亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        初中數(shù)學(xué)幾何教案(專業(yè)18篇)

        字號(hào):

            教案可以作為教師教學(xué)活動(dòng)的重要依據(jù),同時(shí)也是對(duì)教學(xué)過程進(jìn)行評(píng)估和反思的重要工具。教案的編寫應(yīng)注重培養(yǎng)學(xué)生的綜合能力和創(chuàng)新思維。這是一份優(yōu)秀的教案范文,供大家參考學(xué)習(xí)。
            初中數(shù)學(xué)幾何教案篇一
            經(jīng)歷從不同方向觀察物體的活動(dòng)過程,體會(huì)出從不同方向看同一物體,可能看到不同的結(jié)果;能識(shí)別從不同方向看幾何體得到相應(yīng)的平面圖形。
            通過觀察能畫出不同角度看到的平面圖形(三視圖)。
            體會(huì)視圖是描述幾何體的重要工具,使學(xué)生明白看待事物時(shí),要從多個(gè)方面進(jìn)行。
            學(xué)會(huì)從不同方向看實(shí)物的方法,畫出三視圖。
            畫出三視圖,由三視圖判斷幾何體。
            本節(jié)內(nèi)容是研究立體圖形的又一重要手段,是一種獨(dú)立的研究方法,與前后知識(shí)聯(lián)系不大,學(xué)好本課的關(guān)鍵是尊重視覺效果,把立體圖形映射成平面圖形,其間要進(jìn)行三維到二維這一實(shí)質(zhì)性的變化。在由三視圖還原立體圖形時(shí),更需要一個(gè)較長(zhǎng)過程,所以本節(jié)用學(xué)生比較熟悉的幾何體來降低難度。
            情境引入合作探究。
            課件,多組簡(jiǎn)單實(shí)物、模型。
            :1課時(shí)。
            環(huán)節(jié)教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖。
            創(chuàng)
            設(shè)
            情
            境教師播放多媒體課件,演示廬山景觀,請(qǐng)學(xué)生背誦蘇東坡《題西林壁》,并說說詩(shī)中意境。
            并出現(xiàn):橫看成嶺側(cè)成峰,
            遠(yuǎn)近高低各不同。
            不識(shí)廬山真面目,
            只緣身在此山中。
            觀賞美景。
            思考“嶺”與“峰”的區(qū)別??缭綄W(xué)科界限,營(yíng)造一個(gè)嶄新的教學(xué)學(xué)習(xí)氛圍,并從中挖掘蘊(yùn)含的數(shù)學(xué)道理。
            新
            課
            探
            究
            一
            1、教師出示事先準(zhǔn)備好的實(shí)物組合體,請(qǐng)三名學(xué)生分別站在講臺(tái)的左側(cè)、右側(cè)和正前方觀察,并讓他們畫出草圖,其他學(xué)生分成三組,分別對(duì)應(yīng)三個(gè)同學(xué),也分別畫出所見圖形的草圖。
            2、看課本13頁(yè)“觀察與思考”。
            圖:
            你能說出情景的先后順序嗎?你是通過哪些特征得出這個(gè)結(jié)論的?
            總結(jié):通過以前經(jīng)驗(yàn),我們可知,從不同的方向看物體,可能看到不同圖形。
            3、從實(shí)際生活中舉例。
            觀察,動(dòng)手畫圖。
            學(xué)生觀察圖片,把圖片按時(shí)間先后排序。
            利用身邊的事物,有助于學(xué)生積極主動(dòng)參與,激發(fā)學(xué)生潛能,感受新知。
            讓學(xué)生感知文本提高自學(xué)能力。
            利于拓寬學(xué)生思維。
            新
            課
            探
            究
            二1、感知文本。學(xué)生閱讀13頁(yè)“觀察與思考2”,
            圖:
            2、上升到理性知識(shí):
            (1)從上面看到的圖形叫俯視圖;
            (2)從左面看到的圖形叫左視圖;
            (3)右正面看到的圖形叫主視圖;
            3、練一練:分別畫出14頁(yè)三種立體圖形的三視圖,并回答課本上三個(gè)問題。(強(qiáng)調(diào)上下左右的方位不要出錯(cuò))學(xué)生閱讀,想象。
            學(xué)生分組練習(xí),合作交流。把已有經(jīng)驗(yàn)重新建構(gòu)。
            感性知識(shí)上升到理性知識(shí)。
            體會(huì)學(xué)習(xí)成果,使學(xué)生產(chǎn)生成功的喜悅。
            新課探究三1、連線,把左面的三視圖與右邊的立體圖形連接起來。
            主視圖俯視圖左視圖立體圖形。
            2、歸納:多媒體課件演示。
            先由其中的兩個(gè)圖為依據(jù),進(jìn)行組合,用第三個(gè)圖進(jìn)行檢驗(yàn)。
            學(xué)生自己先獨(dú)立思考,得出答案后,小組之間合作交流,互相評(píng)價(jià)。
            以小組為單位討論思考問題的方法。
            把由空間到平面的轉(zhuǎn)化過程逆轉(zhuǎn)回去,充分利用本課前階段的感知,可以降低難度。
            課堂反饋。
            1、考查學(xué)生的基礎(chǔ)題。
            主視圖俯視圖學(xué)生獨(dú)立自檢。
            學(xué)生總結(jié)出以俯視圖為基礎(chǔ),在方格上標(biāo)出數(shù)字。
            簡(jiǎn)單知識(shí),基本方法的綜合。
            課堂總結(jié)。
            1、學(xué)習(xí)到什么知識(shí)?
            2、學(xué)習(xí)到什么方法?
            3、哪些知識(shí)是自己發(fā)現(xiàn)的?
            4、哪些知識(shí)是討論得出的?
            學(xué)生反思。
            歸納讓學(xué)生有成功喜悅,重視與他人合作。
            附:板書設(shè)計(jì)。
            1.4從不同方向看幾何體。
            教學(xué)反思:
            初中數(shù)學(xué)幾何教案篇二
            (1)經(jīng)歷探究物體的形狀與幾何體的關(guān)系過程,能從現(xiàn)實(shí)物體中抽象得出立體圖形.
            (2)經(jīng)歷立體圖形與平面圖形的轉(zhuǎn)換過程,掌握一些簡(jiǎn)單的立體圖形與平面圖形的互相轉(zhuǎn)化的技能.
            (3)經(jīng)歷對(duì)點(diǎn)、線、面、體關(guān)系的研究的數(shù)學(xué)活動(dòng)過程,建立平面圖形與立體圖形的聯(lián)系.
            (4)經(jīng)歷畫圖等數(shù)學(xué)活動(dòng)過程,掌握直線和角的一些簡(jiǎn)單性質(zhì);掌握直線、射線、線段和角的表示方法;掌握角的度量方法.
