對待人際關(guān)系要懂得尊重和理解,才能保持良好的溝通和合作。的結(jié)尾要有總結(jié)性的陳述,對之前的內(nèi)容進行概括和提煉??偨Y(jié)范文作為參考,可以幫助我們找到自己獨特的寫作風(fēng)格。
直線與圓的位置關(guān)系聽課筆記篇一
薛老師執(zhí)教的高三文科復(fù)習(xí)課:《直線與圓的位置關(guān)系》,首先從一個引例出發(fā),讓學(xué)生嘗試作圖和驗證,得出知識要點,繼而在此基礎(chǔ)上繼續(xù)研究直線方程和軌跡等問題。例題只有一個,但小題很多,題題遞進,環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學(xué)生訓(xùn)練為主,教師講授和引導(dǎo)為輔,共同完成本節(jié)課的整體教學(xué)內(nèi)容。
我聽了薛老師的這節(jié)課認為本節(jié)課設(shè)計高度重視學(xué)生的主動參與、親自操作,讓學(xué)生從中去體驗學(xué)習(xí)知識的過程,同時,也注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。整體看來這節(jié)課的優(yōu)點很多,很值得我去學(xué)習(xí)。
總結(jié)起來,大概有以下幾個特點。
(一)注重一個“滲透”——德育滲透。
在數(shù)學(xué)教學(xué)中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯(lián)系在一起,借助古今中外數(shù)學(xué)史不惜把數(shù)學(xué)課上成政治課,卻成為一堂蹩腳的課。其實,通過數(shù)學(xué)問題的發(fā)生和解決過程的教學(xué),培養(yǎng)與鍛煉學(xué)生知難而進的堅強意志,敗而不餒的心理素質(zhì),一絲不茍的學(xué)習(xí)品質(zhì),勤于思考的良好學(xué)風(fēng),勇于探索的創(chuàng)新精神,實事求是的科學(xué)態(tài)度,這也是是德育教育,更是數(shù)學(xué)本質(zhì)上的德育教育。本課薛老師把這種德育教育滲透到教學(xué)的每一個環(huán)節(jié),力求“潤物細無聲”。當學(xué)生解題遇到困難時,教師能給予耐心的引導(dǎo)。但,在課堂上,處理第(3)小題第二問時,有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚的機會,而是詢問學(xué)生有否最后算出答案,顯得有些匆促。
(二)堅持兩個“原則”
1、例題設(shè)計注重分層教學(xué),堅持面向全體學(xué)生的原則。
題目母體來源于學(xué)生現(xiàn)有教輔書《全品》,卻在原題基礎(chǔ)上進行了分層遞進的改編,讓不同的學(xué)生都有不同的收獲。以學(xué)生的最近發(fā)展區(qū)為指向,充分尊重了學(xué)生現(xiàn)有的認知水平和個性差異,為不同層次的學(xué)生采用適合自己個性的方法進行學(xué)習(xí)創(chuàng)造了條件。
2、教學(xué)過程授人以漁,堅持以學(xué)生發(fā)展為本的原則。
讓學(xué)生深刻經(jīng)歷:通過作圖和求解基本例題回憶知識結(jié)構(gòu)——通過嘗試深化知識內(nèi)容——通過遞進擴展知識聯(lián)系,教會學(xué)生研究的方法,而不是結(jié)果。
(三)落實三個“容量”——知識量、活動量和思維量。
本節(jié)課所選內(nèi)容以解析幾何為平臺,卻可以集函數(shù)性質(zhì)、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進和推進,容量大,難度高??上驳氖牵蠋熗ㄟ^合理運用現(xiàn)代技術(shù)和整合例題,成功地豐富了知識量;加強探索與過程教學(xué),有效地落實了思維量;突出學(xué)生板演與探究教學(xué),巧妙地增加了活動量,值得借鑒。
(四)實現(xiàn)四個“轉(zhuǎn)變”——學(xué)生角色從被動到主動;教師角色從傳授到指導(dǎo);學(xué)習(xí)理念從封閉到開放;學(xué)習(xí)形式從單一到多元。
本課初步實現(xiàn)了“四個轉(zhuǎn)變”是由于采用了探究式的教學(xué)策略,為學(xué)生提供開放性的學(xué)習(xí)內(nèi)容、開放性的教育資源和開放性的教學(xué)形式。特別是向?qū)W生提供了更多的機會和時間,讓學(xué)生嘗試和探究、合作和交流、歸納和總結(jié),最大限度地提高學(xué)生學(xué)習(xí)活動的自由度,促使學(xué)生思維空間的充分開放。
(五)培養(yǎng)五種“能力”——應(yīng)用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。
本課從引入開始,充分放手讓學(xué)生動腦、動口、動手,使研究問題得以逐個深入,難點得以一個個突破,能力得以一點點培養(yǎng)。事實上,解析幾何復(fù)習(xí)課,重在數(shù)形結(jié)合,重在幾何性質(zhì),重在靜動結(jié)合,課堂貴在“生動”,所謂“生動”,是指“生”出“動”。要樹立生本意識,立足學(xué)生“可動”;設(shè)置問題探究,引領(lǐng)學(xué)生“會動”;課前充分預(yù)設(shè),不怕學(xué)生“亂動”;及時表揚肯定,激勵學(xué)生“愿動”。
但是我認為這節(jié)課也有一些值得探討的問題:
第一、老師講的還是太多。聽說杜郎口中學(xué)要求老師每節(jié)課講課時間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學(xué)生自然就參與少了。這樣的后果就會導(dǎo)致學(xué)生具體體驗時間不夠,同時規(guī)范操作和演練也不夠。
第二、在學(xué)生回答引入題時,假設(shè)直線方程時,學(xué)生沒有考慮到斜率是否存在的情況,這時,老師沒有及時進行補充和糾正。一個很明顯的后果就是導(dǎo)致在(2)問的板演中,學(xué)生解答出錯。
第三,學(xué)生板演時沒有很好地結(jié)合圖像進行解題,這時,老師應(yīng)該要適時引導(dǎo)學(xué)生作好草圖。凸顯解題時要從宏觀到微觀,從直覺到精確,從定性到定量分析。
第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關(guān)知識點,這是一種復(fù)習(xí)習(xí)慣和策略。教師在這個點上應(yīng)該要向?qū)W生強調(diào),引導(dǎo)學(xué)生今后復(fù)習(xí)也應(yīng)該有意識地進行整合和提升,做到既“重復(fù)”,又“學(xué)習(xí)”,這才是復(fù)習(xí)。
第五,本節(jié)課還有一個線索,就是前面的題目基本上能借助幾何性質(zhì)進行解題,而最后一問必須采用解析幾何的思路,就是用代數(shù)的方法解題,這實際上要求老師要進行總結(jié),告訴學(xué)生直線與圓的位置關(guān)系解題時,先考慮幾何性質(zhì),再借助代數(shù)方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關(guān)系埋下伏筆。
總之,這是一堂原生態(tài)的高三復(fù)習(xí)課,讓我獲益匪淺。以上僅是一家之言,在此權(quán)當拋磚引玉,謝謝大家!
