ),熟練使用主流的數(shù)據(jù)挖掘(或統(tǒng)計(jì)分析)工具?;诖?,教師可以采取以下策略進(jìn)行教學(xué)改革。
            1、加強(qiáng)對(duì)業(yè)務(wù)數(shù)據(jù)的理解
            數(shù)據(jù)挖掘分析師是受業(yè)務(wù)驅(qū)動(dòng)的,所以要理解實(shí)際業(yè)務(wù),明確本次數(shù)據(jù)挖掘要解決什么問(wèn)題。教師可以構(gòu)建案例庫(kù),包括教師案例庫(kù)、學(xué)生討論案例庫(kù)。教師案例庫(kù)由教師構(gòu)建,可用于課堂講授。學(xué)生案例庫(kù)由學(xué)生分組構(gòu)建,并安排討論課,由學(xué)生講述、討論并提交報(bào)告。
            2、加強(qiáng)對(duì)數(shù)據(jù)的獲取
            對(duì)學(xué)生感興趣的數(shù)據(jù)源進(jìn)行挖掘,這樣才能更好地幫助學(xué)生理解吸收知識(shí)。因此,可以教授學(xué)生爬蟲(chóng)技術(shù),編寫(xiě)爬蟲(chóng)程序,使其自主獲取感興趣的數(shù)據(jù)。
            3、加強(qiáng)對(duì)數(shù)據(jù)的預(yù)處理工作
            在數(shù)據(jù)挖掘之前使用數(shù)據(jù)預(yù)處理技術(shù),能夠顯著提高數(shù)據(jù)挖掘模式的質(zhì)量,降低實(shí)際挖掘所需要的時(shí)間,應(yīng)將其作為整門(mén)課程的重點(diǎn)進(jìn)行學(xué)習(xí)。增加理論課程和實(shí)驗(yàn)課時(shí),使學(xué)生掌握數(shù)據(jù)清理、數(shù)據(jù)集成、數(shù)據(jù)變換、數(shù)據(jù)歸納等數(shù)據(jù)預(yù)處理技術(shù),并能夠應(yīng)對(duì)各種復(fù)雜數(shù)據(jù)源,最終利用爬蟲(chóng)程序獲取的各種數(shù)據(jù)源進(jìn)行預(yù)處理工作。
            4、強(qiáng)化數(shù)據(jù)挖掘分析
            教師可以選擇spssmodeler這款所見(jiàn)即所得的數(shù)據(jù)挖掘軟件作為配套實(shí)驗(yàn)平臺(tái)。該軟件具有必需的數(shù)據(jù)預(yù)處理工具及預(yù)設(shè)的挖掘算法,學(xué)生可以把注意力放在要挖掘的數(shù)據(jù)及相關(guān)需求上,設(shè)定挖掘的主題,然后通過(guò)鼠標(biāo)的點(diǎn)擊拖拉即可完成相關(guān)主題的數(shù)據(jù)挖掘過(guò)程。學(xué)生最終可對(duì)自己獲取并已處理過(guò)的數(shù)據(jù)進(jìn)行挖掘分析。
            5、加強(qiáng)教師外出培訓(xùn)學(xué)習(xí)
            數(shù)據(jù)挖掘技術(shù)以及大數(shù)據(jù)技術(shù)是近來(lái)比較新穎而且發(fā)展迅速的技術(shù)。教師長(zhǎng)期身處三尺講臺(tái)之上,遠(yuǎn)離了新技術(shù),脫離了實(shí)際。因此,需派遣教師到知名高校學(xué)習(xí)數(shù)據(jù)挖掘教學(xué)技術(shù),到培訓(xùn)機(jī)構(gòu)進(jìn)行系統(tǒng)學(xué)習(xí),到企業(yè)進(jìn)行實(shí)戰(zhàn)學(xué)習(xí)。
            基于以上分析,形成了新的數(shù)據(jù)挖掘理論課程內(nèi)容和實(shí)踐課程內(nèi)容,安排如表1和表2所示。共安排48學(xué)時(shí),其中理論課24學(xué)時(shí),實(shí)驗(yàn)課24學(xué)時(shí)。理論課重點(diǎn)講授數(shù)據(jù)的獲取、數(shù)據(jù)的理解、數(shù)據(jù)的預(yù)處理以及常用挖掘算法。實(shí)驗(yàn)課重點(diǎn)學(xué)習(xí)基于spssmodeler的數(shù)據(jù)挖掘,對(duì)理論課的內(nèi)容進(jìn)行實(shí)踐。整個(gè)學(xué)習(xí)以工程項(xiàng)目為載體,該工程貫穿整個(gè)學(xué)習(xí)過(guò)程。學(xué)生通過(guò)爬蟲(chóng)程序獲取自己感興趣的數(shù)據(jù)源,根據(jù)課程進(jìn)度,逐步完成后續(xù)數(shù)據(jù)的理解,再進(jìn)行預(yù)處理,建模分析,評(píng)估整個(gè)過(guò)程。在課程結(jié)束時(shí),完成整個(gè)項(xiàng)目,并提交報(bào)告。