            (5)在現(xiàn)實(shí)情境中,探索兩條線段、兩個(gè)角的比較方法及比較的結(jié)果,探索線段與線段之間、角與角之間的數(shù)量關(guān)系.
            (6)認(rèn)識(shí)線段的等分點(diǎn),角的平分線、角角和補(bǔ)角的概念.
            (1)會(huì)用掌握的幾何體知識(shí)描述現(xiàn)實(shí)物體的形狀,在探索立體圖形與平面圖形的關(guān)系中,發(fā)展空間觀念.
            (2)通過對(duì)本章的學(xué)習(xí),學(xué)會(huì)在具體的現(xiàn)實(shí)情境中,抽象概括出數(shù)學(xué)原理.
            (3)學(xué)會(huì)在解決問題的過程中,進(jìn)行合理的想象,進(jìn)行簡(jiǎn)單的、有條理的思考.
            (4)能在現(xiàn)實(shí)物體中,發(fā)現(xiàn)立體圖形和平面圖形.
            (5)能在具體的現(xiàn)實(shí)情境中,發(fā)現(xiàn)并提出一些數(shù)學(xué)問題.
            (6)通過小組合作、動(dòng)手操作、實(shí)驗(yàn)驗(yàn)證的方法解決數(shù)學(xué)問題.
            3.情感態(tài)度與價(jià)值觀.
            (1)積極參與數(shù)學(xué)活動(dòng)的過程,敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并能獨(dú)立地或通過小組合作的方法,運(yùn)用數(shù)學(xué)知識(shí)克服困難,解決問題.
            (2)通過對(duì)本章的學(xué)習(xí),培養(yǎng)和提高抽象概括能力和空間想象能力,體驗(yàn)數(shù)學(xué)活動(dòng)中探索性和創(chuàng)造性,感受豐富多彩的圖形世界.
            1.重點(diǎn):
            (1)掌握立體圖形與平面圖形的關(guān)系,學(xué)會(huì)它們之間的相互轉(zhuǎn)化;初步建立空間觀念.
            (2)掌握兩點(diǎn)確定一條直線的性質(zhì),掌握兩點(diǎn)之間線段最短的性質(zhì),會(huì)用符號(hào)表示直線、射線和線段,會(huì)比較線段的大小,會(huì)畫一條線段等于已知線段,了解兩點(diǎn)距離的定義.
            (3)會(huì)用符號(hào)表示一個(gè)角,學(xué)會(huì)度量一個(gè)角,掌握余角和補(bǔ)角的性質(zhì),理解角的平分線的定義,會(huì)比較兩個(gè)角的大小,確定幾個(gè)角的運(yùn)算關(guān)系.
            2.難點(diǎn):
            (1)立體圖形與平面圖形之間的互相轉(zhuǎn)化.
            (2)從現(xiàn)實(shí)情境中,抽象概括出圖形的性質(zhì),用數(shù)學(xué)語(yǔ)言對(duì)這些性質(zhì)進(jìn)行描述.
            3.關(guān)鍵:
            (1)從實(shí)際出發(fā),用直觀的形式,讓學(xué)生感受圖形的豐富多彩,激發(fā)學(xué)生學(xué)習(xí)的興趣.
            (2)結(jié)合具體問題,讓學(xué)生感受到學(xué)習(xí)空間與圖形知識(shí)的重要性和必要性.
            4.1.1幾何圖形。
            教學(xué)內(nèi)容。
            課本第116~120頁(yè).
            初中數(shù)學(xué)幾何教案篇三
            1.兩全等三角形中對(duì)應(yīng)邊相等。
            2.同一三角形中等角對(duì)等邊。
            3.等腰三角形頂角的平分線或底邊的高平分底邊。
            4.平行四邊形的對(duì)邊或?qū)蔷€被交點(diǎn)分成的兩段相等。
            5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。
            6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。
            7.角平分線上任一點(diǎn)到角的兩邊距離相等。
            8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。
            9.同圓(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。
            10.圓外一點(diǎn)引圓的兩條切線的切線長(zhǎng)相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。
            11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。
            12.兩圓的內(nèi)(外)公切線的長(zhǎng)相等。
            13.等于同一線段的兩條線段相等。
            二、證明兩角相等。
            1.兩全等三角形的對(duì)應(yīng)角相等。
            2.同一三角形中等邊對(duì)等角。
            3.等腰三角形中,底邊上的中線(或高)平分頂角。
            4.兩條平行線的同位角、內(nèi)錯(cuò)角或平行四邊形的對(duì)角相等。
            5.同角(或等角)的余角(或補(bǔ)角)相等。
            6.同圓(或圓)中,等弦(或弧)所對(duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。
            7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
            8.相似三角形的對(duì)應(yīng)角相等。
            9.圓的內(nèi)接四邊形的外角等于內(nèi)對(duì)角。10.等于同一角的兩個(gè)角相等。
            三、證明兩直線平行。
            1.垂直于同一直線的各直線平行。
            2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。
            3.平行四邊形的對(duì)邊平行。
            4.三角形的中位線平行于第三邊。
            5.梯形的中位線平行于兩底。
            6.平行于同一直線的兩直線平行。
            7.一條直線截三角形的兩邊(或延長(zhǎng)線)所得的線段對(duì)應(yīng)成比例,則這條直線平行于第三邊。
            四、證明兩直線互相垂直。
            1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。
            2.三角形中一邊的中線若等于這邊一半,則這一邊所對(duì)的角是直角。
            3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。
            4.鄰補(bǔ)角的平分線互相垂直。
            5.一條直線垂直于平行線中的一條,則必垂直于另一條。
            6.兩條直線相交成直角則兩直線垂直。
            7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。
            8.利用勾股定理的逆定理。
            9.利用菱形的對(duì)角線互相垂直。
            10.在圓中平分弦(或弧)的直徑垂直于弦。
            11.利用半圓上的圓周角是直角。
            五、證明線段的和、差、倍、分。
            1.作兩條線段的和,證明與第三條線段相等。
            2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。
            3.延長(zhǎng)短線段為其二倍,再證明它與較長(zhǎng)的線段相等。
            4.取長(zhǎng)線段的中點(diǎn),再證其一半等于短線段。
            5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。
            六、證明角的和、差、倍、分。
            1.作兩個(gè)角的和,證明與第三角相等。
            2.作兩個(gè)角的差,證明余下部分等于第三角。
            3.利用角平分線的定義。
            4.三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
            七、證明兩線段不等。
            1.同一三角形中,大角對(duì)大邊。
            2.垂線段最短。
            3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
            4.在兩個(gè)三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
            5.同圓或等圓中,弧大弦大,弦心距小。
            6.全量大于它的任何一部分。
            八、證明兩角不等。
            1.同一三角形中,大邊對(duì)大角。
            2.三角形的外角大于和它不相鄰的任一內(nèi)角。
            3.在兩個(gè)三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
            4.同圓或等圓中,弧大則圓周角、圓心角大。
            5.全量大于它的任何一部分。
            九、證明比例式或等積式。
            1.利用相似三角形對(duì)應(yīng)線段成比例。
            2.利用內(nèi)外角平分線定理。
            3.平行線截線段成比例。
            4.直角三角形中的比例中項(xiàng)定理即射影定理。
            5.與圓有關(guān)的比例定理--相交弦定理、切割線定理及其推論。
            6.利用比利式或等積式化得。
            初中數(shù)學(xué)幾何教案篇四
            經(jīng)歷觀察、分析、交流的過程,逐步提高運(yùn)用知識(shí)的能力、
            提高學(xué)生的觀察、分析能力和對(duì)圖形的感知水平、
            會(huì)求反比例函數(shù)的解析式、
            反比例函數(shù)圖象和性質(zhì)的運(yùn)用、
            一、情景導(dǎo)入,初步認(rèn)知。
            1、反比例函數(shù)有哪些性質(zhì)?