直線與圓的位置關(guān)系聽課筆記篇二
本節(jié)課由蔡**老師執(zhí)教,主要有三部分組成。首先前面兩個問題通過復(fù)習(xí)前幾課學(xué)過的點到直線的距離公式以及兩條直線的位置關(guān)系的判定,為下面例子中判斷直線與圓的位置關(guān)系作好鋪墊。緊接著通過回顧直線與圓的三種位置關(guān)系引入新課,并結(jié)合圖形深入探究每種關(guān)系中圓心到直線的距離d與圓的半徑r的大小關(guān)系以及交點個數(shù)的情況。再通過例題的講解與練習(xí)的訓(xùn)練去總結(jié)直線和圓的位置關(guān)系所反映出來的數(shù)量關(guān)系。最后師生對本節(jié)課知識點進行共同小結(jié),完成本節(jié)課的整體教學(xué)內(nèi)容。
聽了這節(jié)課之后,我認為本節(jié)課的整體思路清晰、流暢,結(jié)構(gòu)合理,重點突出,較好地完成了本節(jié)課的教學(xué)目標。在引導(dǎo)學(xué)生歸納出直線與圓的`位置關(guān)系的數(shù)量關(guān)系后再進行相關(guān)的例題講解和習(xí)題訓(xùn)練,確保了學(xué)生對本節(jié)課重點知識的掌握。不過,個人認為本節(jié)課還是有一些值得探討的問題:1、例1是對本節(jié)課所學(xué)知識的應(yīng)用,是本節(jié)課的重點及難點,應(yīng)該著重分析這塊。學(xué)生對帶有絕對值符號的c的范圍并不能很好地理解,因涉及先前學(xué)過的內(nèi)容,可舉個適當小例子幫助學(xué)生回顧,如:,則的范圍是什么等等。2、個人覺得練習(xí)一中判斷直線與圓的位置關(guān)系時,圓心到直線的距離計算得d=,讓學(xué)生求k的范圍難度太大。本來學(xué)生才剛掌握點到直線的距離公式,還不能很好熟練的運用,現(xiàn)在式子中又有絕對值又有根號求k的范圍,學(xué)生的積極性很容易被打壓,應(yīng)當換個適當難度的,及時提高學(xué)生的積極性,培養(yǎng)他們的興趣。3、應(yīng)讓學(xué)生多動手、動口回答問題,及時鞏固所學(xué)知識。
本節(jié)課是在直線和直線的基礎(chǔ)上進一步學(xué)習(xí)的內(nèi)容,也是后面學(xué)習(xí)直線與圓的方程的應(yīng)用的基礎(chǔ),起著承上啟下的作用,而且三種位置關(guān)系的研究方法和思路基本一直,都是從研究位置關(guān)系開始進而研究位置關(guān)系而發(fā)生的數(shù)量關(guān)系,教師可以用類比的教學(xué)方式使學(xué)生掌握這種學(xué)習(xí)方法。其實,一堂課的教學(xué)很大程度上受教學(xué)細節(jié)的影響,比如:語言的描述是否準確,是否及時對學(xué)生進行表揚等。每次聽完課,我都會拿自己進行比較,看看還有哪些自己沒做到的,或是沒注意的,然后多多實踐,盡量充實自己,收獲不少啊。
直線與圓的位置關(guān)系聽課筆記篇三
已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?
四、填空題。
若直線與圓相切,則實數(shù)的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實數(shù)等于________.
直線與圓相切,則________.
過點作圓的切線,且直線與平行,則與間的距離是________.
過點,作圓的切線,則切線的條數(shù)為________條.
過點的圓與直線相切于點,則圓的方程為________.
五、解答題。
過點作圓的切線,求此切線的方程.。
圓與直線相切于點,且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經(jīng)過點;
(2)斜率為;
(3)過點.。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實數(shù)的值是________.
設(shè)直線與圓相交于兩點,若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點的直線被圓截得的弦長為,則直線的斜率為________.
過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。
十、填空題。
過點作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點;
(2)若直線與圓交于兩點,當時,求的值.。
設(shè)圓上的點關(guān)于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實數(shù),直線與圓恒交于兩點。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點有________個.
在平面直角坐標系中,已知圓上有且僅有四個點到直線的距離為1,則實數(shù)的取值范圍是________.
設(shè)圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點,則b的取值范圍是_________。
若直線與圓恒有兩個交點,則實數(shù)的取值范圍為________.
已知點滿足,則的取值范圍是________.
若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。
直線與圓的位置關(guān)系聽課筆記篇四
重點:的性質(zhì)和判定.因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ).
難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學(xué)生較難理解.
3.教法建議。
本節(jié)內(nèi)容需要一個課時.
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁?。
直線與圓的位置關(guān)系聽課筆記篇五
重點:的性質(zhì)和判定。因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ)。
難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學(xué)生較難理解。
3.教法建議。
本節(jié)內(nèi)容需要一個課時。
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁。
直線與圓的位置關(guān)系聽課筆記篇六
:通過觀察、實驗、討論、合作研究等數(shù)學(xué)活動使學(xué)生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對應(yīng)等價于直線和圓的位置關(guān)系”從而實現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運動與轉(zhuǎn)化的數(shù)學(xué)思想。
:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生好奇心;體驗數(shù)學(xué)活動中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動中獲得成功的體驗;通過“轉(zhuǎn)化”數(shù)學(xué)思想的運用,讓學(xué)生認識到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。
二、教學(xué)重、難點。
難點:學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運用。
三、教學(xué)設(shè)計。
問???題。
設(shè)計意圖。
師生活動。
2.圖形中的圓與直線的位置都是一樣的嗎?
師:讓學(xué)生之間進行討論、交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課.
生:看圖,并說出自己的看法.
師:引導(dǎo)學(xué)生利用類比、歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
問???題。
設(shè)計意圖。
師生活動。
使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象概括能力.
師:引導(dǎo)學(xué)生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.
生:利用圖形,尋找兩種方法的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀教科書上的例1.
生:閱讀科書上的例1,并完成教科書第128頁的練習(xí)題2.
師;分析例1,并展示解答過程;啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有總結(jié)思考的時間.
生:交流自己總結(jié)的步驟.
師:展示解題步驟.
7.通過學(xué)習(xí)教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學(xué)思想方法嗎?
進一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀并完成教科書上的例2,啟發(fā)學(xué)生利用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.
問???題。
設(shè)計意圖。
師生活動。
8.通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么?
明確弦長的運算方法.
師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法.
生:通過分析、抽象、歸納,得出相交弦長的運算方法.
9.完成教科書第128頁的練習(xí)題1、2、3、4.
師:引導(dǎo)學(xué)生完成練習(xí)題.
生:互相討論、交流,完成練習(xí)題.
10.課堂小結(jié):
教師提出下列問題讓學(xué)生思考:
作業(yè):習(xí)題4.2a組:1、3.