            在數(shù)字時(shí)代,越來(lái)越多的企業(yè)急需數(shù)據(jù)挖掘分析人才。教師應(yīng)以培養(yǎng)實(shí)際應(yīng)用人才為目的,充分培養(yǎng)學(xué)生對(duì)數(shù)據(jù)挖掘的學(xué)習(xí)興趣,以工程項(xiàng)目為載體,貫穿整個(gè)課程周期。在教學(xué)中,打牢數(shù)據(jù)獲取、理解預(yù)處理這一基石,加強(qiáng)建模挖掘分析,弱化對(duì)晦澀算法的編程學(xué)習(xí),使學(xué)生真正掌握數(shù)據(jù)挖掘技術(shù),滿足社會(huì)需求。
            數(shù)據(jù)挖掘論文選題篇六
            網(wǎng)絡(luò)的發(fā)展帶動(dòng)了電子商務(wù)市場(chǎng)的繁華,大量的商品、信息在現(xiàn)有的網(wǎng)絡(luò)平臺(tái)上患上以交易,大大簡(jiǎn)化了傳統(tǒng)的交易方式,節(jié)儉了時(shí)間,提高了效力,但電子市場(chǎng)繁華違后暗藏的問(wèn)題,同樣成為人們關(guān)注的焦點(diǎn),凸起表現(xiàn)在海量信息的有效應(yīng)用上,如何更為有效的管理應(yīng)用潛伏信息,使他們的最大功效患上以施展,成為人們現(xiàn)在鉆研的重點(diǎn),數(shù)據(jù)發(fā)掘技術(shù)的發(fā)生,在必定程度上解決了這個(gè)問(wèn)題,但它也存在著問(wèn)題,需要不斷改善。
            數(shù)據(jù)發(fā)掘(datamining)就是從大量的、不完整的、有噪聲的、隱約的、隨機(jī)的原始數(shù)據(jù)中,提取隱含在其中的、人們事前不知道的、但又是潛伏有用的信息以及知識(shí)的進(jìn)程。或者者說(shuō)是從數(shù)據(jù)庫(kù)中發(fā)現(xiàn)有用的知識(shí)(kdd),并進(jìn)行數(shù)據(jù)分析、數(shù)據(jù)融會(huì)(datafusion)和決策支撐的進(jìn)程。數(shù)據(jù)發(fā)掘是1門(mén)廣義的交叉學(xué)科,它匯聚了不同領(lǐng)域的鉆研者,特別是數(shù)據(jù)庫(kù)、人工智能、數(shù)理統(tǒng)計(jì)、可視化、并行計(jì)算等方面的學(xué)者以及工程技術(shù)人員。
            數(shù)據(jù)發(fā)掘技術(shù)在電子商務(wù)的利用
            在對(duì)于web的客戶走訪信息的發(fā)掘中,應(yīng)用分類(lèi)技術(shù)可以在internet上找到未來(lái)的潛伏客戶。使用者可以先對(duì)于已經(jīng)經(jīng)存在的走訪者依據(jù)其行動(dòng)進(jìn)行分類(lèi),并依此分析老客戶的1些公共屬性,抉擇他們分類(lèi)的癥結(jié)屬性及互相間瓜葛。對(duì)于于1個(gè)新的走訪者,通過(guò)在web上的分類(lèi)發(fā)現(xiàn),辨認(rèn)出這個(gè)客戶與已經(jīng)經(jīng)分類(lèi)的老客戶的1些公共的描寫(xiě),從而對(duì)于這個(gè)新客戶進(jìn)行正確的分類(lèi)。然后從它的分類(lèi)判斷這個(gè)新客戶是有益可圖的客戶群仍是無(wú)利可圖的客戶群,抉擇是不是要把這個(gè)新客戶作為潛伏的客戶來(lái)對(duì)于待??蛻舻念?lèi)型肯定后,可以對(duì)于客戶動(dòng)態(tài)地展現(xiàn)web頁(yè)面,頁(yè)面的內(nèi)容取決于客戶與銷(xiāo)售商提供的產(chǎn)品以及服務(wù)之間的關(guān)聯(lián)。若為潛伏客戶,就能夠向這個(gè)客戶展現(xiàn)1些特殊的、個(gè)性化的頁(yè)面內(nèi)容。
            在電子商務(wù)中,傳統(tǒng)客戶與銷(xiāo)售商之間的空間距離已經(jīng)經(jīng)不存在,在internet上,每一1個(gè)銷(xiāo)售商對(duì)于于客戶來(lái)講都是1樣的,那末使客戶在自己的銷(xiāo)售站點(diǎn)上駐留更長(zhǎng)的時(shí)間,對(duì)于銷(xiāo)售商來(lái)講則是1個(gè)挑戰(zhàn)。為了使客戶在自己的網(wǎng)站上駐留更長(zhǎng)的時(shí)間,就應(yīng)當(dāng)全面掌握客戶的閱讀行動(dòng),知道客戶的興致及需求所在,并依據(jù)需求動(dòng)態(tài)地向客戶做頁(yè)面舉薦,調(diào)劑web頁(yè)面,提供獨(dú)有的1些商品信息以及廣告,以使客戶滿意,從而延長(zhǎng)客戶在自己的網(wǎng)站上的駐留的時(shí)間。