            復(fù)習(xí)上節(jié)課的內(nèi)容,同時(shí)引入新課、
            二、思考探究,獲取新知。
            1、思考:已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)p(2,4)。
            (1)求k的值,并寫出該函數(shù)的表達(dá)式;
            (2)判斷點(diǎn)a(-2,-4),b(3,5)是否在這個(gè)函數(shù)的圖象上;
            分析:
            這種求解析式的方法叫做待定系數(shù)法求解析式、
            2、下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問題:
            (1)k的取值范圍是k0還是k0?說明理由;
            (2)如果點(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1,y2的大小、分析:
            通過觀察圖象,使學(xué)生掌握利用函數(shù)圖象比較函數(shù)值大小的方法。
            初中數(shù)學(xué)幾何教案篇五
            教學(xué)目標(biāo):
            知識(shí)與技能:通過實(shí)物,經(jīng)歷探索物體與圖形的形狀、大小、位置關(guān)系的過程,能認(rèn)識(shí)常見的幾何圖形,并能用自己的語(yǔ)言描述常見幾何圖形的特征。
            過程與方法:在探索幾何圖形的形狀、位置和大小的過程中,建立空間觀念,發(fā)展幾何直覺,能從實(shí)物中抽象出幾何體。
            情感態(tài)度與價(jià)值觀:體驗(yàn)在實(shí)際生活中幾何圖形的廣泛存在與應(yīng)用;認(rèn)識(shí)幾何圖形與生活的緊密聯(lián)系。
            教學(xué)重點(diǎn):認(rèn)識(shí)幾何圖形。
            教學(xué)難點(diǎn):從具體事物中抽象出幾何體。
            教材分析:本節(jié)課是七年級(jí)第一節(jié)課,所涉及到的幾何圖形是以后繼續(xù)學(xué)習(xí)的基礎(chǔ),為進(jìn)一步學(xué)習(xí)圈定了范圍。由于學(xué)生的頭腦中,實(shí)物與幾何圖形是兩種割裂開的信息,所以在教學(xué)中,應(yīng)建立好兩者之間的聯(lián)系,并進(jìn)而發(fā)展幾何直覺。
            教學(xué)方法:引導(dǎo)發(fā)現(xiàn),師生互動(dòng)。
            教學(xué)準(zhǔn)備:多媒體課件、學(xué)生身邊的實(shí)物。
            課時(shí)安排:1課時(shí)。
            環(huán)節(jié)教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖。
            引入新課導(dǎo)語(yǔ):(略)。
            提出要求:
            1、請(qǐng)大家看章前頁(yè),看誰(shuí)能畫出北京天壇主體建筑物的圖畫?
            2、感到無(wú)從下手的同學(xué),看一下虛景圖形,它們是你小學(xué)學(xué)過的哪種圖形?
            教師先引導(dǎo)會(huì)畫的學(xué)生口述畫法,之后,用多媒體課件展示,把建筑物的各部分分割成小學(xué)學(xué)過的幾何圖形:圓錐、圓柱、三角形、長(zhǎng)方形等。
            學(xué)生動(dòng)手畫圖。
            分層教學(xué)。
            學(xué)生從多渠道增加感知。
            激情導(dǎo)入,激發(fā)學(xué)生求知欲。
            體會(huì)客觀事物與數(shù)學(xué)知識(shí)間的關(guān)系。
            一1、上面各實(shí)物圖片中,有多少個(gè)物體?
            2、這些物體的哪些形狀類似?屬于哪種幾何體?你能說出理由嗎?
            3、你能說出現(xiàn)實(shí)生活中還有哪些實(shí)物具有上面幾何體的特征?
            教師歸納:
            對(duì)于各種物體,如果不考慮它們的顏色、材料、質(zhì)量等,而只注意它們的形狀(如方的、圓的)、大小(如長(zhǎng)度、面積、體積等)和位置(如平行、相交、垂直等),就得到我們今后要學(xué)習(xí)的幾何圖形。把下面的實(shí)物與相應(yīng)的幾何體用線連接起來:
            學(xué)生思考,小組交流,討論完成三個(gè)題目。
            獨(dú)立完成,
            動(dòng)手操作。
            從學(xué)生生活中的實(shí)物入手,充分利用學(xué)生的知識(shí)經(jīng)驗(yàn)。
            把數(shù)學(xué)知識(shí)具體化為生活實(shí)物,使學(xué)生展開聯(lián)想。
            新課探究。
            二1、各組討論,上邊練習(xí)中的六種幾何體可以分哪幾類?
            2、總結(jié)出這樣分類的理由。
            引導(dǎo)學(xué)生分兩類:一類是長(zhǎng)方體、棱柱、立方體;另一類是球體、圓柱、圓錐。
            分類依據(jù):第一類表面都是平面,第二類表面有曲面。(用課件展示平面與曲面)分組討論,組內(nèi)選一名代表回答,各組在全班交流結(jié)果。使學(xué)生接觸分類思想,加深學(xué)生對(duì)幾何體認(rèn)識(shí)。
            新課探究。
            三1、把下面幾何圖形分成幾類?
            2、說出分類理由:
            用課件展示幾何圖形:
            歸納:幾何圖形包括立體圖形和平面圖形。有些立體圖形中含有平面圖形,有些立體圖形不含平面圖形。
            你能用六根火柴和小量橡皮泥組成4個(gè)三角形嗎?能組成4個(gè)正方形嗎?學(xué)生主動(dòng)思考,踴躍作答。
            學(xué)生總結(jié)。
            學(xué)生們積極思考,來回答這一具有挑戰(zhàn)性的問題。便于學(xué)生主動(dòng)學(xué)習(xí)。
            使學(xué)生交流各自學(xué)習(xí)結(jié)果。
            加強(qiáng)知識(shí)間聯(lián)系。
            激勵(lì)學(xué)生學(xué)習(xí)。
            課堂總結(jié)1、怎樣從實(shí)物抽象出幾何圖形?
