亚洲免费乱码视频,日韩 欧美 国产 动漫 一区,97在线观看免费视频播国产,中文字幕亚洲图片

      1. <legend id="ppnor"></legend>

      2. 
        
        <sup id="ppnor"><input id="ppnor"></input></sup>
        <s id="ppnor"></s>

        高中數(shù)學課教學設計(專業(yè)20篇)

        字號:

            當我們將所學所得進行總結時,我們會意識到它們應該如何與實際生活聯(lián)系起來。學會應對壓力,保持心理健康是每個人需要重視的事情。以下是小編精心收集的總結案例,歡迎大家一起學習交流。
            高中數(shù)學課教學設計篇一
            教學目標:
            (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
            (2)理解直線與二元一次方程的關系及其證明。
            教學用具:計算機。
            教學方法:啟發(fā)引導法,討論法。
            教學過程:
            下面給出教學實施過程設計的簡要思路:
            (一)引入的設計。
            前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
            問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
            答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
            肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
            問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
            答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。
            肯定學生回答后強調“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”。
            啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
            學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
            【問題1】“任意直線的方程都是二元一次方程嗎?”
            這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
            學生或獨立研究,或合作研究,教師巡視指導.
            經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
            思路一:…。
            思路二:…。
            教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
            按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
            當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
            當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
            學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
            平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
            綜合兩種情況,我們得出如下結論:
            在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。
            至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
            同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
            學生們不難得出:二者可以概括為統(tǒng)一的形式。
            這樣上邊的結論可以表述如下:
            在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
            啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
            【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
            師生共同討論,評價不同思路,達成共識:
            (1)當時,方程可化為。
            這是表示斜率為、在軸上的截距為的直線。
            (2)當時,由于、不同時為0,必有,方程可化為。
            這表示一條與軸垂直的直線。
            因此,得到結論:
            在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。
            為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。
            【動畫演示】。
            演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線。
            至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.
            (三)練習鞏固、總結提高、板書和作業(yè)等環(huán)節(jié)的設計。
            高中數(shù)學課教學設計篇二
            圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
            二、學生學習情況分析。
            我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。
            三、設計思想。
            由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率.
            四、教學目標。
            1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
            2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
            3.借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣.
            五、教學重點與難點:。
            教學重點。
            1.對圓錐曲線定義的理解。
            2.利用圓錐曲線的定義求“最值”
            3.“定義法”求軌跡方程。
            教學難點:。
            巧用圓錐曲線定義解題。
            【設計思路】。
            (一)開門見山,提出問題。
            一上課,我就直截了當?shù)亟o出——。
            例題1:(1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。
            (a)橢圓(b)雙曲線(c)線段(d)不存在。
            (2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。
            (a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。
            【設計意圖】。
            定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節(jié)課首先要弄清楚的問題。
            為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
            高中數(shù)學課教學設計篇三
            1.知識目標。
            1)。
            2)掌握等比數(shù)列的定義理解等比數(shù)列的通項公式及其推導。
            2.能力目標。
            1)學會通過實例歸納概念。
            2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設。
            3、情感目標:
            1)充分感受數(shù)列是反映現(xiàn)實生活的模型。
            2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活。
            3)數(shù)學是豐富多彩的而不是枯燥無味的。
            三、教學對象及學習需要分析。
            1、教學對象分析:
            1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