            數(shù)據(jù)發(fā)掘技術(shù)可提高站點(diǎn)的效力,web設(shè)計(jì)者再也不完整依托專(zhuān)家的定性指點(diǎn)來(lái)設(shè)計(jì)網(wǎng)站,而是依據(jù)走訪者的信息特征來(lái)修改以及設(shè)計(jì)網(wǎng)站結(jié)構(gòu)以及外觀。站點(diǎn)上頁(yè)面內(nèi)容的支配以及連接就如超級(jí)市場(chǎng)中物品的貨架左右1樣,把擁有必定支撐度以及信任度的相干聯(lián)的物品擺放在1起有助于銷(xiāo)售。網(wǎng)站盡量做到讓客戶等閑地走訪到想走訪的頁(yè)面,給客戶留下好的印象,增添下次走訪的機(jī)率。
            通過(guò)web數(shù)據(jù)發(fā)掘,企業(yè)可以分析顧客的將來(lái)行動(dòng),容易評(píng)測(cè)市場(chǎng)投資回報(bào)率,患上到可靠的市場(chǎng)反饋信息。不但大大降低公司的運(yùn)營(yíng)本錢(qián),而且便于經(jīng)營(yíng)決策的制訂。
            數(shù)據(jù)發(fā)掘在利用中面臨的問(wèn)題
            一數(shù)據(jù)發(fā)掘分析變量的選擇
            數(shù)據(jù)發(fā)掘的基本問(wèn)題就在于數(shù)據(jù)的數(shù)量以及維數(shù),數(shù)據(jù)結(jié)構(gòu)顯的無(wú)比繁雜,數(shù)據(jù)分析變量即是在數(shù)據(jù)發(fā)掘中技術(shù)利用中發(fā)生的,選擇適合的分析變量,將提高數(shù)據(jù)發(fā)掘的效力,尤其合用于電子商務(wù)中大量商品和用戶信息的處理。
            針對(duì)于這1問(wèn)題,咱們完整可以用分類(lèi)的法子,分析出不同信息的屬性和呈現(xiàn)頻率進(jìn)而抽象出變量,運(yùn)用到所選模型中,進(jìn)行分析。
            二數(shù)據(jù)抽取的法子的選擇
            數(shù)據(jù)抽取的目的是對(duì)于數(shù)據(jù)進(jìn)行濃縮,給出它的緊湊描寫(xiě),如乞降值、平均值、方差值、等統(tǒng)計(jì)值、或者者用直方圖、餅狀圖等圖形方式表示,更主要的是他從數(shù)據(jù)泛化的角度來(lái)討論數(shù)據(jù)總結(jié)。數(shù)據(jù)泛化是1種把最原始、最基本的信息數(shù)據(jù)從低層次抽象到高層次上的進(jìn)程??刹扇《嗑S數(shù)據(jù)分析法子以及面向?qū)傩缘臍w納法子。
            三數(shù)據(jù)趨勢(shì)的。預(yù)測(cè)
            數(shù)據(jù)是海量的,那末數(shù)據(jù)中就會(huì)隱含必定的變化趨勢(shì),在電子商務(wù)中對(duì)于數(shù)據(jù)趨勢(shì)的預(yù)測(cè)尤為首要,尤其是對(duì)于客戶信息和商品信息公道的預(yù)測(cè),有益于企業(yè)有效的決策,取得更多地利潤(rùn)。但如何對(duì)于這1趨勢(shì)做出公道的預(yù)測(cè),現(xiàn)在尚無(wú)統(tǒng)1標(biāo)準(zhǔn)可尋,而且在進(jìn)行數(shù)據(jù)發(fā)掘進(jìn)程中大量數(shù)據(jù)構(gòu)成文本后格式的非標(biāo)準(zhǔn)化,也給數(shù)據(jù)的有效發(fā)掘帶來(lái)了難題。
            針對(duì)于這1問(wèn)題的發(fā)生,咱們?cè)陔娮由虅?wù)中可以利用聚類(lèi)分析的法子,把擁有類(lèi)似閱讀模式的用戶集中起來(lái),對(duì)于其進(jìn)行詳細(xì)的分析,從而提供更合適、更令用戶滿意的服務(wù)。聚類(lèi)分析法子的優(yōu)勢(shì)在于便于用戶在查看日志時(shí)對(duì)于商品及客戶信息有全面及清晰的把握,便于開(kāi)發(fā)以及執(zhí)行未來(lái)的市場(chǎng)戰(zhàn)略,包含自動(dòng)給1個(gè)特定的顧客聚類(lèi)發(fā)送銷(xiāo)售郵件,為1個(gè)顧客聚類(lèi)動(dòng)態(tài)地扭轉(zhuǎn)1個(gè)特殊的站點(diǎn)等,這不管對(duì)于客戶以及銷(xiāo)售商來(lái)講都是成心義。