            2、幾何圖形可分為哪兩類?
            3、平面圖形與立體圖形有何關(guān)系?
            教師簡(jiǎn)要點(diǎn)評(píng),從實(shí)物抽象幾何圖形時(shí),去掉顏色、材料、質(zhì)量等特征,而只考慮形狀、大小和位置等方面。有些立體圖形含有平面圖形,而有些立體圖形不含平面圖形。學(xué)生各組討論,相互交流各自看法。
            教師參與,師生互動(dòng),激勵(lì)學(xué)生回答、反思。學(xué)生嘗試小結(jié),疏理知識(shí),養(yǎng)成反思習(xí)慣,提高概括能力。
            課堂反饋。
            1、課堂檢測(cè)(包括基礎(chǔ)題和能力提高題)。
            2、用幾何圖形設(shè)計(jì)一個(gè)機(jī)器人的圖畫。獨(dú)立完成。
            學(xué)習(xí)致用鞏固新知。
            建立教學(xué)知識(shí)與實(shí)物間聯(lián)系,培養(yǎng)學(xué)生創(chuàng)造力。
            板書設(shè)計(jì)。
            1.1幾何圖形。
            立體圖形。
            去(顏色,材料)取(形狀、大小、位置)。
            實(shí)物幾何圖形含或不含。
            加(顏色、材料)取(形狀、大小、位置)。
            平面圖形。
            教學(xué)反思:
            本課有兩個(gè)“依據(jù)”:1、依據(jù)學(xué)生已有知識(shí)經(jīng)驗(yàn),讓學(xué)生動(dòng)手畫天壇主體建筑草圖,讓學(xué)生從實(shí)物中抽象出小學(xué)學(xué)習(xí)過的幾何體;2、依據(jù)教材,充分利用課體,充分利用課本的每一組素材,并適時(shí)適度的賦予素材新的利用價(jià)值。在教學(xué)過程中,由于問題的客觀原因,亦或?qū)W生本身的主觀原因,總有一些學(xué)生主動(dòng)性不強(qiáng)。
            初中數(shù)學(xué)幾何教案篇六
            學(xué)會(huì)幾何圖形的畫法。
            1、學(xué)習(xí)橢圓、矩形、圓角矩形工具的使用方法。
            2、能運(yùn)用畫圖工具作簡(jiǎn)單的規(guī)則圖形。
            “橢圓”、“矩形”、“圓角矩形”等畫圖工具的使用方法。
            教學(xué)引入。
            (講解上節(jié)課學(xué)生的作業(yè),點(diǎn)評(píng)學(xué)生的作品)。
            一、引入。
            在上課前老師先請(qǐng)你們看一幅畫(演示圖畫),請(qǐng)你們仔細(xì)觀察一下,這個(gè)房子分別是由哪些圖形組成的?(長(zhǎng)方形、正方形、圓角長(zhǎng)方形、橢圓)那我們應(yīng)該怎樣來畫這座房子呢?今天我們就來學(xué)習(xí)。出示課題:畫方形和圓形(板書)。
            二、新課。
            1.矩形工具(畫房子的主體)。
            首先我們應(yīng)該畫出房子的主體,是一個(gè)長(zhǎng)方形,我們可以用工具箱中的矩形工具來畫。(師演示)。
            (1)單擊工具箱中的“矩形”工具按鈕。
            (2)在畫圖區(qū)適當(dāng)?shù)奈恢冒聪伦箧I,以確定房子主體的左上角位置,再向右下角拖動(dòng),滿意后,松開左鍵,這樣房子的主體就畫好了。請(qǐng)一位同學(xué)上來演示用矩形工具畫一扇門。(注意門的位置)問:房子的窗戶是什么形狀的?正方形我們?cè)趺磥懋嬆???qǐng)同學(xué)們自己在書上找到答案(讀一讀)。
            在房子主體內(nèi)確定好窗戶的位置后,按下shift鍵,再拖動(dòng)鼠標(biāo),滿意后松開鼠標(biāo),窗戶就畫好了。
            下面請(qǐng)同學(xué)們練習(xí),教師巡視指導(dǎo)。
            2.圓角矩形工具(畫房子的房頂、煙囪)房頂是什么形狀的?
            我們可以用工具箱中的“圓角矩形”工具來畫。它的畫法與“矩形”工具是一樣的,誰(shuí)來試一下,把房頂和煙囪畫出來。
            學(xué)生演示(確定好房頂?shù)奈恢煤?,拖?dòng)出一個(gè)合適的圓角長(zhǎng)方形)。
            3.橢圓工具(畫煙)。
            煙囪里冒出的煙是橢圓形的,我們可以用工具箱中的“橢圓”工具來畫,先單擊“橢圓”工具,然后從煙囪口向右上方,分別拖動(dòng)畫出三個(gè)橢圓。(師演示)。
            學(xué)生練習(xí)(把剩余部分畫好)。
            練習(xí)。
            用多邊形工具畫出書上p38的圖形,保存在指定的文件夾。
            初中數(shù)學(xué)幾何教案篇七
            本課題選自人民教育出版社出版的《(義務(wù)教育初級(jí)中學(xué)教科書)信息技術(shù)》—書。
            第一單元第二課畫基本幾何圖形,第一課是認(rèn)識(shí)幾和畫板的啟動(dòng)和退出方法,窗口結(jié)構(gòu),熟悉認(rèn)識(shí)工具箱等內(nèi)容,第二課是畫點(diǎn),畫線段,射線,直線和畫圓,還有改變線型和顏色并保存圖形。學(xué)好本課對(duì)本章中的所有內(nèi)容的學(xué)習(xí)都具有重要的作用。
            學(xué)習(xí)者特征分析。
            幾何畫板的引用是計(jì)算機(jī)專業(yè)八年級(jí)開設(shè)的專業(yè)課程。由于學(xué)生的基礎(chǔ)和學(xué)習(xí)成績(jī)存在差距,學(xué)生的認(rèn)知能力、思維能力的不同和數(shù)學(xué)基礎(chǔ)差會(huì)對(duì)教學(xué)效果有影響,所以考慮適當(dāng)?shù)姆謱咏虒W(xué)、小組協(xié)作、交流、探究,完成教學(xué)過程。
            1.學(xué)會(huì)畫點(diǎn),線段,射線,直線和畫圓。
            2.能夠移動(dòng),刪除繪圖板上的圖形。
            3.掌握設(shè)置線型和顏色的基本方法。
            通過靈活引用工具箱的點(diǎn)工具,直尺工具和圓規(guī)工具圖標(biāo),能畫出簡(jiǎn)單的一些幾何圖形。
            情感態(tài)度與價(jià)值觀:
            1.激勵(lì)學(xué)生融入自己的思想去創(chuàng)作,感受運(yùn)用信息技術(shù)創(chuàng)造作品的樂趣。
            2.提高學(xué)生畫和欣賞幾何圖形的水平,形成和保持對(duì)信息技術(shù)的求知欲,養(yǎng)成積極主動(dòng)地學(xué)習(xí)態(tài)度。
            畫出5種基本的幾何圖形。
            分析圖形。
            人民教育出版社的課本。
            環(huán)境與媒體:
            機(jī)房,投影機(jī)。
            課型:
            新授。
            教學(xué)策略設(shè)計(jì):
            本課主要教學(xué)方法有“創(chuàng)設(shè)情境法”“任務(wù)驅(qū)動(dòng)法”“實(shí)例演示法”等。通過情境導(dǎo)入,以任務(wù)為主線、以學(xué)生為主體,創(chuàng)造學(xué)生自主探究學(xué)習(xí)的平臺(tái),使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的學(xué)習(xí)。
            教學(xué)過程:
            引入。
            同學(xué)們注意了嗎?今天我提前5分鐘來到教室,你們知道這是為什么嗎?昨天晚上我弟弟讓我猜一個(gè)謎語(yǔ),我很感興趣這個(gè)謎語(yǔ),所以我想一大早來讓你們也猜一猜。
            新課。
            老師提出關(guān)于點(diǎn)的一個(gè)謎語(yǔ)。謎語(yǔ)總結(jié)完了以后,在電腦上顯示很多有趣的圖形,通過激發(fā)學(xué)生的興趣導(dǎo)入新課。
            布置任務(wù)。
            我們已經(jīng)學(xué)過這些圖形的畫法,和基本性質(zhì),那我們現(xiàn)在開始用電腦來分析這些圖形的畫法和性質(zhì)。開始畫一畫讓同學(xué)們看。
            閱讀操作步驟,并欣賞,發(fā)現(xiàn)問題,及時(shí)指出。
            練一練。
            制作一些點(diǎn),線段,射線,直線和圓。
            相互協(xié)作,共同完成練習(xí)。
            教師在班內(nèi)巡視,幫助有疑問的同學(xué)。
            教師選擇部分有代表性的作品進(jìn)行展示。抽出幾個(gè)好的作品,讓學(xué)生給其他學(xué)生們演示操作。
            學(xué)生自主探究。
            學(xué)生展示自己的作品,并談?wù)勗趺醋龅南敕ā?BR>    學(xué)生上機(jī)操作。
            鞏固練習(xí)。
            自然界和社會(huì)中有許許多多的幾何圖形,這些圖形給人們帶來美的享受,用幾何畫板可以創(chuàng)建自己的“幾何實(shí)驗(yàn)室”。
            小結(jié)。
            通過這兩節(jié)課,學(xué)生知道了很多新知識(shí)關(guān)于幾何畫板。
            初中數(shù)學(xué)幾何教案篇八
            本考點(diǎn)含圓周、圓弧、扇形等概念,圓的周長(zhǎng)和弧長(zhǎng)的計(jì)算,圓的面積和扇形面積的計(jì)算三個(gè)部分,考核要求是:(1)理解圓周、圓弧、扇形等概念;(2)掌握?qǐng)A的周長(zhǎng)和弧長(zhǎng)的計(jì)算;(3)掌握?qǐng)A的面積和扇形面積計(jì)算,理解與掌握?qǐng)A的周長(zhǎng)和弧長(zhǎng)、圓的面積和扇形面積公式是解決有關(guān)問題的關(guān)鍵,在解有關(guān)問題時(shí),要注意:(1)正確的識(shí)別圓心、半徑和圓心角:(2)進(jìn)行有關(guān)計(jì)算時(shí),中間過程可適當(dāng)保留;(3)注意精確度的要求(尤其要注意精確度的要求,在).
            考核要求:(1)能對(duì)線段中點(diǎn)、角的平分線進(jìn)行文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的互譯;(2)初步掌握和余角、補(bǔ)角有關(guān)的計(jì)算。注意:余角、補(bǔ)角的定義中,只和角的大小有關(guān),和位置無(wú)關(guān)。
            考點(diǎn)56:長(zhǎng)方體的元素及棱、面之間的位置關(guān)系,畫長(zhǎng)方體的直觀圖。
            長(zhǎng)方體的元素及棱、面之間的位置關(guān)系是直線之間、直線和平面之間及平面和平面之間位置關(guān)系的縮影,基本要領(lǐng)比較多,掌握這一知識(shí)點(diǎn)的關(guān)鍵在于從概念出發(fā),結(jié)合長(zhǎng)方體的直觀圖來理解這些位置關(guān)系,畫長(zhǎng)方體的直觀圖主要掌握“斜二側(cè)畫法”,關(guān)鍵是理解12條棱之間的位置關(guān)系。
            考點(diǎn)57:圖形平移、旋轉(zhuǎn)、翻折的有關(guān)概念。
            圖形平移、旋轉(zhuǎn)、翻折是平面內(nèi)圖形運(yùn)動(dòng)的三種基本形式,主要性質(zhì)是運(yùn)動(dòng)前后相比,只是圖形的位置發(fā)生了變化,但圖形的大小和形狀并沒有改變(即運(yùn)動(dòng)前后的兩圖形全等),決定圖形平移的主要因素是移動(dòng)的方向和移動(dòng)的距離,平移前后的位置是解決平移問題的關(guān)鍵,圖形旋轉(zhuǎn)的主要因素是旋轉(zhuǎn)中心和旋轉(zhuǎn)角、旋轉(zhuǎn)過程中的不動(dòng)點(diǎn)即為旋轉(zhuǎn)中心,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角為旋轉(zhuǎn)角,翻折的主要因素是折痕,聯(lián)結(jié)任意一對(duì)對(duì)應(yīng)點(diǎn)所成的線段都被折痕垂直平分。
            考點(diǎn)58:軸對(duì)稱、中心對(duì)稱的有關(guān)概念和的關(guān)性質(zhì)。
            軸對(duì)稱是指兩個(gè)圖形中某一個(gè)沿一條直線翻折后與另一個(gè)圖形重合;中心對(duì)稱是其中一個(gè)圖形繞旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,聯(lián)結(jié)對(duì)稱點(diǎn)的連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心所平分,要確定兩個(gè)成中心對(duì)稱圖形的對(duì)稱中心,只要將其中的兩個(gè)關(guān)鍵點(diǎn)與它們的對(duì)應(yīng)點(diǎn)相連,連線的交點(diǎn)即為對(duì)稱中心。
            考點(diǎn)59:畫已知圖形關(guān)于某一直線對(duì)稱的圖形、已知圖形關(guān)于某一點(diǎn)對(duì)稱的圖形。
            考點(diǎn)60:平面直角坐標(biāo)系的有關(guān)概念,直角坐標(biāo)平面上的點(diǎn)與坐標(biāo)之間的——對(duì)應(yīng)關(guān)系。
            直角坐標(biāo)系把平面分成了六部分;第一、二、三、四象限和軸、軸。各部分的符號(hào)特征分別為:第一象限(+、+),第二象限(-、+),第三象限(-、-),第四象限(+、-);軸上的縱坐標(biāo)為0,軸上的點(diǎn)橫坐標(biāo)為0,直角坐標(biāo)平面上的點(diǎn)與坐標(biāo)——對(duì)應(yīng),即:任意一個(gè)點(diǎn)的坐標(biāo)唯一確定,同時(shí)任意一個(gè)坐標(biāo)所對(duì)應(yīng)的點(diǎn)也唯一確定,確定一個(gè)點(diǎn)的坐標(biāo)往往需要確定點(diǎn)到、軸的距離和點(diǎn)所在的象限。注意:坐標(biāo)(a、b)是一個(gè)有序?qū)崝?shù)對(duì),即當(dāng)時(shí),(a,b)和(b,a)表示的點(diǎn)完全不同。
            考點(diǎn)61:直角坐標(biāo)平面上的點(diǎn)的平移、對(duì)稱以及簡(jiǎn)單圖形的對(duì)稱問題。
            考點(diǎn)62:相交直線的有關(guān)概念和性質(zhì)。
            考點(diǎn)63:畫已知直線的垂線、尺規(guī)作線段的垂直平分線。
            考點(diǎn)64:同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念。
            考點(diǎn)65:平行線的判定與性質(zhì)。
            考點(diǎn)66:三角形的有關(guān)概念、畫三角形的高、中線、角平分線、三角形外角的性質(zhì)。
            考點(diǎn)67:三角形的任意兩邊之和大于第三邊的性質(zhì)、三角形的內(nèi)角和。
            考點(diǎn)68:全等形、全等三角形的概念。