直線與圓的位置關(guān)系聽課筆記篇七
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標:
2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運用知識的解決能力。
情感與態(tài)度目標:讓學(xué)生從運動的觀點來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關(guān)系。
學(xué)生看投影并思考問題。
調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
直線與圓的位置關(guān)系聽課筆記篇八
“思之不慎,行而失當”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。
1、教師在課堂應(yīng)當以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準。
3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。
直線與圓的位置關(guān)系聽課筆記篇九
新課程指出:學(xué)生是學(xué)習(xí)的主體,是發(fā)展的主體。在課堂教學(xué)中,教師要將課堂的主動權(quán)讓給學(xué)生,作為教師應(yīng)以“探究過程,探究方法,探究結(jié)果,運用結(jié)果”為主線安排教學(xué)進程,應(yīng)高度重視學(xué)生的主動參與、親自研究、動手操作,讓學(xué)生從中去體驗學(xué)習(xí)知識的過程,引導(dǎo)學(xué)生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。
在《直線和圓的位置關(guān)系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進行應(yīng)用,最后去解決實際問題。
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識。
總之,新課程的課堂教學(xué)要讓學(xué)生作為課堂教學(xué)的主體參與到課堂教學(xué)過程中來,充分展現(xiàn)自己的個性,施展自己的才華,使學(xué)生在參與和體驗的過程中真正成為學(xué)習(xí)的主人,養(yǎng)成勇于探索、敢于實踐的個性品質(zhì)。與此同時,教師還要為學(xué)生的學(xué)習(xí)創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進探究的`開展,把握探究的深度,評價探究的效果。
直線與圓的位置關(guān)系聽課筆記篇十
從教學(xué)以來,我一直不斷的學(xué)習(xí)和研究如何使學(xué)生在數(shù)學(xué)課堂中高效的學(xué)習(xí),在探索過程中我發(fā)現(xiàn)教師要想讓學(xué)生學(xué)好數(shù)學(xué),必須高度重視學(xué)生的主動參與課堂學(xué)習(xí),讓學(xué)生親身體驗學(xué)習(xí)知識的過程,引導(dǎo)學(xué)生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識?!吨本€與圓的位置關(guān)系》是高中學(xué)習(xí)中一個重要的內(nèi)容,下面我詳細總結(jié)一下我講的這節(jié)課。
首先從實際生活出發(fā),引用古詩句“海上升明月,天涯共此時”及海上日出的多媒體展示,引導(dǎo)學(xué)生回憶直線和圓的位置關(guān)系及判定方法,通過對已有研究方法的揭示,增強學(xué)生運用遷移方法研究新問題的意識;接著借助多媒體引出三個問題,讓學(xué)生運用初中的知識判斷一下直線和圓的位置關(guān)系,鞏固學(xué)生初中所學(xué)內(nèi)容更好的為本節(jié)課的學(xué)習(xí)打下基礎(chǔ),從而引導(dǎo)學(xué)生揭示出直線與圓的位置關(guān)系與公共點的個數(shù)之間存在著對應(yīng)關(guān)系的本質(zhì)特征;最后,引入輪船遇到臺風(fēng)的實際問題,讓學(xué)生體會源自生活的數(shù)學(xué),思考解決實際問題的方法,在數(shù)與形的相互轉(zhuǎn)化過程中思考問題。
在我的引導(dǎo)下,提示學(xué)生先用初中所學(xué)內(nèi)容解決輪船遇臺風(fēng)問題,學(xué)生很輕易的把這個問題解決了,緊接著我又趁熱打鐵,提出一般的`三角形中這個方法是否可以,由此得到由高中知識解決直線與圓的位置關(guān)系的方法:幾何法,代數(shù)法。為此,我以問題為導(dǎo)向,以探究問題的方式引導(dǎo)學(xué)生自學(xué)自悟,為學(xué)生提供了自主合作探究的舞臺,讓學(xué)生思維在數(shù)學(xué)中自由翱翔。通過一系列問題學(xué)生不僅加深了對判定直線與圓的位置關(guān)系的方法的理解,更重要的是使學(xué)生學(xué)會運用聯(lián)想、化歸、數(shù)形結(jié)合等思想方法去研究問題,促進學(xué)生在學(xué)會數(shù)學(xué)的過程中順利地向會學(xué)數(shù)學(xué)的方向發(fā)展。
為了提高學(xué)生的學(xué)習(xí)興趣,讓學(xué)生有目的的去學(xué),提高學(xué)生的學(xué)習(xí)能力,這節(jié)課設(shè)置了大量問題,使學(xué)生充分地實踐與探索,不斷地歸納與總結(jié),引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律、拓展思路。在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化。
適量的練習(xí)、課后作業(yè)及時鞏固了學(xué)生的學(xué)習(xí),學(xué)生需通過動手動腦來完成,使學(xué)生對知識點的學(xué)習(xí)由課內(nèi)延伸到課外。
當然,這節(jié)課有成功之處,也有很多不足,比如,盡管準備的很充分,但是還是有點緊張;雖然我在設(shè)計本節(jié)課時是想體現(xiàn)學(xué)生自主探究的原則,但是在一些問題提出之后,沒有給予學(xué)生足夠的時間思考,限制了學(xué)生的思維。此外,對學(xué)生引導(dǎo)的語言概括及對學(xué)生及時性鼓勵的不是太好,學(xué)生的積極性及配合并不高。
在今后的教學(xué)中,我會繼續(xù)不斷的學(xué)習(xí),提高自己的教學(xué)水平,真正讓學(xué)生學(xué)會數(shù)學(xué)、學(xué)好數(shù)學(xué),使學(xué)生的各項能力在數(shù)學(xué)學(xué)習(xí)中得到更好的發(fā)展和提高,我相信在將來的教學(xué)中,我會做得越來越好,真正成為一名合格的教師。
直線與圓的位置關(guān)系聽課筆記篇十一
節(jié)課的教學(xué),我認為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
直線與圓的位置關(guān)系聽課筆記篇十二
節(jié)課的教學(xué),我認為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
直線與圓的位置關(guān)系聽課筆記篇十三
《直線和圓的位置關(guān)系的復(fù)習(xí)》一課的教學(xué),可以說非常成功。教學(xué)設(shè)計充分體現(xiàn)了新的教學(xué)理念,重點突出、層次清楚、構(gòu)思新穎,整個教學(xué)過程教師采用多樣化的呈現(xiàn)方式為學(xué)生搭建參與探究的平臺,高度重視學(xué)生的主動參與,有意識地為學(xué)生創(chuàng)設(shè)了良好的數(shù)學(xué)交流情境。注意學(xué)生的情感與態(tài)度,知識與技能的形成和發(fā)展,使每個學(xué)生都有表現(xiàn)的機會和獲得成功的體驗。
由于本節(jié)課綜合性強,涉及到的知識面廣,對學(xué)生的能力水平要求高。教師結(jié)合本節(jié)課的教學(xué)目標,突出重點,突破難點。采用教師啟發(fā)引導(dǎo),學(xué)生合作交流的方式來組織本節(jié)課的教學(xué)。注重解題思路分析和方法引導(dǎo),善于引導(dǎo)學(xué)生尋找圖形中的數(shù)量關(guān)系,選用適當?shù)闹R和方法正確解答問題。
在學(xué)習(xí)知識的同時,注意數(shù)學(xué)思想方法的滲透。在教學(xué)中,數(shù)學(xué)知識是一條明線,數(shù)學(xué)思想方法是一條暗線。崔老師在引導(dǎo)學(xué)生學(xué)習(xí)的同時,教給學(xué)生思考方法、學(xué)習(xí)方法和解決問題的方法,為學(xué)生未來發(fā)展服務(wù),讓學(xué)生在腦海里留下數(shù)學(xué)意識,長期下去,學(xué)生將終身受用。