            2)對歸納假設較弱,應加強這方面教學。
            2、學習需要分析:
            四.教學策略選擇與設計。
            1.課前復習。
            1)復習等差數(shù)列的概念及通向公式。
            2)復習指數(shù)函數(shù)及其圖像和性質。
            2.情景導入。
            高中數(shù)學課教學設計篇四
            在課堂教學中,教師若想提高教學效率,則需了解學生學情,然后在此基礎上,緊扣教學內容,采用多種教學方法,以調動學生參與性,使其積極思考,把握科學學習方法,從而提高學習效率。
            3.1分析學生學習情況。進入高中后,多數(shù)同學有了較為豐富的經(jīng)驗與知識,也具有了一定的抽象思維、分析概括、演繹推理能力,可通過觀察而抽象出一定的數(shù)學知識。同時,學生思維也由邏輯思維發(fā)展為抽象思維,但需依靠一些感知材料。當然,也有部分同學的數(shù)學基礎知識不牢固,對數(shù)學缺少學習興趣。因此,在高中數(shù)列教學中,教師需要根據(jù)學生認知結構,考慮學生學習特點,以貼近學生生活實際的實例為出發(fā)點,注意適時引導與啟發(fā),加強學生思維能力訓練,以適應學生學習心理發(fā)展特征。如教師可創(chuàng)設生活化的教學情境,引導學生由生活實際問題來學習數(shù)列知識,構建數(shù)學模型。
            3.2分析教法與學法。當了解學生學習特點后,教師則需要靈活運用不同教學方法,以誘導學生主動參與課堂活動,展開積極思索。在課堂教學中,問題教學法是較為常用的,其主導思想為探究式教學。即教師精設系列問題,讓學生在老師指導與啟發(fā)下,自主分析與探究,從中獲得結論,增強體驗,得到知識,提高能力。如學習《等比數(shù)列前項和》時,教師可提出問題:某廠去年產值記作1,該廠計劃于今后五年內每年產值比上一年增加10%,那么自今年起至第5年,該廠總產值是多少?該廠五年內的逐年產值有何特點?通過什么公式可求出總產值?這樣,通過問題將學生帶入等比數(shù)列前項和的探究學習中。其次,誘導思維法。通過這一方法,可凸顯重點,幫助學生突破難點。同時,可發(fā)揮學生主觀能動性,使其主動構建知識,培養(yǎng)創(chuàng)造精神。再次,分組討論法。利用這一方法,可加強了師生、生生間的交流互動,碰撞思維,啟迪智慧,使學生自主發(fā)現(xiàn)與解決問題。另外,還有講練結合法。對于一些重難點知識,還需要教師詳細見解,并借助典型例題,讓學生鞏固知識,掌握解題方法。此外,教師還需要對學生進行學法指導。如引導學生由實際問題對數(shù)組特征加以抽象,從而得到數(shù)列、等比與等差數(shù)列概念;如根據(jù)等比數(shù)列概念特征對等比數(shù)列通項公式加以推導等。在教學過程中,教師還可讓能力較強的學生拓展思維方法,運用不同方法來推導等差或等比數(shù)列通項公式。同時,教師還需為學生留出充足的思考空間與時間,讓學生大膽質疑、自主聯(lián)想與探究。
            總而言之,數(shù)列是高中數(shù)學知識體系中十分重要的一部分,因此教師在教學過程中應以新課改教學理念為基本依據(jù),在教學過程中不斷對教學方法進行探索和研究,并充分利用自身有力的教學特點根據(jù)不同學生的學習狀況來對教學方法進行創(chuàng)新,從而使教學效果得到有效提高。
            高中數(shù)學課教學設計篇五
            按照傳統(tǒng)的教學理念來說,教學設計主要是指有效地運用相應的教學系統(tǒng),有效地將教學與學習理論逐漸轉變?yōu)橛行У貙虒W參考資料和教學活動具體規(guī)劃實現(xiàn)系統(tǒng)化的整個過程,其中教學內容、教學方法和教學效果問題在教學設計當中得到有效的解決.也可以說,所謂的教學設計就是將教學具體活動步驟制定成合理的教學方案,同時在教學結束后對教學過程進行相應的評估與總結,從而使教學效果得到提升,并實現(xiàn)對教學環(huán)境的優(yōu)化工作.
            高中數(shù)學課教學設計篇六
            數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
            三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內容,其主要內容是三角函數(shù)誘導公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學內容為公式(二)、(三)、(四)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。為此本節(jié)內容在三角函數(shù)中占有非常重要的地位。
            本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內容。
            (1)基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;
            (4)個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質屬性,培養(yǎng)學生的唯物史觀。
            1、教學重點。
            理解并掌握誘導公式。
            2、教學難點。
            正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式。
            “授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。
            1、教法。
            數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質。
            在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅。
            2、學法。
            “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題。
            在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習。
            3、預期效果。
            本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。
            (一)創(chuàng)設情景。
            1、復習銳角300,450,600的三角函數(shù)值;
            2、復習任意角的三角函數(shù)定義;
            3、問題:由你能否知道sin2100的值嗎?引如新課。
            設計意圖。
            自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
            (二)新知探究。
            1、讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;
            2、讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
            3、sin2100與sin300之間有什么關系。
            設計意圖。
            由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊。
            (三)問題一般化。
            探究一。
            1、探究發(fā)現(xiàn)任意角的終邊與的終邊關于原點對稱;
            2、探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
            3、探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系。
            設計意圖。
            (四)練習。
            利用誘導公式(二),口答下列三角函數(shù)值。
            喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題。
            (五)問題變形。
            高中數(shù)學課教學設計篇七
            為了更好地貫徹落實和科課程標準有關要求,促進廣大教師學習現(xiàn)代教學理論,進一步激發(fā)廣大教師課堂教學的創(chuàng)新意識,切實轉變教學觀念,積極探索新課程理念下的教與學,有效解決教學實踐中存在的問題,促進課堂教學質量的全面提高,在20xx年由福建省普通教育教學研究室組織,舉辦了一次教學設計大賽活動。這次活動數(shù)學學科高中組共收到有49篇教學設計文章。獲獎文章推薦評審專家組本著公平、公正的原則,經(jīng)過認真的評審,全部作品均評出了相應的獎項;專家組還為獲得一、二等獎的作品撰寫了點評。本稿收錄的作品全部是參加此次福建省教學設計競賽獲獎作者的文章。按照征文的規(guī)則,我們對入選作品的格式作了一些修飾,并經(jīng)過適當?shù)腵整合,以饗讀者。
            在此還需要說明的是,為了方便閱讀,獲獎文章的排序原則,并非按照獲獎名次的前后順序,而是按照高中數(shù)學新課程必修1—5的內容順序,進行編排的。部分體現(xiàn)大綱教材內容的文章則排在后面。
            不管你獲得的是哪個級別的獎項,你們都可以有成就感,因為那是你們用心、用汗?jié)补喑龅墓麑?,它記錄了你們奉獻于數(shù)學教育事業(yè)的心路歷程。書中每一篇的教學設計都耐人尋味,都能帶給我們許多遐想和啟迪。你們是優(yōu)秀的,在你們未來悠遠的職業(yè)里程中,只要努力,將有更多的輝煌在等待著大家。謝謝你們!