            考點(diǎn)69:全等三角形的判定與性質(zhì)。
            考點(diǎn)70:等腰三角形的性質(zhì)與判定(含等邊三角形)。
            考點(diǎn)71:命題、定理、證明、逆命題、逆定理的有關(guān)概念。
            考點(diǎn)72:直角三角形全等的判定。
            考點(diǎn)73:直角三角形的性質(zhì)、勾股定理及其逆定理。
            考點(diǎn)74:直角坐標(biāo)平面內(nèi)兩點(diǎn)間的距離公式。
            考點(diǎn)75:角的平分線和線段的垂直平分線的有關(guān)性質(zhì)。
            考點(diǎn)76:軌跡的意義及三條基本軌跡(圓、角平分線、中垂線)。
            考點(diǎn)77:多邊形及其有關(guān)概念、多邊形外角和定理。
            考點(diǎn)78:多邊形內(nèi)角和定理。
            考點(diǎn)79:平行四邊形(包括矩形、菱形、正方形)的概念。
            初中數(shù)學(xué)幾何教案篇九
            2、使學(xué)生初步學(xué)會(huì)運(yùn)用切割線定理及其推論.。
            3、通過對(duì)切割線定理及推論的證明,培養(yǎng)學(xué)生從幾何圖形歸納出幾何性質(zhì)的能力;
            使學(xué)生理解切割線定理及其推論,它是以后學(xué)習(xí)中經(jīng)常用到的重要定理.。
            學(xué)生不能準(zhǔn)確敘述切割線定理及其推論,針對(duì)具體圖形學(xué)生很容易得到數(shù)量關(guān)系,但把它用語(yǔ)言表達(dá),學(xué)生感到困難.教學(xué)過程:
            一、新課引入:
            二、新課講解:
            最終教師指導(dǎo)學(xué)生把數(shù)量關(guān)系轉(zhuǎn)成語(yǔ)言敘述,完成切割線定理及其推論.。
            2關(guān)系式:pt=pa·pb。
            數(shù)量關(guān)系式:pa·pb=pc·pb.。
            練習(xí)一,p.128中。
            練習(xí)二,p.128中。
            求證:ae=bf.。
            本題可直接運(yùn)用切割線定理.。
            求o的半徑.。
            解:設(shè)o的半徑為r,po和它的長(zhǎng)延長(zhǎng)線交o于c、d.。
            (+r)=6×14r=(取正數(shù)解)答:o的半徑為.。
            三、課堂小結(jié):
            為培養(yǎng)學(xué)生閱讀教材的習(xí)慣,讓學(xué)生看教材p.127—p.128.總結(jié)出本課主要內(nèi)容:
            2.通過對(duì)例3的分析,我們應(yīng)該掌握這類問題的思想方法,掌握規(guī)律、運(yùn)用規(guī)律.。
            四、布置作業(yè):
            1.教材p.132中10;2.p.132中11.。
            初中數(shù)學(xué)幾何教案篇十
            很多學(xué)生在把一個(gè)題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問號(hào),再對(duì)應(yīng)圖形來對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。
            標(biāo)記。
            這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來。如給出對(duì)邊相等,就用邊相等的符號(hào)來表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來。
            引申。
            難度大一點(diǎn)的題目往往把一些條件隱藏起來,所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論(就像電腦一樣,你一點(diǎn)擊開始立刻彈出對(duì)應(yīng)的菜單),然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長(zhǎng)期的積累,便于以后難題的學(xué)習(xí)。
            分析綜合法。
            如證明角相等的方法有1.對(duì)頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。然后結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫出證明過程。
            歸納總結(jié)。
            很多同學(xué)把一個(gè)題做出來,長(zhǎng)長(zhǎng)的松了一口氣,接下來去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過頭來找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。
            以上是常見證明題的解題思路,當(dāng)然有一些的題設(shè)計(jì)的很巧妙,往往需要我們?cè)谔罴虞o助線,分析已知、求證與圖形,探索證明的思路。對(duì)于證明題,有三種思考方式:
            正向思維。
            對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
            逆向思維。
            顧名思義,就是從相反的方向思考問題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。
            如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學(xué)們一定要試一試。
            正逆結(jié)合。
            對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長(zhǎng)法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無(wú)不勝。
            初中數(shù)學(xué)幾何教案篇十一
            2.區(qū)別凸多邊形與凹多邊形.。
            1.重點(diǎn):
            (1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.。
            (2)區(qū)別凸多邊形和凹多邊形.。
            2.難點(diǎn):
            多邊形定義的準(zhǔn)確理解.。
            一、新課講授。
            投影:圖形見課本p84圖7.3一1.。
            你能從投影里找出幾個(gè)由一些線段圍成的圖形嗎?
            上面三圖中讓同學(xué)邊看、邊議.。
            在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?
            (1)它們?cè)谕黄矫鎯?nèi).。
            (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.。
            這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?
            提問:三角形的定義.。
            你能仿照三角形的定義給多邊形定義嗎?