            四數(shù)據(jù)模型的可靠性
            數(shù)據(jù)模型包含概念數(shù)據(jù)模型、邏輯數(shù)據(jù)模型、物理模型。數(shù)據(jù)發(fā)掘的模型目前也有多種,包含采集模型、處理模型及其他模型,但不管哪一種模型都不是很成熟存在缺點(diǎn),對(duì)于數(shù)據(jù)模型不同采取不同的方式利用??赡馨l(fā)生不同的結(jié)果,乃至差異很大,因而這就觸及到數(shù)據(jù)可靠性的問(wèn)題。數(shù)據(jù)的可靠性對(duì)于于電子商務(wù)來(lái)講尤為首要作用。
            針對(duì)于這1問(wèn)題,咱們要保障數(shù)據(jù)在發(fā)掘進(jìn)程中的可靠性,保證它的準(zhǔn)確性與實(shí)時(shí)性,進(jìn)而使其在最后的結(jié)果中的準(zhǔn)確度到達(dá)最高,同時(shí)在利用模型進(jìn)程中要盡可能全面的分析問(wèn)題,防止片面,而且分析結(jié)果要由多人進(jìn)行評(píng)價(jià),從而最大限度的保證數(shù)據(jù)的可靠性。
            五數(shù)據(jù)發(fā)掘觸及到數(shù)據(jù)的私有性以及安全性
            大量的數(shù)據(jù)存在著私有性與安全性的問(wèn)題,尤其是電子商務(wù)中的各種信息,這就給數(shù)據(jù)發(fā)掘造成為了必定的阻礙,如何解決這1問(wèn)題成了技術(shù)在利用中的癥結(jié)。
            為此相干人員在進(jìn)行數(shù)據(jù)發(fā)掘進(jìn)程中必定要遵照職業(yè)道德,保障信息的秘要性。
            六數(shù)據(jù)發(fā)掘結(jié)果的不肯定性
            數(shù)據(jù)發(fā)掘結(jié)果擁有不肯定性的特征,由于發(fā)掘的目的不同所以最后發(fā)掘的結(jié)果自然也會(huì)千差萬(wàn)別,以因而這就需要咱們與所要發(fā)掘的目的相結(jié)合,做出公道判斷,患上出企業(yè)所需要的信息,便于企業(yè)的決策選擇。進(jìn)而到達(dá)提高企業(yè)經(jīng)濟(jì)效益,取得更多利潤(rùn)的目的。
            數(shù)據(jù)發(fā)掘可以發(fā)現(xiàn)1些潛伏的用戶,對(duì)于于電子商務(wù)來(lái)講是1個(gè)不可或者缺的技術(shù)支撐,數(shù)據(jù)發(fā)掘的勝利請(qǐng)求使用者對(duì)于指望解決問(wèn)題的領(lǐng)域有深入的了解,數(shù)據(jù)發(fā)掘技術(shù)在必定程度上解決了電子商務(wù)信息不能有效應(yīng)用的問(wèn)題,但它在運(yùn)用進(jìn)程中呈現(xiàn)的問(wèn)題也亟待人們?nèi)ソ鉀Q。相信數(shù)據(jù)發(fā)掘技術(shù)的改良將推動(dòng)電子商務(wù)的深刻發(fā)展。
            數(shù)據(jù)挖掘論文選題篇七
            隨著我國(guó)社會(huì)經(jīng)濟(jì)的不斷發(fā)展,人力資源管理也受到越來(lái)越多人們的重視,然而在如今激烈的市場(chǎng)競(jìng)爭(zhēng)下很多企業(yè)依然不重視人力資源管理,從而使得自身的整體工作效率不高。為此,筆者認(rèn)為為了提高礦建人力資源管理的質(zhì)量,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來(lái)開(kāi)展工作,從而讓整個(gè)企業(yè)在激烈的市場(chǎng)競(jìng)爭(zhēng)中穩(wěn)定、長(zhǎng)久發(fā)展下去。
            :數(shù)據(jù)挖掘技術(shù);企業(yè)人力資源管理;應(yīng)用
            隨著我國(guó)人力資源管理體系的不斷發(fā)展,隱藏在管理工作中的問(wèn)題也被逐漸顯露出來(lái),雖然很多企業(yè)的高層管理者對(duì)人力資源管理這塊已經(jīng)高度重視,但是企業(yè)往往是希望通過(guò)運(yùn)用相關(guān)的系統(tǒng)來(lái)對(duì)人才進(jìn)行管理,基于我國(guó)社會(huì)整體經(jīng)濟(jì)實(shí)力的不斷發(fā)展以及互聯(lián)網(wǎng)信息時(shí)代的到來(lái),數(shù)據(jù)挖掘技術(shù)也受到越來(lái)越多的企業(yè)多關(guān)注,并紛紛采用該技術(shù)對(duì)自身人力資源進(jìn)行管理,同時(shí)也將人力資源管理系統(tǒng)作為整個(gè)信息化建設(shè)過(guò)程中的核心部位,就數(shù)據(jù)調(diào)查顯示,數(shù)據(jù)挖掘技術(shù)已經(jīng)被國(guó)外很多軟件開(kāi)放式引入自身的人力資源管理工作中,并使自身內(nèi)部逐步形成了一套完整的人力資源管理系統(tǒng)體系。