板書條理分明,布局合理,文字與圖形完美結(jié)合,板書設(shè)計不僅讓學(xué)生對直線和圓的位置關(guān)系圖形的特征一目了然,而且也便于揭示它們之間的區(qū)別和聯(lián)系。體現(xiàn)了板書的形式美和簡潔美,真正使板書起到了畫龍點睛的作用。
充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使題意理解更清楚,結(jié)論更準確。
教師教態(tài)自然,語言清晰,數(shù)學(xué)語言表述準確,操作演示熟練,提問率高,體現(xiàn)素質(zhì)教育面向全體學(xué)生的要求。
教師注意培養(yǎng)學(xué)生的自信心,在教學(xué)過程的設(shè)計上體現(xiàn)了層次性和梯度性。防止學(xué)生對一些問題出現(xiàn)畏懼情緒,鼓勵學(xué)生敢于知難而進,讓學(xué)生樹立戰(zhàn)勝困難的勇氣和決心。例題的設(shè)計,按照由易到難的順序呈現(xiàn),關(guān)于直線和圓的復(fù)習(xí)教學(xué)中能利用一個圖形提出盡可能多的問題,并盡可能的覆蓋到圓的大多數(shù)知識,盡可能的加強知識間的橫縱的聯(lián)系,盡可能滲透多種數(shù)學(xué)思想和方法,最大限度的榨取它的利用價值,達到了一線串珠的目的。體現(xiàn)了綜合性例題的大容量、大綜合的特點,非常有效地達成本節(jié)課的教學(xué)目標。
直線與圓的位置關(guān)系聽課筆記篇十四
本節(jié)課研究圓與圓的位置關(guān)系,重點是研究兩圓位置關(guān)系的判斷方法,并應(yīng)用這些方法解決有關(guān)的實際問題?!秷A與圓的位置關(guān)系》在舊教材中比重不大,但是在新課標中,被作為一個獨立的章節(jié),說明新課標對這一章節(jié)的要求已經(jīng)有所提高。教材是在初中平面幾何對圓與圓的位置關(guān)系的初步分析的基礎(chǔ)上得到圓與圓的位置關(guān)系的判斷方法,北師大版教材中著重強調(diào)了根據(jù)圓心到直線的距離與圓的半徑的關(guān)系進行判斷,對用方程的思想去處理位置關(guān)系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關(guān)系,這樣有利于培養(yǎng)學(xué)生數(shù)形結(jié)合、經(jīng)歷幾何問題代數(shù)化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學(xué)習(xí)中有著非常重要的意義。
作為解析幾何的一堂課,判斷圓與圓的位置關(guān)系,體現(xiàn)的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質(zhì)。所以我在教材處理上,對判斷兩圓位置關(guān)系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學(xué)生對解析幾何的本質(zhì)有所了解。
第一,學(xué)生學(xué)習(xí)新知識必須在已有知識和經(jīng)驗的基礎(chǔ)上自主建構(gòu)與形成。所以,我一開始便提出了三個問題,即復(fù)習(xí)此節(jié)相關(guān)的知識點,通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關(guān)系。配合幾何畫板的動畫演示,啟發(fā)學(xué)生思考當初是怎樣研究判斷直線與圓的位置關(guān)系的方法?這種方法是不是同樣可以運用到研究圓與圓的位置關(guān)系上來?能不能用來判斷圓與圓的位置關(guān)系?使學(xué)生很自然地從直線與圓的位置關(guān)系的判斷方法類比到圓與圓的位置關(guān)系的判斷方法。
第二,新的課程標準非常重視學(xué)生的自主探究,這是學(xué)習(xí)方式的一次革命,老師的教授過程固然重要,但學(xué)生對知識的掌握是在學(xué)生自己對知識有體驗、有獨立的思考和探討的基礎(chǔ)上,才能成為可能。所謂“學(xué)在講之前,講在關(guān)鍵處”,學(xué)生先有一個對知識的認識過程,老師再在關(guān)鍵處進行講解,使學(xué)生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。
第三,學(xué)生的學(xué)習(xí)是在教師引導(dǎo)下的有目的的學(xué)習(xí),從而教學(xué)的過程就是在教師控制下的學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的過程,這個過程中的關(guān)鍵點是怎么樣有效地控制學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的時間和空間,在教學(xué)的過程中,我較好地處理了學(xué)生學(xué)習(xí)的空間與時間,既留給學(xué)生充分思考與探索的時間與空間,又嚴格限定時間,由此培養(yǎng)學(xué)生思維的敏捷性,提高課堂效率。
對于問題探究的題型選擇的一些思考:
第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數(shù)變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內(nèi)切,要充分結(jié)合數(shù)形結(jié)合的思想,判斷出兩圓的半徑大小關(guān)系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運用。
2、時間把握。課前復(fù)習(xí)是有必要的,是為了學(xué)生類比舊知識,聯(lián)想新知識,但復(fù)習(xí)舊知識的時間應(yīng)該限定在三分鐘以內(nèi),復(fù)習(xí)時間長會導(dǎo)致鞏固練習(xí)的時間不足和問題展開不夠充分。
3、限時訓(xùn)練。限時訓(xùn)練的目的是為了讓學(xué)生更有效率地做題,限定時間過長或是過短都不利于學(xué)生提高數(shù)學(xué)能力,這點還有待研究。
直線與圓的位置關(guān)系聽課筆記篇十五
"思之不慎,行而失當”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
在《直線和圓的位置關(guān)系》一課教學(xué)后,感受頗多,現(xiàn)分享如下:
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。 最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:
1、教師在課堂應(yīng)當以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準。
3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)"授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。
直線與圓的位置關(guān)系聽課筆記篇十六
這是我第一次進入初三進行教學(xué),即緊張又興奮。經(jīng)過一個學(xué)期的歷練,在校領(lǐng)導(dǎo)和組內(nèi)老教師的無私幫助下我有了一些進步?,F(xiàn)以《直線和圓的位置關(guān)系》第一課時為例,反思如下。
在初三的教學(xué)過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關(guān)系》這節(jié)課中,我首先引導(dǎo)學(xué)生回憶了點與圓的位置關(guān)系及所對應(yīng)的點到圓心的距離與圓半徑的數(shù)量關(guān)系。從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進行應(yīng)用,最后去解決實際問題。通過本節(jié)課的教學(xué),我認為成功之處有以下幾點:
1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
2、新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了兩道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學(xué)校會不會受到噪聲的影響?”培養(yǎng)學(xué)生解決實際問題的能力。由于這兩題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。并在進行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,不能想當然,否則會影響學(xué)生對知識的消化吸收。
總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進步,真正成為一名合格的數(shù)學(xué)教師。
直線與圓的位置關(guān)系聽課筆記篇十七
并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結(jié)論及時。
(2)在教學(xué)中,以“觀察——猜想——證明——剖析——應(yīng)用——歸納”為主線,開展在教師組織下,以學(xué)生為主體,活動式教學(xué)。