            1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.。
            如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形叫做n邊形.(一個(gè)多邊形由幾條線段組成,就叫做幾邊形.)。
            2.多邊形的邊、頂點(diǎn)、內(nèi)角和外角.。
            3.多邊形的對(duì)角線。
            連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.。
            讓學(xué)生畫出五邊形的所有對(duì)角線.。
            4.凸多邊形與凹多邊形。
            看投影:圖形見課本p85.7.3—6.。
            5.正多邊形。
            由正方形的特征出發(fā),得出正多邊形的概念.。
            各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.。
            二、課堂練習(xí)。
            課本p86練習(xí)1.2.。
            三、課堂小結(jié)。
            引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念.。
            四、課后作業(yè)。
            課本p90第1題.。
            初中數(shù)學(xué)幾何教案篇十二
            經(jīng)歷從不同方向觀察物體的活動(dòng)過程,體會(huì)出從不同方向看同一物體,可能看到不同的結(jié)果;能識(shí)別從不同方向看幾何體得到相應(yīng)的平面圖形。
            通過觀察能畫出不同角度看到的平面圖形(三視圖)。
            體會(huì)視圖是描述幾何體的重要工具,使學(xué)生明白看待事物時(shí),要從多個(gè)方面進(jìn)行。
            學(xué)會(huì)從不同方向看實(shí)物的方法,畫出三視圖。
            畫出三視圖,由三 視圖判斷幾何體。
            本節(jié)內(nèi)容是研究立體圖形的又一重要手 段,是一種獨(dú)立的研究方法,與前后知識(shí)聯(lián)系不大,學(xué)好本課的關(guān)鍵是尊重視覺效果,把立體圖形映射成平面圖形,其間要進(jìn)行三維到二維這一實(shí)質(zhì)性的變化。在由三視圖還原立體圖形時(shí),更需要一個(gè)較長(zhǎng)過程,所以本節(jié)用學(xué)生比較熟悉的幾何體來降低難度。
            情境引入 合作 探究
            課件,多組簡(jiǎn)單實(shí)物、模型。
            :1課時(shí)
            環(huán)節(jié) 教 師 活 動(dòng) 學(xué)生活動(dòng) 設(shè) 計(jì) 意 圖
            創(chuàng)
            設(shè)
            情
            境 教師播放多媒體課件,演示廬山景觀,請(qǐng)學(xué)生背誦蘇東坡《題西林壁》, 并說說詩(shī)中意境。
            并出現(xiàn):橫看成嶺側(cè)成峰,
            遠(yuǎn)近高低各不同。
            不識(shí)廬山真面目,
            只緣身在此山中。
            觀賞美景
            思考“嶺”與“峰”的區(qū)別。 跨越學(xué)科界限,營(yíng)造一個(gè)嶄新的教學(xué)學(xué)習(xí)氛圍,并從中挖掘蘊(yùn)含的數(shù)學(xué)道理。
            新
            課
            探
            究
            一
            1、教師出示事先準(zhǔn)備好的實(shí)物組合體,請(qǐng)三名學(xué)生分別站在講臺(tái)的左側(cè)、右側(cè)和正前方觀察,并讓他們畫出草圖,其他學(xué)生分成三組,分別對(duì)應(yīng)三個(gè)同學(xué),也分別畫出 所見圖形的草圖。
            2、看課本13頁(yè)“觀察與思考”。
            圖:
            你能說出情景的先后順序嗎?你是通過哪些特征得出這個(gè)結(jié)論的?
            總結(jié):通過以前經(jīng)驗(yàn),我們可知,從不同的方向看物體,可能看到不同圖形。
            3、從實(shí)際生活中舉例。
            觀察,動(dòng)手畫圖。
            學(xué)生觀察圖片,把圖片按時(shí)間先后排序。
            利用身邊的事物,有助于學(xué)生積極主動(dòng)參與,激發(fā)學(xué)生潛能,感受新知。
            讓學(xué)生感知文本提高自學(xué)能力。
            利于拓寬學(xué)生思維。
            新
            課
            探
            究
            二 1、感知文本。學(xué)生閱讀13頁(yè)“觀察與思考2”,
            圖:
            2、上升到理性知識(shí):
            (1)從上面看到的圖形叫俯視圖;
            (2)從左面看到的圖形叫左視圖;
            (3)右正面看到的圖形叫主視圖;
            3、練一練:分別畫出14頁(yè)三種立體圖形的三視圖,并回答課本上 三個(gè)問題。(強(qiáng)調(diào)上下左右的方位不要出錯(cuò)) 學(xué)生閱讀,想象。
            學(xué)生分組練習(xí),合作交流。 把已有經(jīng)驗(yàn)重新建構(gòu)。
            感性知識(shí)上升到理性知識(shí) 。
            體會(huì)學(xué)習(xí)成果,使學(xué)生產(chǎn)生成功的喜 悅。
            新課探究三 1、連線,把左面的三視圖與右邊的立體圖形連接起來。
            主視圖 俯視圖 左視圖 立體圖形
            2、歸納:多媒體課件演示
            先由其中的兩個(gè)圖為依據(jù),進(jìn)行組合,用第三個(gè)圖進(jìn)行檢驗(yàn)。
            學(xué)生自己先獨(dú)立思考,得出答案后,小組之間合作交流,互相評(píng)價(jià)。
            以小組為單位討論思考問題的方法。
            把由空間到平面的轉(zhuǎn)化過程逆轉(zhuǎn)回去,充分利用本課前階段的感知,可以降低難度。
            課堂反饋
            1、考查學(xué)生的基礎(chǔ)題。
            主視圖 俯視圖 學(xué)生獨(dú)立自檢
            學(xué)生總結(jié)出以俯視圖為基礎(chǔ) ,在方格上標(biāo)出數(shù)字。
            簡(jiǎn)單知識(shí),基本方法的綜合
            課堂總結(jié)
            1、學(xué)習(xí)到什么知識(shí)?
            2、學(xué)習(xí)到什么方法?
            3、哪些知識(shí)是自己發(fā)現(xiàn)的?
            4、哪些知識(shí)是討論得出的?