            1、集合與函數(shù)概念實習作業(yè)。
            《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁。-----《實習作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學文化的特色,學生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學習方式帶給他們的學習數(shù)學的樂趣。
            該內容在《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設計,做好準備工作,充分體現(xiàn)教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數(shù)學文化的熏陶。
            《標準》強調數(shù)學文化的重要作用,體現(xiàn)數(shù)學的文化的價值。數(shù)學教育不僅應該幫助學生學習和掌握數(shù)學知識和技能,還應該有助于學生了解數(shù)學的價值。讓學生逐步了解數(shù)學的思想方法、理性精神,體會數(shù)學家的創(chuàng)新精神,以及數(shù)學文明的深刻內涵。
            1、了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;
            2、體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
            3、在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
            五、教學重點和難點。
            重點:了解函數(shù)在數(shù)學中的核心地位,以及在生活里的廣泛應用;
            難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
            【課堂準備】。
            1、分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調工作,確保每位學生都參加。
            2、選題:根據(jù)個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
            高中數(shù)學課教學設計篇八
            1.把握菱形的判定。
            2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力。
            3.通過教具的演示培養(yǎng)學生的學習愛好。
            4.根據(jù)平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想。
            二、教法設計。
            觀察分析討論相結合的方法。
            三、重點·難點·疑點及解決辦法。
            1.教學重點:菱形的判定方法。
            2.教學難點:菱形判定方法的綜合應用。
            四、課時安排。
            1課時。
            五、教具學具預備。
            教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具。
            六、師生互動活動設計。
            教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥。
            七、教學步驟。
            復習提問。
            1.敘述菱形的定義與性質。
            2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
            引入新課。
            師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
            生答:定義法。
            此外還有別的兩種判定方法,下面就來學習這兩種方法。
            講解新課。
            菱形判定定理1:四邊都相等的四邊形是菱形。
            菱形判定定理2:對角錢互相垂直的平行四邊形是菱形。圖1。
            分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形。
            分析判定2:。
            師問:本定理有幾個條件?
            生答:兩個。
            師問:哪兩個?
            生答:(1)是平行四邊形(2)兩條對角線互相垂直。
            師問:再需要什么條件可證該平行四邊形是菱形?
            生答:再證兩鄰邊相等。
            (由學生口述證實)。
            證實時讓學生注重線段垂直平分線在這里的應用,
            師問:對角線互相垂直的四邊形是菱形嗎?為什么?
            可畫出圖,顯然對角線,但都不是菱形。
            菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):。
            注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件。
            例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖。
            求證:四邊形是菱形(按教材講解).
            總結、擴展。
            1.小結:
            (1)歸納判定菱形的四種常用方法。
            (2)說明矩形、菱形之間的區(qū)別與聯(lián)系。
            2.思考題:已知:如圖4△中,平分,交于。
            求證:四邊形為菱形。
            八、布置作業(yè)。
            教材p159中9、10、11、13。
            高中數(shù)學課教學設計篇九
            (1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數(shù)學中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
            (2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
            (3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
            (1)重點:了解集合的含義與表示、集合中元素的特性。
            (2)難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
            [設計意圖]引出“集合”一詞。
            【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
            [設計意圖]探討并形成集合的含義。
            【問題3】請同學們舉出認為是集合的例子。
            [設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
            [設計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關系。
            [設計意圖]引出并介紹列舉法。
            【問題6】例1的講解。同學們能用列舉法表示不等式x-73的解集嗎?
            【問題7】例2的講解。請同學們思考課本第6頁的思考題。
            [設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
            【問題8】請同學們總結這節(jié)課我們主要學習了那些內容?有什么學習體會?