除此之外,數(shù)據(jù)挖掘技術(shù)也被廣泛應(yīng)用在企業(yè)的基本人力資源檔案管理工作中,隨著信息技術(shù)時(shí)代的到來(lái),以往傳統(tǒng)的計(jì)算機(jī)管理模式對(duì)人力資源管理效率往往并不高,為此,數(shù)據(jù)挖掘技術(shù)對(duì)企業(yè)人力資管理工作是百利而無(wú)一害的。
            2、1人才的招聘
            任何企業(yè)在發(fā)展過(guò)程中都是離不開(kāi)新鮮血液注入的,隨著目前我國(guó)市場(chǎng)經(jīng)濟(jì)競(jìng)爭(zhēng)趨勢(shì)的不斷增長(zhǎng),企業(yè)要想穩(wěn)固發(fā)展必須要引入人力資源管理,只有這樣才能提高企業(yè)經(jīng)濟(jì)效益以及社會(huì)收益。為此,企業(yè)應(yīng)對(duì)人才進(jìn)行招聘,這也是獲取人力資源的重要手段,通過(guò)采用數(shù)據(jù)挖掘技術(shù)來(lái)吸引社會(huì)中的各類(lèi)人才,并采取有效的人才管理流程來(lái)對(duì)人才進(jìn)行篩選,最終選擇質(zhì)量最佳的人才資源。與此同時(shí),企業(yè)對(duì)人才招聘質(zhì)量的優(yōu)與良對(duì)自身內(nèi)部的員工、人類(lèi)資源也會(huì)造成一定的影響,換句話來(lái)講,人才的招聘往往是企業(yè)人力資源管理工作開(kāi)展的前期階段,然而在實(shí)際人才招聘過(guò)程中很多企業(yè)總是找不到合適的人選,同時(shí)也有大量的優(yōu)質(zhì)人才也很難找的適合自身的工作,這也就加大了企業(yè)人才招聘的難度,也進(jìn)一步加大了招聘的成本,為此,企業(yè)采取數(shù)據(jù)挖掘技術(shù)可以有效降低人才招聘的成本支出,從而使自身獲得更大的經(jīng)濟(jì)收益與社會(huì)利益。
            2、2對(duì)人才的管理
            隨著社會(huì)對(duì)人才需求量的不斷增加,企業(yè)對(duì)員工的數(shù)據(jù)記錄和管理方式也逐步優(yōu)化,然而在很多企業(yè)人力資源管理過(guò)程中仍然存在著諸多問(wèn)題,而這些問(wèn)題的存在對(duì)企業(yè)未來(lái)發(fā)展也產(chǎn)生阻礙作用。為了企業(yè)在未來(lái)發(fā)展道路上穩(wěn)固、長(zhǎng)久發(fā)展,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來(lái)對(duì)人才進(jìn)行管理,以往傳統(tǒng)的管理模式往往是對(duì)員工的基本信息以及日??己诉M(jìn)行管理,這種管理方式已經(jīng)不適應(yīng)現(xiàn)在時(shí)代發(fā)展的趨勢(shì),為此,礦建企業(yè)必要順應(yīng)當(dāng)下時(shí)代的發(fā)展趨勢(shì)來(lái)采取有效的措施來(lái)對(duì)人力資源進(jìn)行管理,現(xiàn)代化的管理模式主要強(qiáng)調(diào)的是對(duì)相關(guān)數(shù)據(jù)的分析和整理能力,通過(guò)對(duì)數(shù)據(jù)的分析來(lái)形成具有實(shí)際指導(dǎo)作用的總結(jié),從而為企業(yè)人力資源管理工作提供有價(jià)值的參考依據(jù)。例如,在實(shí)際人力資源管理過(guò)程中可以利用數(shù)據(jù)挖掘技術(shù)來(lái)對(duì)企業(yè)內(nèi)部員工的薪資水平進(jìn)行分析,并對(duì)企業(yè)的成本控制提出有效的建議,也可以利用數(shù)據(jù)挖掘技術(shù)對(duì)企業(yè)中年紀(jì)較大的員工進(jìn)行分析,并對(duì)其進(jìn)行科學(xué)的評(píng)判,從而對(duì)其提出更有利的參考價(jià)值和依據(jù)。
            2、3實(shí)現(xiàn)對(duì)企業(yè)人才的合理分配