新課程理念及新基礎(chǔ)教育理念都提倡“把課堂還給學(xué)生,讓課堂充滿生命活力”,讓學(xué)生真正“動起來”,動不應(yīng)當是表面的、外在的,而應(yīng)當使學(xué)生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動,更要落實,動靜結(jié)合,收放適度,動得有序,動而不亂。課堂教學(xué)要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設(shè)計好問題,針對不同意見和問題引導(dǎo)學(xué)生展開討論、辯論,抓住學(xué)生發(fā)言中的問題,及時給以矯正。當教師提出問題讓學(xué)生探索時,學(xué)生自己尋找答案時,要放手讓學(xué)生活動,但要避免學(xué)生興奮過度或活動過量。今后再教學(xué)本節(jié)課仍應(yīng)倡導(dǎo)提高學(xué)生的問題意識,以對問題的探究來構(gòu)筑本節(jié)課教學(xué)的主題。但是,教師待學(xué)生的問題提完后,與學(xué)生一道對問題進行歸類,找出學(xué)生思維和知識的核心問題,以此組織課堂教學(xué),并相機解決其他問題。仍應(yīng)放權(quán)給學(xué)生,給他們想、做、說的機會,讓他們討論、質(zhì)疑、交流,圍繞某一個問題展開辯論。教師應(yīng)當給學(xué)生時間和權(quán)利,讓學(xué)生充分進行思考,給學(xué)生充分表達自己思維的機會。但是,應(yīng)關(guān)注學(xué)生的參與程度,有的學(xué)生的參與只是一種表面上的行為參與。要看學(xué)生的思維是否活躍,關(guān)鍵是學(xué)生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學(xué)生的積極思考,還是學(xué)生的自我需要。也就是說我們要關(guān)注學(xué)生思維的狀態(tài)與學(xué)習(xí)互動的狀態(tài)。
直線與圓的位置關(guān)系聽課筆記篇一
薛老師執(zhí)教的高三文科復(fù)習(xí)課:《直線與圓的位置關(guān)系》,首先從一個引例出發(fā),讓學(xué)生嘗試作圖和驗證,得出知識要點,繼而在此基礎(chǔ)上繼續(xù)研究直線方程和軌跡等問題。例題只有一個,但小題很多,題題遞進,環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學(xué)生訓(xùn)練為主,教師講授和引導(dǎo)為輔,共同完成本節(jié)課的整體教學(xué)內(nèi)容。
我聽了薛老師的這節(jié)課認為本節(jié)課設(shè)計高度重視學(xué)生的主動參與、親自操作,讓學(xué)生從中去體驗學(xué)習(xí)知識的過程,同時,也注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。整體看來這節(jié)課的優(yōu)點很多,很值得我去學(xué)習(xí)。
總結(jié)起來,大概有以下幾個特點。
(一)注重一個“滲透”——德育滲透。
在數(shù)學(xué)教學(xué)中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯(lián)系在一起,借助古今中外數(shù)學(xué)史不惜把數(shù)學(xué)課上成政治課,卻成為一堂蹩腳的課。其實,通過數(shù)學(xué)問題的發(fā)生和解決過程的教學(xué),培養(yǎng)與鍛煉學(xué)生知難而進的堅強意志,敗而不餒的心理素質(zhì),一絲不茍的學(xué)習(xí)品質(zhì),勤于思考的良好學(xué)風(fēng),勇于探索的創(chuàng)新精神,實事求是的科學(xué)態(tài)度,這也是是德育教育,更是數(shù)學(xué)本質(zhì)上的德育教育。本課薛老師把這種德育教育滲透到教學(xué)的每一個環(huán)節(jié),力求“潤物細無聲”。當學(xué)生解題遇到困難時,教師能給予耐心的引導(dǎo)。但,在課堂上,處理第(3)小題第二問時,有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚的機會,而是詢問學(xué)生有否最后算出答案,顯得有些匆促。
(二)堅持兩個“原則”
1、例題設(shè)計注重分層教學(xué),堅持面向全體學(xué)生的原則。
題目母體來源于學(xué)生現(xiàn)有教輔書《全品》,卻在原題基礎(chǔ)上進行了分層遞進的改編,讓不同的學(xué)生都有不同的收獲。以學(xué)生的最近發(fā)展區(qū)為指向,充分尊重了學(xué)生現(xiàn)有的認知水平和個性差異,為不同層次的學(xué)生采用適合自己個性的方法進行學(xué)習(xí)創(chuàng)造了條件。
2、教學(xué)過程授人以漁,堅持以學(xué)生發(fā)展為本的原則。
讓學(xué)生深刻經(jīng)歷:通過作圖和求解基本例題回憶知識結(jié)構(gòu)——通過嘗試深化知識內(nèi)容——通過遞進擴展知識聯(lián)系,教會學(xué)生研究的方法,而不是結(jié)果。
(三)落實三個“容量”——知識量、活動量和思維量。
本節(jié)課所選內(nèi)容以解析幾何為平臺,卻可以集函數(shù)性質(zhì)、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進和推進,容量大,難度高??上驳氖牵蠋熗ㄟ^合理運用現(xiàn)代技術(shù)和整合例題,成功地豐富了知識量;加強探索與過程教學(xué),有效地落實了思維量;突出學(xué)生板演與探究教學(xué),巧妙地增加了活動量,值得借鑒。
(四)實現(xiàn)四個“轉(zhuǎn)變”——學(xué)生角色從被動到主動;教師角色從傳授到指導(dǎo);學(xué)習(xí)理念從封閉到開放;學(xué)習(xí)形式從單一到多元。
本課初步實現(xiàn)了“四個轉(zhuǎn)變”是由于采用了探究式的教學(xué)策略,為學(xué)生提供開放性的學(xué)習(xí)內(nèi)容、開放性的教育資源和開放性的教學(xué)形式。特別是向?qū)W生提供了更多的機會和時間,讓學(xué)生嘗試和探究、合作和交流、歸納和總結(jié),最大限度地提高學(xué)生學(xué)習(xí)活動的自由度,促使學(xué)生思維空間的充分開放。
(五)培養(yǎng)五種“能力”——應(yīng)用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。
本課從引入開始,充分放手讓學(xué)生動腦、動口、動手,使研究問題得以逐個深入,難點得以一個個突破,能力得以一點點培養(yǎng)。事實上,解析幾何復(fù)習(xí)課,重在數(shù)形結(jié)合,重在幾何性質(zhì),重在靜動結(jié)合,課堂貴在“生動”,所謂“生動”,是指“生”出“動”。要樹立生本意識,立足學(xué)生“可動”;設(shè)置問題探究,引領(lǐng)學(xué)生“會動”;課前充分預(yù)設(shè),不怕學(xué)生“亂動”;及時表揚肯定,激勵學(xué)生“愿動”。
但是我認為這節(jié)課也有一些值得探討的問題:
第一、老師講的還是太多。聽說杜郎口中學(xué)要求老師每節(jié)課講課時間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學(xué)生自然就參與少了。這樣的后果就會導(dǎo)致學(xué)生具體體驗時間不夠,同時規(guī)范操作和演練也不夠。
第二、在學(xué)生回答引入題時,假設(shè)直線方程時,學(xué)生沒有考慮到斜率是否存在的情況,這時,老師沒有及時進行補充和糾正。一個很明顯的后果就是導(dǎo)致在(2)問的板演中,學(xué)生解答出錯。
第三,學(xué)生板演時沒有很好地結(jié)合圖像進行解題,這時,老師應(yīng)該要適時引導(dǎo)學(xué)生作好草圖。凸顯解題時要從宏觀到微觀,從直覺到精確,從定性到定量分析。
第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關(guān)知識點,這是一種復(fù)習(xí)習(xí)慣和策略。教師在這個點上應(yīng)該要向?qū)W生強調(diào),引導(dǎo)學(xué)生今后復(fù)習(xí)也應(yīng)該有意識地進行整合和提升,做到既“重復(fù)”,又“學(xué)習(xí)”,這才是復(fù)習(xí)。
第五,本節(jié)課還有一個線索,就是前面的題目基本上能借助幾何性質(zhì)進行解題,而最后一問必須采用解析幾何的思路,就是用代數(shù)的方法解題,這實際上要求老師要進行總結(jié),告訴學(xué)生直線與圓的位置關(guān)系解題時,先考慮幾何性質(zhì),再借助代數(shù)方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關(guān)系埋下伏筆。
總之,這是一堂原生態(tài)的高三復(fù)習(xí)課,讓我獲益匪淺。以上僅是一家之言,在此權(quán)當拋磚引玉,謝謝大家!