            [設計意圖]學習小結。對本節(jié)課所學知識進行回顧。布置作業(yè)。
            高中數(shù)學課教學設計篇十
            (一)教材分析:
            此次一對一家教所使用教材為北師大版高中數(shù)學必修5。輔導內容為第一章第二節(jié)等差數(shù)列。前一節(jié)的內容為數(shù)列,學生已初步了解到數(shù)列的概念,知道什么是首項,什么是通項等等。以及了解到什么是遞增數(shù)列,什么是遞減數(shù)列。通過第一節(jié)的學習的鋪墊,可以讓學生更自主的探究,學習等差數(shù)列。而我也是在這些基礎上為她講解第二節(jié)等差數(shù)列。
            (二)學生分析:。
            此次所帶學生是一名高二的學生。聰明但是不踏實,做題浮躁?;A知識掌握不夠牢靠,知識的運用能力較差,分析能力較弱,解題思路不清。每次她遇到會的題,就快快的草率做完,總會有因馬虎而犯的錯誤。遇到稍不會的,總是很浮躁,不能冷靜下來慢慢思考。就由略不會變成不會。但她也是個虛心聽教的孩子,給她講課,她也會很認真地聽講。
            (三)教學目標:
            1、通過教與學的配合,讓她能夠懂得什么是等差數(shù)列,以及等差數(shù)列的通項公式。
            2、通過對公式的推導,讓她加深對內容的理解,以及學會自己對公式的推導。并且能夠靈活運用。
            3、在教學中讓她通過對公式的推導來明白推理的藝術,并且培養(yǎng)她學習,做題條理清晰,思路縝密的好習慣。
            4、讓她在學習,做題中一步步抽絲剝繭,尋找解決問題的方法,培養(yǎng)她敢于面對數(shù)學學習中的困難,并培養(yǎng)她對克服困難和運用知識。耐心地解決問題。
            5、讓她在學習中發(fā)現(xiàn)數(shù)學的獨特的美,能夠愛上數(shù)學這門課。并且認真對待,自主學習。
            (四)教學重點:。
            1、讓學生正確掌握等差數(shù)列及其通項公式,以及其性質。并能獨立的推導。
            2、能夠靈活運用公式并且能把相應公式與題相結合。
            (五)教學難點:
            1、讓學生掌握公式的推導及其意義。
            2、如何把所學知識運用到相應的題中。
            二、課前準備。
            (一)教學器材。
            對于一對一教教采用傳統(tǒng)講課。一張掛歷。
            (二)教學方法。
            通過對生活中的有規(guī)律數(shù)據(jù)的觀察來提出問題,讓學生結合前一節(jié)所學,思考有什么規(guī)律。從生活中著手有利于激發(fā)學生的興趣愛好,并能更積極地學習。讓學生先獨立的思考,不僅能讓她對所學知識映像更為深刻,并且培養(yǎng)她的縝密思維。讓她回答后,我再幫助她糾正,并且讓她提出心中所慮。經(jīng)過我給她講完課后,讓她回答自己先前的疑慮。并且讓她自己總結,得出結論。最后讓她勤加練習。以一種“提出問題—探究問題—學習知識—解答問題—得出結論—強加訓練”的模式方法展開教學。
            (三)課時安排。
            課時大致分為五部分:
            聯(lián)系實際提出相關問題,進行思考。
            2、以我教她學的模式講授相關章節(jié)知識。
            3、讓學生練習相關習題,從所學知識中找其相應解題方案。
            4、學生對知識總結概括,我再對其進行補充說明。
            5、布置作業(yè),讓她課后多做練習。
            三、課程設計(一)提出問題引入根據(jù)我們的掛歷上,一個月的日期數(shù)。
            通過觀察每一行日期和每一列日期它們有什么規(guī)律?
            思考1)2)3)1,3,5,7,9。
            2,4,6,8,10。
            6,6,6,6,6。
            這些每一行有什么規(guī)律?
            (二)分析問題并講解。
            4、由以上公式,性質,讓學生總結。講解等差數(shù)列的定義。并且掌握數(shù)列的遞增,遞減與公差d的關系。
            5、總結,串講當日所學。
            給出題目,并思考如何快速計算?
            (三)布置作業(yè)。
            總結當日所學。
            2、做練習冊上章節(jié)習題。
            3、根據(jù)當日所學以及課上所講求的思考題,找出快速運算方法,并引導預習等差數(shù)列前n項和。
            四、設計理念。
            以一種最簡便,易懂的方式讓學生來學習,一切以讓學生正確掌握知識,并能正確運用為理念。并能充分調動學生和家教老師的積極性為理念來設計。
            本節(jié)課教程內容較難,是下一節(jié)等差數(shù)列前n項和的鋪墊。此節(jié)課學習通過聯(lián)系實際,把數(shù)學融入到生活中,從生活中探究學習數(shù)學。并提出問題,分析問題。把主動權交給學生,由她先獨立思考總結,再由我給她正確講解總結,然后再讓她做相應練習題,課后再認真總結。這樣可以加強她學習的主動性,更有利于她對知識的消化,吸收。這種方法同時可以培養(yǎng)學生的思維能力,讓她從自主學習中探索適合自己的學習方法,培養(yǎng)她獨立思考的能力。讓她更深刻的了解知識內涵,鞏固所學。使她能靈活運用所學。
            高中數(shù)學課教學設計篇十一
            掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
            掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
            等比數(shù)列性質請同學們類比得出.
            【方法規(guī)律】。
            1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學思想和方法.
            2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)。
            a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)。
            3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.
            【示范舉例】。
            例1:(1)設等差數(shù)列的`前n項和為30,前2n項和為100,則前3n項和為.
            (2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.
            例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).
            例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.
            高中數(shù)學課教學設計篇十二
            解三角形及應用舉例。
            解三角形及應用舉例。
            一.基礎知識精講。
            掌握三角形有關的定理。
            利用正弦定理,可以解決以下兩類問題:
            (1)已知兩角和任一邊,求其他兩邊和一角;。
            (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:
            (1)已知三邊,求三角;。
            (2)已知兩邊和它們的夾角,求第三邊和其他兩角。
            掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題.