            隨著我國(guó)社會(huì)經(jīng)濟(jì)的不斷發(fā)展,人才的發(fā)展形勢(shì)也變得越來(lái)越“多元化”“個(gè)體化”。為此,筆者認(rèn)為為了進(jìn)一步提高礦建企業(yè)人力資源管理工作的質(zhì)量,應(yīng)采取數(shù)據(jù)挖掘技術(shù)來(lái)對(duì)人才進(jìn)行合理分配,并結(jié)合內(nèi)部員工的實(shí)際特點(diǎn)以及具體類(lèi)型進(jìn)行客觀性的評(píng)判,這對(duì)企業(yè)的人才資源管理以及未來(lái)發(fā)展無(wú)疑是百利無(wú)一害的。通過(guò)采取數(shù)據(jù)挖掘技術(shù)不僅可以實(shí)現(xiàn)對(duì)員工的共性以及特點(diǎn)進(jìn)行分析,使每一位員工的信息資源、崗位職責(zé)得到有效劃分,同時(shí)也進(jìn)一步實(shí)現(xiàn)對(duì)企業(yè)人才的合理分配。通過(guò)對(duì)數(shù)據(jù)信息的管理技術(shù)構(gòu)建實(shí)現(xiàn)對(duì)人員分組,從而使數(shù)據(jù)挖掘技術(shù)在企業(yè)人力資源管理中得到有效利用,使其發(fā)揮最大的作用與價(jià)值,同時(shí)也進(jìn)一步提高企業(yè)人力資源管理工作的效率和和質(zhì)量,最終推動(dòng)企業(yè)穩(wěn)固、長(zhǎng)久的發(fā)展。
            綜上所述,隨著社會(huì)經(jīng)濟(jì)的飛速發(fā)展,建設(shè)領(lǐng)域也得到逐步提高,然而在人力資源管理工作中依然存在著諸多問(wèn)題,這些問(wèn)題的存在也嚴(yán)重阻礙我國(guó)社會(huì)經(jīng)濟(jì)的穩(wěn)固發(fā)展。所以,只有充分采用數(shù)據(jù)挖掘技術(shù)來(lái)開(kāi)展人力資源管理工作,才能提高企業(yè)的人力資源管理水平。
            [1]曾巍、數(shù)據(jù)挖掘在人力資源市場(chǎng)中的應(yīng)用與研究[d]。吉林大學(xué),20xx
            數(shù)據(jù)挖掘論文選題篇八
            摘要:隨著互聯(lián)網(wǎng)的廣泛使用,web的數(shù)據(jù)挖掘技術(shù)成為現(xiàn)階段數(shù)據(jù)挖掘技術(shù)研究的重點(diǎn),但由于其數(shù)據(jù)挖掘控制的復(fù)雜,對(duì)人們的數(shù)據(jù)挖掘和使用帶來(lái)了困難。而xml數(shù)據(jù)挖掘的出現(xiàn)彌補(bǔ)了web數(shù)據(jù)挖掘的缺陷,為其帶來(lái)了方便。
            關(guān)鍵詞:多層次技術(shù);xml數(shù)據(jù)挖掘;web數(shù)據(jù)挖掘;研究
            0引言
            數(shù)據(jù)挖掘就是從大量的信息數(shù)據(jù)中發(fā)現(xiàn)潛在的規(guī)律性內(nèi)容,進(jìn)而對(duì)數(shù)據(jù)應(yīng)用的質(zhì)量問(wèn)題進(jìn)行解決,實(shí)現(xiàn)對(duì)數(shù)據(jù)的充分利用。在互聯(lián)網(wǎng)發(fā)展支持下的數(shù)據(jù)挖掘技術(shù)得到了快速的發(fā)展,特別是以結(jié)構(gòu)化數(shù)據(jù)為主的數(shù)據(jù)挖掘技術(shù)。數(shù)據(jù)挖掘技術(shù)被廣泛地應(yīng)用到各個(gè)領(lǐng)域,并獲得了好的效果。但這種結(jié)構(gòu)化的數(shù)據(jù)挖掘技術(shù)無(wú)法對(duì)web數(shù)據(jù)挖掘的特性進(jìn)行處理,web上的html文檔格式也不規(guī)范,導(dǎo)致沒(méi)有充分挖掘和利用有價(jià)值的知識(shí)。由此,如何優(yōu)化傳統(tǒng)數(shù)據(jù)挖掘技術(shù),實(shí)現(xiàn)其和web的結(jié)合成為數(shù)據(jù)挖掘技術(shù)研究領(lǐng)域關(guān)注的熱點(diǎn)。而xml的出現(xiàn),彌補(bǔ)了web的不足,成為現(xiàn)階段互聯(lián)網(wǎng)數(shù)據(jù)組織和交換的標(biāo)準(zhǔn),并逐漸出現(xiàn)在web上。文章對(duì)基于多層次技術(shù)的xml數(shù)據(jù)挖掘進(jìn)行研究。
            1web數(shù)據(jù)挖掘的難點(diǎn)