直線與圓的位置關(guān)系聽課筆記篇二
本節(jié)課由蔡**老師執(zhí)教,主要有三部分組成。首先前面兩個問題通過復(fù)習(xí)前幾課學(xué)過的點到直線的距離公式以及兩條直線的位置關(guān)系的判定,為下面例子中判斷直線與圓的位置關(guān)系作好鋪墊。緊接著通過回顧直線與圓的三種位置關(guān)系引入新課,并結(jié)合圖形深入探究每種關(guān)系中圓心到直線的距離d與圓的半徑r的大小關(guān)系以及交點個數(shù)的情況。再通過例題的講解與練習(xí)的訓(xùn)練去總結(jié)直線和圓的位置關(guān)系所反映出來的數(shù)量關(guān)系。最后師生對本節(jié)課知識點進行共同小結(jié),完成本節(jié)課的整體教學(xué)內(nèi)容。
聽了這節(jié)課之后,我認為本節(jié)課的整體思路清晰、流暢,結(jié)構(gòu)合理,重點突出,較好地完成了本節(jié)課的教學(xué)目標。在引導(dǎo)學(xué)生歸納出直線與圓的`位置關(guān)系的數(shù)量關(guān)系后再進行相關(guān)的例題講解和習(xí)題訓(xùn)練,確保了學(xué)生對本節(jié)課重點知識的掌握。不過,個人認為本節(jié)課還是有一些值得探討的問題:1、例1是對本節(jié)課所學(xué)知識的應(yīng)用,是本節(jié)課的重點及難點,應(yīng)該著重分析這塊。學(xué)生對帶有絕對值符號的c的范圍并不能很好地理解,因涉及先前學(xué)過的內(nèi)容,可舉個適當小例子幫助學(xué)生回顧,如:,則的范圍是什么等等。2、個人覺得練習(xí)一中判斷直線與圓的位置關(guān)系時,圓心到直線的距離計算得d=,讓學(xué)生求k的范圍難度太大。本來學(xué)生才剛掌握點到直線的距離公式,還不能很好熟練的運用,現(xiàn)在式子中又有絕對值又有根號求k的范圍,學(xué)生的積極性很容易被打壓,應(yīng)當換個適當難度的,及時提高學(xué)生的積極性,培養(yǎng)他們的興趣。3、應(yīng)讓學(xué)生多動手、動口回答問題,及時鞏固所學(xué)知識。
本節(jié)課是在直線和直線的基礎(chǔ)上進一步學(xué)習(xí)的內(nèi)容,也是后面學(xué)習(xí)直線與圓的方程的應(yīng)用的基礎(chǔ),起著承上啟下的作用,而且三種位置關(guān)系的研究方法和思路基本一直,都是從研究位置關(guān)系開始進而研究位置關(guān)系而發(fā)生的數(shù)量關(guān)系,教師可以用類比的教學(xué)方式使學(xué)生掌握這種學(xué)習(xí)方法。其實,一堂課的教學(xué)很大程度上受教學(xué)細節(jié)的影響,比如:語言的描述是否準確,是否及時對學(xué)生進行表揚等。每次聽完課,我都會拿自己進行比較,看看還有哪些自己沒做到的,或是沒注意的,然后多多實踐,盡量充實自己,收獲不少啊。
直線與圓的位置關(guān)系聽課筆記篇三
已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當為何值時,直線與圓有兩個公共點?有一個公共點?無公共點?
四、填空題。
若直線與圓相切,則實數(shù)的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實數(shù)等于________.
直線與圓相切,則________.
過點作圓的切線,且直線與平行,則與間的距離是________.
過點,作圓的切線,則切線的條數(shù)為________條.
過點的圓與直線相切于點,則圓的方程為________.
五、解答題。
過點作圓的切線,求此切線的方程.。
圓與直線相切于點,且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經(jīng)過點;
(2)斜率為;
(3)過點.。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實數(shù)的值是________.
設(shè)直線與圓相交于兩點,若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點的直線被圓截得的弦長為,則直線的斜率為________.
過原點的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點,且截直線所得弦長為,求圓的方程.。
十、填空題。
過點作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點;
(2)若直線與圓交于兩點,當時,求的值.。
設(shè)圓上的點關(guān)于直線的對稱點仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實數(shù),直線與圓恒交于兩點。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點有________個.
在平面直角坐標系中,已知圓上有且僅有四個點到直線的距離為1,則實數(shù)的取值范圍是________.
設(shè)圓上有且僅有兩個點到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點,則b的取值范圍是_________。
若直線與圓恒有兩個交點,則實數(shù)的取值范圍為________.
已知點滿足,則的取值范圍是________.
若過點的直線與曲線有公共點,則直線的斜率的取值范圍為。
直線與圓的位置關(guān)系聽課筆記篇四
重點:的性質(zhì)和判定.因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ).
難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學(xué)生較難理解.
3.教法建議。
本節(jié)內(nèi)容需要一個課時.
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁?。
直線與圓的位置關(guān)系聽課筆記篇五
重點:的性質(zhì)和判定。因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ)。
難點:在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點;另外對“相切”要分清直線與圓有唯一公共點是指有一個并且只有一個公共點,與有一個公共點含義不同(這一點到直線和曲線相切時很重要),學(xué)生較難理解。
3.教法建議。
本節(jié)內(nèi)容需要一個課時。
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁。
直線與圓的位置關(guān)系聽課筆記篇六
:通過觀察、實驗、討論、合作研究等數(shù)學(xué)活動使學(xué)生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對應(yīng)等價于直線和圓的位置關(guān)系”從而實現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運動與轉(zhuǎn)化的數(shù)學(xué)思想。
:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生好奇心;體驗數(shù)學(xué)活動中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴謹性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動中獲得成功的體驗;通過“轉(zhuǎn)化”數(shù)學(xué)思想的運用,讓學(xué)生認識到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。
二、教學(xué)重、難點。
難點:學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運用。
三、教學(xué)設(shè)計。
問???題。
設(shè)計意圖。
師生活動。
2.圖形中的圓與直線的位置都是一樣的嗎?