            二.問題討論。
            思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
            思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關性質.
            例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺風中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。
            一.小結:
            1.利用正弦定理,可以解決以下兩類問題:
            (1)已知兩角和任一邊,求其他兩邊和一角;。
            (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。
            2.利用余弦定理,可以解決以下兩類問題:
            (1)已知三邊,求三角;。
            (2)已知兩邊和它們的夾角,求第三邊和其他兩角。
            3.邊角互化是解三角形問題常用的手段.
            三.作業(yè):p80闖關訓練。
            高中數(shù)學課教學設計篇十三
            進一步掌握直線方程的各種形式,會根據(jù)條件求直線的方程。
            【過程與方法】。
            在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
            【情感、態(tài)度與價值觀】。
            在學習活動中獲得成功的體驗,增強學習數(shù)學的興趣與信心。
            二、教學重難點。
            【重點】根據(jù)條件求直線的方程。
            【難點】根據(jù)條件求直線的方程。
            (一)課堂導入。
            直接點明最近學習了直線方程的多種形式,這節(jié)課將練習求直線的方程。
            (二)回顧舊知。
            帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
            為了加深學生的運用和理解,繼續(xù)引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。
            預設學生有多種解題方法,如ab、ac所在直線方程用兩點式求解,bc所在直線方程用點斜式求解。
            學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。
            師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。
            (四)小結作業(yè)。
            小結:學生暢談收獲。
            作業(yè):完成課后相應練習題,根據(jù)已知條件求直線的方程。
            高中數(shù)學課教學設計篇十四
            高中數(shù)學教學應鼓勵學生用數(shù)學去解決問題,甚至去探索一些數(shù)學本身的問題。教學中,教師不僅要培養(yǎng)學生嚴謹?shù)倪壿嬐评砟芰Α⒖臻g想象能力和運算能力,還要培養(yǎng)學生數(shù)學建模能力與數(shù)據(jù)處理能力,加強在“用數(shù)學”方面的教育。最好的方式就是用多媒體電腦和諸如《幾何畫板》、《幾何畫王》、《幾何專家》等工具軟件,為學生創(chuàng)設數(shù)學實驗情境。例如,在上“棱柱和異面直線”課時,我們指導學生用硬紙制作“長方體”和“正三棱柱”等模型。教師用《幾何畫板》設計并創(chuàng)作“長方體中的異面直線”課件,引導學生利用自己制作的“長方體”模型和上述課件,思考以下問題:“長方體中所有體對角線(4條)與所有面對角線(12條)共組成多少對異面直線?”、“長方體中所有體對角線(4條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有棱(12條)之間相互組成多少對異面直線?”、“長方體所有面對角線(12條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有面對角線(12條)之間相互組成多少對異面直線?”。然后由學生獨立進行數(shù)學實驗,探討上述問題。
            此外,教師還要根據(jù)數(shù)學思想發(fā)展脈絡,充分利用實驗手段尤其是運用現(xiàn)代教育技術,創(chuàng)設教學實驗情景、設計系列問題、增加輔助環(huán)節(jié),有助于引導學生通過操作、實踐,探索數(shù)學定理的證明和數(shù)學問題的解決方法,讓學生親自體驗數(shù)學建模過程,培養(yǎng)學生的數(shù)學創(chuàng)新能力和實踐能力,提高數(shù)學素養(yǎng)。
            巧設情境,增加學生的投入感。
            為了構建生動活潑富有個性的數(shù)學課堂,我把創(chuàng)設情境,激發(fā)學生的學習興趣當成數(shù)學教學的重頭戲,使之成為數(shù)學課的一道亮麗的風景?!稊?shù)學課程標準》強調數(shù)學課堂教學必須注意從學生熟悉的生活情境和感興趣的事物出發(fā),使學生有更多的機會從周圍熟悉的事物中學習數(shù)學,理解數(shù)學,讓學生感受到數(shù)學就在他們周圍。因此,我從學生已有的生活經(jīng)驗出發(fā),創(chuàng)設有趣的教學情境,強化學生的感性認識,豐富學生的學習過程,引導學生在情境中觀察、操作、交流,感受數(shù)學與日常生活的密切聯(lián)系,感受數(shù)學在生活中的作用,加深對數(shù)學的理解,并運用數(shù)學知識解決現(xiàn)實生活中的問題。如《課程標準》在綜合實踐的教學建議部分提供了這樣一個案例:
            要求學生統(tǒng)計自己家庭一周內丟棄的塑料袋個數(shù),并依據(jù)所收集的數(shù)據(jù)展開討論。其程序是:(1)作為家庭作業(yè)提出此問題;(2)學生自主進行統(tǒng)計活動;(3)請某學生在課堂上對結果做現(xiàn)場統(tǒng)計(列出統(tǒng)計表,老師也把自己的統(tǒng)計結果融入其中);(4)統(tǒng)計分析(引導學生根據(jù)數(shù)據(jù)對全班一周丟棄塑料袋情況用不同的算法進行描述和評價);(5)結合問題情境深入領會有關概念(如平均數(shù)、中位數(shù)、眾數(shù)等)的含義,并通過問題的層層深入讓學生進一步感受不同統(tǒng)計量來表示同一問題的必要性;(6)問題自然延伸(計算這些袋對土地造成的污染,先估計一個袋的污染,然后通過多種方式計算推及到一周呢?一年呢?全校同學的家庭呢?照此速度要多久就會污染整個學校呢?)。由此例可以看出,這種模式的一個關鍵點就是圍繞著學生日常生活來展開的,由學生身邊的事所引出的數(shù)學問題,使學生體會到數(shù)學與生活的緊密和諧關系,樸素的問題情境自然讓學生產生一種情感上的親和力和感召力,可以讓他們真正應用數(shù)學,并引導他們學會做事。