            學(xué)生反思
            歸納 讓學(xué)生有成功喜悅,重視與他人合作。
            附:板書設(shè)計(jì)
            1.4 從不同方向看幾何體
            教學(xué)反思:
            初中數(shù)學(xué)幾何教案篇十三
            1、復(fù)習(xí)已學(xué)過的幾何圖形,讓孩子了解幾何圖形的特征。
            2、是孩子能夠不受顏色、大小等條件的影響,分清幾何圖形。
            1、正方形、長(zhǎng)方形、三角形、圓形、半圓形、梯形卡片若干。
            2、(人均一套幾何圖形)及時(shí)貼圖形一套。
            1、復(fù)習(xí)幾何圖形。
            (1)圖形的特征。
            (2)讓幼兒找一找教室里那些物品是什么形狀的,并說出圖形的名稱。
            2、找圖形(分給幼兒人均一套)老師說出圖形的名稱,讓幼兒拿出圖形的名稱。
            3、游戲《圖形娃娃找家》。
            (1)教師交代游戲規(guī)則。
            (2)師幼集體游戲。
            4、教師小結(jié):
            今天我們復(fù)習(xí)了幾何圖形,小朋友上課都很認(rèn)真,活動(dòng)也很積極,特別是林興政小朋友表現(xiàn)最好(給表現(xiàn)好的小朋友發(fā)小紅花)
            請(qǐng)幼兒回家后找一找自己家中的那些物品什么圖形,回來后告訴老師和其他小朋友。
            初中數(shù)學(xué)幾何教案篇十四
            1、能運(yùn)用各種不同的幾何圖形拼貼一幅完整的畫,鞏固對(duì)幾何圖形的認(rèn)識(shí)。
            2、能仔細(xì)觀察、思考,獨(dú)立完成拼貼活動(dòng)。
            3、能較專心地進(jìn)行創(chuàng)作活動(dòng),體驗(yàn)創(chuàng)造帶來的快樂。
            1、經(jīng)驗(yàn)準(zhǔn)備:幼兒欣賞過若干幅由各種幾何圖形片拼貼的畫。
            2、物質(zhì)準(zhǔn)備:不同大小、顏色的.幾何拼圖(三角形、正方形、長(zhǎng)方形、圓形、半圓形、梯形、橢圓形),作業(yè)紙,剪刀、筆、漿糊、抹布等物。
            1、園園的魔術(shù)畫――教師出示幾幅有幾何圖形拼貼的畫:這是園園送給我們班小朋友的。它是怎么做的呢?引導(dǎo)幼兒發(fā)現(xiàn)這些畫是由多種圖形拼貼出來的。
            2、魔術(shù)畫――師幼共同觀察桌面上的材料,請(qǐng)幼兒想好需要什么材料后再來拿取。――幼兒拼貼,教師觀察、提醒,在其遇到困難時(shí)給予適當(dāng)?shù)膸椭鸵龑?dǎo)。提醒幼兒注意使用漿糊的衛(wèi)生,愛惜材料,不浪費(fèi)。
            3、欣賞作品――鼓勵(lì)幼兒給自己的作品起名字,并大方的向集體介紹,用了哪些幾何圖形拼貼了畫。師幼給自己喜歡的作品拍拍手。
            初中數(shù)學(xué)幾何教案篇十五
            角的度量:度量角的大小,可用“度”作為度量單位。把一個(gè)圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
            角的分類:
            (1)銳角:小于直角的角叫做銳角。
            (2)直角:平角的一半叫做直角。
            (3)鈍角:大于直角而小于平角的角。
            (4)平角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終止位置和起始位置成一直線時(shí),所成的角叫做平角。
            (5)周角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終邊和始邊重合時(shí),所成的角叫做周角。
            (6)周角、平角、直角的關(guān)系是:l周角=2平角=4直角=360°。
            初中數(shù)學(xué)幾何教案篇十六
            1、復(fù)習(xí)鞏固對(duì)正方形、三角形和圓形的認(rèn)識(shí)。
            2、培養(yǎng)幼兒參與活動(dòng)的積極性和思維的靈活性。
            1、小兔手偶一個(gè)、魔術(shù)袋一個(gè)。
            2、不同大小、不同顏色的圓形、三角形、正方形若干。
            3、紙制小路(上面鏤刻不同形狀、不同大小、不同顏色的圖形)。
            1、創(chuàng)設(shè)情境,引起幼兒參與活動(dòng)的興趣。
            森林里,小兔的房子被大風(fēng)吹倒了,我們一起幫它造一座房子吧。
            2、幫小兔造房子,復(fù)習(xí)幾何圖形。
            引導(dǎo)幼兒從魔術(shù)袋里摸出不同圖形,并用摸出的幾何圖形給小兔造房子,復(fù)習(xí)圓形、三角形、正方形。
            3 、幫助森林里的小動(dòng)物送建房子的材料,進(jìn)一步鞏固對(duì)幾何圖形的認(rèn)識(shí)。
            “森林里其他小動(dòng)物的房子也被大風(fēng)刮倒了,讓我們也來幫他們選一些建房子的材料吧?!?BR>    自由選擇不同的幾何圖形,并進(jìn)行分類,鞏固對(duì)圖形的認(rèn)識(shí)。
            4、游戲:為動(dòng)物朋友修路。
            利用不同的幾何圖形進(jìn)行對(duì)應(yīng)練習(xí),讓幼兒能夠不受圖形顏色,形狀、大小的影響,正確進(jìn)行區(qū)分。
            5、走一走林間的小路,結(jié)束活動(dòng)。
            初中數(shù)學(xué)幾何教案篇十七
            3、通過對(duì)切割線定理及推論的證明,培養(yǎng)學(xué)生從幾何圖形歸納出幾何性質(zhì)的能力;
            使學(xué)生理解切割線定理及其推論,它是以后學(xué)習(xí)中經(jīng)常用到的重要定理、
            學(xué)生不能準(zhǔn)確敘述切割線定理及其推論,針對(duì)具體圖形學(xué)生很容易得到數(shù)量關(guān)系,但把它用語(yǔ)言表達(dá),學(xué)生感到困難、教學(xué)過程:
            一、新課引入:
            二、新課講解:
            最終教師指導(dǎo)學(xué)生把數(shù)量關(guān)系轉(zhuǎn)成語(yǔ)言敘述,完成切割線定理及其推論、
            2關(guān)系式:pt=pa·pb。
            數(shù)量關(guān)系式:pa·pb=pc·pb、
            練習(xí)一,p、128中。
            練習(xí)二,p、128中。
            求證:ae=bf、
            本題可直接運(yùn)用切割線定理、
            求o的半徑、
            解:設(shè)o的半徑為r,po和它的長(zhǎng)延長(zhǎng)線交o于c、d、
            (+r)=6×14r=(取正數(shù)解)答:o的半徑為、
            三、課堂小結(jié):
            為培養(yǎng)學(xué)生閱讀教材的習(xí)慣,讓學(xué)生看教材p、127—p、128、總結(jié)出本課主要內(nèi)容:
            2、通過對(duì)例3的分析,我們應(yīng)該掌握這類問題的思想方法,掌握規(guī)律、運(yùn)用規(guī)律、
            四、布置作業(yè):
            1、教材p、132中10;2、p、132中11、
            初中數(shù)學(xué)幾何教案篇十八
            3、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°。
            4、推論1直角三角形的兩個(gè)銳角互余。
            5、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
            6、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
            7、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等。
            8、邊角邊公理有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。
            9、角邊角公理有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
            10、推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
            11、邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
            12、斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
            13、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。
            14、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上。
            15、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合。