師:讓學(xué)生之間進行討論、交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課.
生:看圖,并說出自己的看法.
師:引導(dǎo)學(xué)生利用類比、歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
問???題。
設(shè)計意圖。
師生活動。
使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象概括能力.
師:引導(dǎo)學(xué)生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.
生:利用圖形,尋找兩種方法的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀教科書上的例1.
生:閱讀科書上的例1,并完成教科書第128頁的練習(xí)題2.
師;分析例1,并展示解答過程;啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有總結(jié)思考的時間.
生:交流自己總結(jié)的步驟.
師:展示解題步驟.
7.通過學(xué)習(xí)教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學(xué)思想方法嗎?
進一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀并完成教科書上的例2,啟發(fā)學(xué)生利用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.
問???題。
設(shè)計意圖。
師生活動。
8.通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么?
明確弦長的運算方法.
師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法.
生:通過分析、抽象、歸納,得出相交弦長的運算方法.
9.完成教科書第128頁的練習(xí)題1、2、3、4.
師:引導(dǎo)學(xué)生完成練習(xí)題.
生:互相討論、交流,完成練習(xí)題.
10.課堂小結(jié):
教師提出下列問題讓學(xué)生思考:
作業(yè):習(xí)題4.2a組:1、3.
直線與圓的位置關(guān)系聽課筆記篇七
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標:
2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運用知識的解決能力。
情感與態(tài)度目標:讓學(xué)生從運動的觀點來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。
利用多媒體放映落日的動畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關(guān)系。
學(xué)生看投影并思考問題。
調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.。
探究新知。
1、通過觀察直線和圓的公共點個數(shù)得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
直線與圓的位置關(guān)系聽課筆記篇八
“思之不慎,行而失當”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:。
1、教師在課堂應(yīng)當以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準。
3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。
直線與圓的位置關(guān)系聽課筆記篇九
新課程指出:學(xué)生是學(xué)習(xí)的主體,是發(fā)展的主體。在課堂教學(xué)中,教師要將課堂的主動權(quán)讓給學(xué)生,作為教師應(yīng)以“探究過程,探究方法,探究結(jié)果,運用結(jié)果”為主線安排教學(xué)進程,應(yīng)高度重視學(xué)生的主動參與、親自研究、動手操作,讓學(xué)生從中去體驗學(xué)習(xí)知識的過程,引導(dǎo)學(xué)生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。
在《直線和圓的位置關(guān)系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進行應(yīng)用,最后去解決實際問題。
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識。
總之,新課程的課堂教學(xué)要讓學(xué)生作為課堂教學(xué)的主體參與到課堂教學(xué)過程中來,充分展現(xiàn)自己的個性,施展自己的才華,使學(xué)生在參與和體驗的過程中真正成為學(xué)習(xí)的主人,養(yǎng)成勇于探索、敢于實踐的個性品質(zhì)。與此同時,教師還要為學(xué)生的學(xué)習(xí)創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進探究的`開展,把握探究的深度,評價探究的效果。
直線與圓的位置關(guān)系聽課筆記篇十
從教學(xué)以來,我一直不斷的學(xué)習(xí)和研究如何使學(xué)生在數(shù)學(xué)課堂中高效的學(xué)習(xí),在探索過程中我發(fā)現(xiàn)教師要想讓學(xué)生學(xué)好數(shù)學(xué),必須高度重視學(xué)生的主動參與課堂學(xué)習(xí),讓學(xué)生親身體驗學(xué)習(xí)知識的過程,引導(dǎo)學(xué)生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識?!吨本€與圓的位置關(guān)系》是高中學(xué)習(xí)中一個重要的內(nèi)容,下面我詳細總結(jié)一下我講的這節(jié)課。
首先從實際生活出發(fā),引用古詩句“海上升明月,天涯共此時”及海上日出的多媒體展示,引導(dǎo)學(xué)生回憶直線和圓的位置關(guān)系及判定方法,通過對已有研究方法的揭示,增強學(xué)生運用遷移方法研究新問題的意識;接著借助多媒體引出三個問題,讓學(xué)生運用初中的知識判斷一下直線和圓的位置關(guān)系,鞏固學(xué)生初中所學(xué)內(nèi)容更好的為本節(jié)課的學(xué)習(xí)打下基礎(chǔ),從而引導(dǎo)學(xué)生揭示出直線與圓的位置關(guān)系與公共點的個數(shù)之間存在著對應(yīng)關(guān)系的本質(zhì)特征;最后,引入輪船遇到臺風(fēng)的實際問題,讓學(xué)生體會源自生活的數(shù)學(xué),思考解決實際問題的方法,在數(shù)與形的相互轉(zhuǎn)化過程中思考問題。
在我的引導(dǎo)下,提示學(xué)生先用初中所學(xué)內(nèi)容解決輪船遇臺風(fēng)問題,學(xué)生很輕易的把這個問題解決了,緊接著我又趁熱打鐵,提出一般的`三角形中這個方法是否可以,由此得到由高中知識解決直線與圓的位置關(guān)系的方法:幾何法,代數(shù)法。為此,我以問題為導(dǎo)向,以探究問題的方式引導(dǎo)學(xué)生自學(xué)自悟,為學(xué)生提供了自主合作探究的舞臺,讓學(xué)生思維在數(shù)學(xué)中自由翱翔。通過一系列問題學(xué)生不僅加深了對判定直線與圓的位置關(guān)系的方法的理解,更重要的是使學(xué)生學(xué)會運用聯(lián)想、化歸、數(shù)形結(jié)合等思想方法去研究問題,促進學(xué)生在學(xué)會數(shù)學(xué)的過程中順利地向會學(xué)數(shù)學(xué)的方向發(fā)展。
為了提高學(xué)生的學(xué)習(xí)興趣,讓學(xué)生有目的的去學(xué),提高學(xué)生的學(xué)習(xí)能力,這節(jié)課設(shè)置了大量問題,使學(xué)生充分地實踐與探索,不斷地歸納與總結(jié),引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律、拓展思路。在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化。
適量的練習(xí)、課后作業(yè)及時鞏固了學(xué)生的學(xué)習(xí),學(xué)生需通過動手動腦來完成,使學(xué)生對知識點的學(xué)習(xí)由課內(nèi)延伸到課外。