            高中數(shù)學課教學設計篇十五
            (1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
            (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
            2.過程與方法
            學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
            3.情感態(tài)度與價值觀
            (1)提高空間想象力與直觀感受。
            (2)體會對比在學習中的作用。
            (3)感受幾何作圖在生產活動中的應用。
            重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
            1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
            2.教學用具:三角板、圓規(guī)
            (一)創(chuàng)設情景,揭示課題
            1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
            把實物圓柱放在講臺上讓學生畫。
            2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內容。
            (二)研探新知
            1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
            畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
            根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
            2.例2,用斜二測畫法畫水平放置的圓的直觀圖
            教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
            教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
            3.探求空間幾何體的直觀圖的畫法
            (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
            教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
            (2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
            4.平行投影與中心投影
            投影出示課本p17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
            5.鞏固練習,課本p16練習1(1),2,3,4
            三、歸納整理
            學生回顧斜二測畫法的關鍵與步驟
            四、作業(yè)
            1.書畫作業(yè),課本p17練習第5題
            2.課外思考課本p16,探究(1)(2)
            高中數(shù)學課教學設計篇十六
            首先,可以聯(lián)系實際生活。數(shù)學知識在生活中有著廣泛的應用,與實際生活有著廣泛的聯(lián)系,在進行課堂導入設計時,教師可以聯(lián)系學生的實際生活,激發(fā)學生的好奇心。例如在學習拋物線的知識時,可以這樣導入:讓學生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學生仔細觀察籃球(乒乓球)落地時的軌跡,在學生積極參討論時,引入拋物線的知識。在導入中聯(lián)系實際生活,不僅能夠激發(fā)學生的興趣,并且能夠拉近學生與數(shù)學之間的距離。
            其次,教師可以利用數(shù)學史進行導入。數(shù)學教材中很多知識都與數(shù)學史相關,學生對這部分知識充滿興趣,因此在教學過程中,教師設計課堂導入時可以從這一點入手,先通過提問或者介紹的方式,讓學生了解數(shù)學史上的重大事件和重要人物等,引起學生的敬佩和仰慕之情,然后引入相關的數(shù)學知識。興趣是最好的老師,在學生的期待下展開數(shù)學教學,無疑會提高課堂教學效率。課堂導入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導入方式的多樣性,才能更好地激發(fā)學生的興趣,在高中數(shù)學教學中教師要根據(jù)實際情況進行合理選擇使用。
            做好課堂提問設計。
            首先,教師要精心設計問題。提問的目的是為了激發(fā)學生的興趣和思維,因此,教師提問的問題不能是單調、重復的,而應該是具有啟發(fā)性和針對性,能夠激發(fā)學生的思考,引導學生進行步步深入。最重要的是,教師提出的問題要符合學生的知識水平和認知能力,教師不僅應該了解教材,并且要全面了解學生,這樣才能使提出的問題符合學生的需要。學生的數(shù)學水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學生設計不同難度的問題,促進每個學生獲得進步和發(fā)展。
            其次,課堂提問的方式要多樣化。如同教學方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發(fā)學生興趣,達到教學目的,否則,無論教師設計的問題多么巧妙,學生也會感到厭煩。根據(jù)問題的內容和學生實際情況,提問可以是直接問答;可以是導思式;可以教師提問、學生回答;也可以是學生提問、教師回答。在教學過程中教師要注意培養(yǎng)學生的問題意識,鼓勵學生自己提出問題,問題是思考的開端,對于學生來說提出問題比解決問題更重要,因此,教師要為學生創(chuàng)造機會,讓學生在認真閱讀教材的基礎上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進行點撥,讓學生思考,也可以組織學生進行討論,培養(yǎng)學生分析問題和解決問題的能力。
            高中數(shù)學課教學設計篇十七
            合理制定三維目標,明確重點與難點。