            第一,異構(gòu)數(shù)據(jù)庫(kù)的環(huán)境。因特網(wǎng)上的信息可以說(shuō)就是一種數(shù)據(jù)路,具有大量的數(shù)據(jù)資源,每個(gè)站點(diǎn)的數(shù)據(jù)源都是異構(gòu)的,因此,每個(gè)站點(diǎn)之間的信息和組織結(jié)構(gòu)不一樣,形成了一種異構(gòu)數(shù)據(jù)庫(kù)環(huán)境。想要獲得和利用這些數(shù)據(jù)資源需要進(jìn)行數(shù)據(jù)挖掘,這種數(shù)據(jù)挖掘需要對(duì)站點(diǎn)的異構(gòu)數(shù)據(jù)集成進(jìn)行研究,同時(shí)還要對(duì)因特網(wǎng)上的數(shù)據(jù)查詢問(wèn)題進(jìn)行解決。第二,半結(jié)構(gòu)化的數(shù)據(jù)結(jié)構(gòu)。傳統(tǒng)的數(shù)據(jù)庫(kù)具有數(shù)據(jù)模型,能夠通過(guò)這種模型來(lái)對(duì)特定的數(shù)據(jù)進(jìn)行描述。但因特網(wǎng)上的數(shù)據(jù)較為復(fù)雜,沒(méi)有統(tǒng)一的模型讓人進(jìn)行描述,且自身具有獨(dú)立性、動(dòng)態(tài)性的特點(diǎn),存在自述層次,因而是一種半結(jié)構(gòu)化數(shù)據(jù)。
            2xml數(shù)據(jù)挖掘技術(shù)
            2.1xml技術(shù)概述
            xml是由萬(wàn)維網(wǎng)協(xié)會(huì)設(shè)計(jì)的一種中介標(biāo)示性語(yǔ)言,主要被應(yīng)用在web中。xml類(lèi)似于html,主要被設(shè)計(jì)用來(lái)描述數(shù)據(jù)的語(yǔ)言,為數(shù)據(jù)挖掘提供了一種獨(dú)立的運(yùn)行程序,能夠?qū)崿F(xiàn)對(duì)數(shù)據(jù)的共享,并利用計(jì)算機(jī)通訊將信息傳遞到多個(gè)領(lǐng)域。
            2.2xml和html的比較
            html是web的重要技術(shù)要素之一,簡(jiǎn)單易學(xué),被很多計(jì)算機(jī)專(zhuān)業(yè)人員應(yīng)用于創(chuàng)建自己的、具有超文本特定的多媒體主頁(yè),能夠?qū)崿F(xiàn)網(wǎng)絡(luò)和普通人的聯(lián)系,創(chuàng)造出豐富的網(wǎng)頁(yè)。但其在因特網(wǎng)的應(yīng)用存在以下幾點(diǎn)缺陷:第一,只是對(duì)信息的顯示方式進(jìn)行描述,沒(méi)有對(duì)信息內(nèi)容本身進(jìn)行描述;第二,需要因特網(wǎng)服務(wù)器幫其處理任務(wù)工作,加重了網(wǎng)絡(luò)的負(fù)擔(dān),降低了網(wǎng)絡(luò)運(yùn)行的效率。根據(jù)上文對(duì)xml技術(shù)的概述,可以看出,xml不是一種單純的標(biāo)記語(yǔ)言,而是一種定義語(yǔ)言,能夠根據(jù)需要設(shè)定不同的標(biāo)記語(yǔ)言,突破了html固定標(biāo)記的限制,能夠更好地推動(dòng)web的發(fā)展。
            3基于xml數(shù)據(jù)挖掘框架設(shè)計(jì)
            3.1設(shè)計(jì)的特點(diǎn)
            第一,具有自然、性能良好、個(gè)性化設(shè)計(jì)的系統(tǒng)用戶界面;第二,主要應(yīng)用元搜索引擎頁(yè)面。這種頁(yè)面設(shè)計(jì)的'主要思想是首先對(duì)用戶的查詢請(qǐng)求進(jìn)行預(yù)處理,之后向各個(gè)搜索引擎發(fā)送查詢的請(qǐng)求,最后,在經(jīng)過(guò)處理之后向用戶反饋檢索結(jié)果。第三,web頁(yè)面的設(shè)計(jì)充分應(yīng)用了hits的算法。第四,利用xml技術(shù)對(duì)檢索的數(shù)據(jù)進(jìn)行預(yù)處理。主要表現(xiàn)為將數(shù)據(jù)庫(kù)中的所有文檔形式轉(zhuǎn)化為xml文檔形式,之后在數(shù)據(jù)倉(cāng)庫(kù)的應(yīng)用下實(shí)現(xiàn)各種文檔的集成。
            3.2系統(tǒng)設(shè)計(jì)的結(jié)構(gòu)