            《普通高中數(shù)學課程標準》提出的三維教學目標是:知識與技能,過程與方法,情感態(tài)度與價值觀。知識與技能目標包括學生要知道、了解、理解的基礎知識、基本原理目標和學生必須達到的基本技能目標;過程與方法目標包括實現(xiàn)數(shù)學科學中的探究過程和探究方法、優(yōu)化學生的學習過程,強調學生探索新知識的經(jīng)歷和獲得新知識的體驗;情感態(tài)度與價值觀目標中包括學生的學習興趣與熱情、戰(zhàn)勝困難的精神、認識數(shù)學之美感和塑造學生的人格。三維目標之間的關系是“在實現(xiàn)知識與技能的過程中有機地融合、滲透過程與方法目標、情感態(tài)度與價值觀目標的達成?!比S目標是課堂教學活動的出發(fā)點與歸宿。
            教學設計時教師要依據(jù)教材的具體內容,結合學生的學習實際,以促進每一個學生的發(fā)展為本,合理地制訂三維目標,注意體現(xiàn)三維目標的整體性,相輔相成。所謂重點,指一節(jié)課中最重要的新知識,即聯(lián)動全局,帶動全面的重要之點,是學生認知發(fā)生轉折與質變的地方,是教學的重心所在,是課堂教學中需要解決的主要矛盾。所謂難點是一節(jié)課中學習起來最困難的地方,是學生的認知能力與知識要求之間存在較大矛盾、知識跨越最大的地方,是學生難于理解和掌握的內容。例如“等差數(shù)列前n項和”這節(jié)課中的重點是“等差數(shù)列前n項和公式”,難點是“等差數(shù)列前n項和公式的推導——倒序相加法”。只有合理制訂三維目標和確定好重點與難點,才能圍繞三維目標和重點與難點的突破,制定出出色的教學設計。
            創(chuàng)設生活情景,使數(shù)學生活化。
            為學生提供充分從事數(shù)學活動和交流的機會,促使他們在自主探索的過程中真正理解和掌握基本的數(shù)學知識和技能、數(shù)學思想和方法,獲得廣泛的數(shù)學體驗,將數(shù)學應用于生活,提高自主探究數(shù)學知識的能力和學生學習數(shù)學能力。
            認知最牢靠和最根深蒂固的部分就是生活中經(jīng)常接觸和經(jīng)常使用的知識,有些已經(jīng)進入了他們的潛意識。如果能把新知識巧妙地溶于生活情境中,那將會是學生非常歡迎的,一旦接受也會被牢固掌握。而現(xiàn)代教學手段比以往更容易讓現(xiàn)實生活中的現(xiàn)象再現(xiàn)或模擬于課堂。因此,從學生的生活經(jīng)驗和知識背景出發(fā),提供學生充分進行數(shù)學實踐活動和交流的機會課堂效果一定會很好。用與學生年齡特征相適應的大眾化、生活化的方式呈現(xiàn)數(shù)學內容,也是數(shù)學課程改革的一個基本思路。教師要敢于走出教材,走出課堂,走進豐富多彩的生活。比如在引入兩個平面垂直的判定定理時,教師提出:建造一座大樓,怎樣才能使墻面與地面垂直呢?學生很快會聯(lián)想到建筑工人常常用一端系著鉛錘的細繩讓其垂直地面,并以這根繩子為參照,看看所砌的墻是否經(jīng)過這條細繩。然后問:為什么若墻面經(jīng)過這條繩子,所砌的墻就與地面垂直呢?還可以引導學生觀察教室門板與地面的位置關系,它們是否垂直?轉動門扇是否還與地面保持垂直,奇怪嗎?為什么?到底隱藏著數(shù)學上的什么奧秘?由這些親切真實情景,導出兩個平面垂直的判定定理就水到渠成了。
            高中數(shù)學課教學設計篇十八
            《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁。——《實習作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學文化的特色,學生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學習方式帶給他們的學習數(shù)學的樂趣。
            二、學生學習情況分析。
            該內容在《普通高中課程標準實驗教科書·數(shù)學(1)》(人教a版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設計,做好準備工作,充分體現(xiàn)教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數(shù)學文化的熏陶。
            三、設計思想。
            《標準》強調數(shù)學文化的重要作用,體現(xiàn)數(shù)學的文化的價值。數(shù)學教育不僅應該幫助學生學習和掌握數(shù)學知識和技能,還應該有助于學生了解數(shù)學的價值。讓學生逐步了解數(shù)學的思想方法、理性精神,體會數(shù)學家的創(chuàng)新精神,以及數(shù)學文明的深刻內涵。
            四、教學目標。
            1、了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;。
            2、體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;。
            3、在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
            五、教學重點和難點。
            重點:了解函數(shù)在數(shù)學中的核心地位,以及在生活里的廣泛應用;。
            難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
            【課堂準備】。
            1、分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調工作,確保每位學生都參加。
            2、選題:根據(jù)個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
            高中數(shù)學課教學設計篇十九
            新學期已經(jīng)開始,在學校工作總體思路的.指導下,現(xiàn)將本學期數(shù)學組工作進行規(guī)劃、設想,力爭使本學期的工作扎實有效,為學校的發(fā)展做出新的貢獻。
            以學校工作總體思路為指導,深入學習和貫徹新課程理念,以教育教學工作為重點,優(yōu)化教學過程,提高課堂教學質量。結合數(shù)學組工作實際,用心開展教育教學研究活動,促進教師的專業(yè)發(fā)展,學生各項素質的提高,提高數(shù)學組教研工作水平。
            1、加強常規(guī)教學工作,優(yōu)化教學過程,切實提高課堂教學質量。
            2、加強校本教研,用心開展教學研究活動,鼓勵教師根據(jù)教學實際開展教學研究,透過撰寫教學反思類文章等促進教師的專業(yè)化發(fā)展。
            3、掌握現(xiàn)代教育技術,用心開展網(wǎng)絡教研,拓展教研的深度與廣度。
            4、組織好學生的數(shù)學實踐活動,以調動學生學習用心性,豐富學生課余生活,促進其全面發(fā)展。
            1、備課做好教學準備是上好課的前提,本學期要求每位教師做好教案、教學用具、作業(yè)本等準備,以良好的精神狀態(tài)進入課堂。
            備課是上好課的基礎,本學期數(shù)學組仍采用年級組群眾備課形式,要求教案盡量做到環(huán)節(jié)齊全,反思具體,有價值。群眾備課時,所有教師務必做好準備,每個單元負責教師要提前安排好資料及備課方式,對于教案中修改或補充的資料要及時地在旁邊批注,電子教案的可在旁邊用紅色批注(發(fā)布校園網(wǎng)數(shù)學組板塊內),使群眾備課不流于形式,每節(jié)課前都要做到課前的“復備”。每一位教師在個人研究和群眾備課的基礎上構成適合自己、實用有效的教案,更好的為課堂教學服務。各年級組每月帶給單元備課活動記錄,在規(guī)定的群眾備課時間,教師無特殊原因不得缺席。
            提高課后反思的質量,提倡教學以后將課堂上精彩的地方進行實錄,以案例形式進行剖析。對于原教案中不合理的及時記錄,結合課堂重新修改和設計,同年級教師能夠共同反思、共同提高,為以后的教學帶給借鑒價值。數(shù)學教師每周反思不少于2次,每學期要有1-2篇較高水平的反思或教學案例,及時發(fā)布在向校園網(wǎng)上,學校將及時進行評審。
            教案檢查分平時抽查和定期檢查兩種形式,“推門課”后教師要及時帶給本節(jié)課的教案,每月26號為組內統(tǒng)一檢查教案時間,每月檢查結果將公布在校園網(wǎng)數(shù)學組板塊中的留言板中。
            2、課堂教學課堂是教學的主陣地。教師不但要上好公開課,更要上好每一天的“常規(guī)課”。遵守學校教學常規(guī)中對課堂教學的要求。課堂上要用心的創(chuàng)設有效的教學情境,要重視學習方法、思考方法的滲透與指導,重視數(shù)學知識的應用性。學校將繼續(xù)透過聽“推門課”促進課堂教學水平的提高,發(fā)現(xiàn)教學新秀。公開課力求有特點,能側重一個教學問題,促進組內教師的研討。一學期做到每人一節(jié),年輕教師上兩節(jié)。課堂對于比較成熟的公開課或研討課鼓勵大家錄像,保存資料,及時地向校園網(wǎng)推薦。
            高中數(shù)學課教學設計篇二十
            1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
            2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
            3、通過對四種命題之間關系的學習,培養(yǎng)學生邏輯推理能力。
            4、初步培養(yǎng)學生反證法的數(shù)學思維。
            二、教學分析。
            重點:四種命題;難點:四種命題的關系。
            1、本小節(jié)首先從初中數(shù)學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
            3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
            三、教學手段和方法(演示教學法和循序漸進導入法)。
            1、以故事形式入題。
            2、多媒體演示。
            四、教學過程。
            (一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學思想嗎?通過這節(jié)課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
            設計意圖:創(chuàng)設情景,激發(fā)學生學習興趣。
            (二)復習提問:
            1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
            2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
            3.原命題真,逆命題一定真嗎?
            學生活動:
            設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.。
            (三)新課講解:
            1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
            2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
            3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
            (四)組織討論:
            讓學生歸納什么是否命題,什么是逆否命題。
            例1及例2。
            學生活動:
            討論后回答。
            這兩個逆否命題都真.。
            原命題真,逆否命題也真。
            引導學生討論原命題的真假與其他三種命題的真。
            假有什么關系?舉例加以說明,同學們踴躍發(fā)言。
            (六)課堂小結:
            1、一般地,用p和q分別表示原命題的條件和結論,用vp和vq分別表示p和q否定時,四種命題的形式就是:
            原命題若p則q;
            逆命題若q則p;(交換原命題的條件和結論)。
            否命題,若vp則vq;(同時否定原命題的條件和結論)。
            逆否命題若vq則vp。(交換原命題的條件和結論,并且同時否定)。
            2、四種命題的關系。
            (1).原命題為真,它的逆命題不一定為真.。
            (2).原命題為真,它的否命題不一定為真.。
            (3).原命題為真,它的逆否命題一定為真。
            (七)回扣引入。
            分析引入中的笑話,先討論,后總結:現(xiàn)在我們來分析一下主人說的四句話:
            第一句:“該來的沒來”
            其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
            第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
            第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
            同學們,生活中處處是數(shù)學,期待我們善于發(fā)現(xiàn)的眼睛。
            五、作業(yè)。
            1.設原命題是“若。
            斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判。