            xml數(shù)據(jù)挖掘系統(tǒng)的結(jié)構(gòu)主要包含用戶界面模塊、數(shù)據(jù)預(yù)處理模塊和數(shù)據(jù)挖掘模塊。第一,用戶界面模塊主要作為用戶和系統(tǒng)交接的端口存在,用戶通過(guò)這個(gè)界面來(lái)實(shí)現(xiàn)對(duì)數(shù)據(jù)挖掘系統(tǒng)的使用。在這個(gè)模塊中,用戶能夠在對(duì)數(shù)據(jù)挖掘之前設(shè)定挖掘的參數(shù),之后提出請(qǐng)求、對(duì)挖掘成果分析,實(shí)現(xiàn)個(gè)性化的數(shù)據(jù)挖掘。第二,數(shù)據(jù)預(yù)處理模塊主要是指在對(duì)數(shù)據(jù)檢索之后,應(yīng)用xml技術(shù)對(duì)檢索的數(shù)據(jù)進(jìn)行預(yù)處理。第三,數(shù)據(jù)挖掘模塊主要是對(duì)數(shù)據(jù)預(yù)處理后的模塊信息進(jìn)行挖掘,并將成果展示給用戶。
            4基于xml技術(shù)的web數(shù)據(jù)挖掘
            4.1數(shù)據(jù)挖掘方案的選取
            基于xml技術(shù)的web數(shù)據(jù)挖掘主要分為內(nèi)容上的挖掘和形式上的挖掘兩種,其中,內(nèi)容挖掘主要是針對(duì)文檔標(biāo)記的開(kāi)始和結(jié)束之間的文本部分,即對(duì)標(biāo)記值的一種挖掘。具體的內(nèi)容挖掘方案主要有三種:第一,利用專(zhuān)門(mén)的xml數(shù)據(jù)、半結(jié)構(gòu)數(shù)據(jù)開(kāi)發(fā)查詢的語(yǔ)言,充分開(kāi)發(fā)其查詢功能,并將這種語(yǔ)言滲透在應(yīng)用程序中,從而實(shí)現(xiàn)對(duì)數(shù)據(jù)的有限挖掘。這種挖掘方案能夠?qū)ml技術(shù)和數(shù)據(jù)挖掘技術(shù)進(jìn)行有效的結(jié)合,且具有操作簡(jiǎn)單的特點(diǎn)。第二,實(shí)現(xiàn)對(duì)xml文檔數(shù)據(jù)的結(jié)構(gòu)化處理。在處理之后將其映射到現(xiàn)有的關(guān)系對(duì)象模型中,從而實(shí)現(xiàn)對(duì)數(shù)據(jù)的挖掘。第三,將xml文檔視為一種文本,采用傳統(tǒng)的數(shù)據(jù)挖局處理技術(shù)對(duì)數(shù)據(jù)進(jìn)行挖掘。
            4.2xml技術(shù)數(shù)據(jù)挖掘?qū)崿F(xiàn)
            xml技術(shù)的挖掘?qū)崿F(xiàn)主要利用xquery實(shí)現(xiàn)關(guān)聯(lián)挖掘來(lái)進(jìn)行數(shù)據(jù)挖掘,且不需要對(duì)其文檔進(jìn)行預(yù)處理和挖掘后處理,具有操作簡(jiǎn)單的優(yōu)勢(shì)。主要采用兩種方式來(lái)執(zhí)行xquery。第一,使用xhivenodeif對(duì)象的executexquery進(jìn)行語(yǔ)句的執(zhí)行,使得集合的每個(gè)元素都是對(duì)應(yīng)的對(duì)象,并將對(duì)象轉(zhuǎn)換成dom的節(jié)點(diǎn)來(lái)進(jìn)行數(shù)據(jù)的挖掘。第二,利用xhivexqueryqueryif對(duì)象調(diào)用execute進(jìn)行語(yǔ)句的執(zhí)行。在這個(gè)過(guò)程中會(huì)涉及對(duì)外部參數(shù)的使用。
            5結(jié)語(yǔ)
            xml數(shù)據(jù)挖掘能夠有效解決因特網(wǎng)數(shù)據(jù)挖掘難的問(wèn)題,實(shí)現(xiàn)數(shù)據(jù)挖掘的簡(jiǎn)單化操作。xml數(shù)據(jù)挖掘?qū)⒉煌Y(jié)構(gòu)、不容易兼容的數(shù)據(jù)進(jìn)行結(jié)合,并利用自身的靈活性和延展性將各種應(yīng)用軟件中的數(shù)據(jù)進(jìn)行不同描述,從而方便因特網(wǎng)中數(shù)據(jù)的收集和記錄。同時(shí),基于xml數(shù)據(jù)是自我描述性的,不需要內(nèi)部的描述處理就能實(shí)現(xiàn)數(shù)據(jù)的交換,為其對(duì)數(shù)據(jù)的處理和應(yīng)用提供了便利的支持。因此,技術(shù)xml技術(shù)的數(shù)據(jù)挖掘成為當(dāng)今因特網(wǎng)數(shù)據(jù)挖掘的研究重點(diǎn),需要有關(guān)人員引起足夠的重視,進(jìn)而不斷促進(jìn)該技術(shù)對(duì)數(shù)據(jù)挖掘的應(yīng)用。
            參考文獻(xiàn):