當然,這節(jié)課有成功之處,也有很多不足,比如,盡管準備的很充分,但是還是有點緊張;雖然我在設(shè)計本節(jié)課時是想體現(xiàn)學(xué)生自主探究的原則,但是在一些問題提出之后,沒有給予學(xué)生足夠的時間思考,限制了學(xué)生的思維。此外,對學(xué)生引導(dǎo)的語言概括及對學(xué)生及時性鼓勵的不是太好,學(xué)生的積極性及配合并不高。
在今后的教學(xué)中,我會繼續(xù)不斷的學(xué)習(xí),提高自己的教學(xué)水平,真正讓學(xué)生學(xué)會數(shù)學(xué)、學(xué)好數(shù)學(xué),使學(xué)生的各項能力在數(shù)學(xué)學(xué)習(xí)中得到更好的發(fā)展和提高,我相信在將來的教學(xué)中,我會做得越來越好,真正成為一名合格的教師。
直線與圓的位置關(guān)系聽課筆記篇十一
節(jié)課的教學(xué),我認為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
直線與圓的位置關(guān)系聽課筆記篇十二
節(jié)課的教學(xué),我認為成功之處有以下幾點:
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標下的數(shù)學(xué)教學(xué)的基本特點之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
直線與圓的位置關(guān)系聽課筆記篇十三
《直線和圓的位置關(guān)系的復(fù)習(xí)》一課的教學(xué),可以說非常成功。教學(xué)設(shè)計充分體現(xiàn)了新的教學(xué)理念,重點突出、層次清楚、構(gòu)思新穎,整個教學(xué)過程教師采用多樣化的呈現(xiàn)方式為學(xué)生搭建參與探究的平臺,高度重視學(xué)生的主動參與,有意識地為學(xué)生創(chuàng)設(shè)了良好的數(shù)學(xué)交流情境。注意學(xué)生的情感與態(tài)度,知識與技能的形成和發(fā)展,使每個學(xué)生都有表現(xiàn)的機會和獲得成功的體驗。
由于本節(jié)課綜合性強,涉及到的知識面廣,對學(xué)生的能力水平要求高。教師結(jié)合本節(jié)課的教學(xué)目標,突出重點,突破難點。采用教師啟發(fā)引導(dǎo),學(xué)生合作交流的方式來組織本節(jié)課的教學(xué)。注重解題思路分析和方法引導(dǎo),善于引導(dǎo)學(xué)生尋找圖形中的數(shù)量關(guān)系,選用適當?shù)闹R和方法正確解答問題。
在學(xué)習(xí)知識的同時,注意數(shù)學(xué)思想方法的滲透。在教學(xué)中,數(shù)學(xué)知識是一條明線,數(shù)學(xué)思想方法是一條暗線。崔老師在引導(dǎo)學(xué)生學(xué)習(xí)的同時,教給學(xué)生思考方法、學(xué)習(xí)方法和解決問題的方法,為學(xué)生未來發(fā)展服務(wù),讓學(xué)生在腦海里留下數(shù)學(xué)意識,長期下去,學(xué)生將終身受用。
板書條理分明,布局合理,文字與圖形完美結(jié)合,板書設(shè)計不僅讓學(xué)生對直線和圓的位置關(guān)系圖形的特征一目了然,而且也便于揭示它們之間的區(qū)別和聯(lián)系。體現(xiàn)了板書的形式美和簡潔美,真正使板書起到了畫龍點睛的作用。
充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使題意理解更清楚,結(jié)論更準確。
教師教態(tài)自然,語言清晰,數(shù)學(xué)語言表述準確,操作演示熟練,提問率高,體現(xiàn)素質(zhì)教育面向全體學(xué)生的要求。
教師注意培養(yǎng)學(xué)生的自信心,在教學(xué)過程的設(shè)計上體現(xiàn)了層次性和梯度性。防止學(xué)生對一些問題出現(xiàn)畏懼情緒,鼓勵學(xué)生敢于知難而進,讓學(xué)生樹立戰(zhàn)勝困難的勇氣和決心。例題的設(shè)計,按照由易到難的順序呈現(xiàn),關(guān)于直線和圓的復(fù)習(xí)教學(xué)中能利用一個圖形提出盡可能多的問題,并盡可能的覆蓋到圓的大多數(shù)知識,盡可能的加強知識間的橫縱的聯(lián)系,盡可能滲透多種數(shù)學(xué)思想和方法,最大限度的榨取它的利用價值,達到了一線串珠的目的。體現(xiàn)了綜合性例題的大容量、大綜合的特點,非常有效地達成本節(jié)課的教學(xué)目標。
直線與圓的位置關(guān)系聽課筆記篇十四
本節(jié)課研究圓與圓的位置關(guān)系,重點是研究兩圓位置關(guān)系的判斷方法,并應(yīng)用這些方法解決有關(guān)的實際問題?!秷A與圓的位置關(guān)系》在舊教材中比重不大,但是在新課標中,被作為一個獨立的章節(jié),說明新課標對這一章節(jié)的要求已經(jīng)有所提高。教材是在初中平面幾何對圓與圓的位置關(guān)系的初步分析的基礎(chǔ)上得到圓與圓的位置關(guān)系的判斷方法,北師大版教材中著重強調(diào)了根據(jù)圓心到直線的距離與圓的半徑的關(guān)系進行判斷,對用方程的思想去處理位置關(guān)系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關(guān)系,這樣有利于培養(yǎng)學(xué)生數(shù)形結(jié)合、經(jīng)歷幾何問題代數(shù)化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學(xué)習(xí)中有著非常重要的意義。
作為解析幾何的一堂課,判斷圓與圓的位置關(guān)系,體現(xiàn)的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質(zhì)。所以我在教材處理上,對判斷兩圓位置關(guān)系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學(xué)生對解析幾何的本質(zhì)有所了解。
第一,學(xué)生學(xué)習(xí)新知識必須在已有知識和經(jīng)驗的基礎(chǔ)上自主建構(gòu)與形成。所以,我一開始便提出了三個問題,即復(fù)習(xí)此節(jié)相關(guān)的知識點,通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關(guān)系。配合幾何畫板的動畫演示,啟發(fā)學(xué)生思考當初是怎樣研究判斷直線與圓的位置關(guān)系的方法?這種方法是不是同樣可以運用到研究圓與圓的位置關(guān)系上來?能不能用來判斷圓與圓的位置關(guān)系?使學(xué)生很自然地從直線與圓的位置關(guān)系的判斷方法類比到圓與圓的位置關(guān)系的判斷方法。
第二,新的課程標準非常重視學(xué)生的自主探究,這是學(xué)習(xí)方式的一次革命,老師的教授過程固然重要,但學(xué)生對知識的掌握是在學(xué)生自己對知識有體驗、有獨立的思考和探討的基礎(chǔ)上,才能成為可能。所謂“學(xué)在講之前,講在關(guān)鍵處”,學(xué)生先有一個對知識的認識過程,老師再在關(guān)鍵處進行講解,使學(xué)生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。
第三,學(xué)生的學(xué)習(xí)是在教師引導(dǎo)下的有目的的學(xué)習(xí),從而教學(xué)的過程就是在教師控制下的學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的過程,這個過程中的關(guān)鍵點是怎么樣有效地控制學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的時間和空間,在教學(xué)的過程中,我較好地處理了學(xué)生學(xué)習(xí)的空間與時間,既留給學(xué)生充分思考與探索的時間與空間,又嚴格限定時間,由此培養(yǎng)學(xué)生思維的敏捷性,提高課堂效率。
對于問題探究的題型選擇的一些思考:
第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數(shù)變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內(nèi)切,要充分結(jié)合數(shù)形結(jié)合的思想,判斷出兩圓的半徑大小關(guān)系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運用。
2、時間把握。課前復(fù)習(xí)是有必要的,是為了學(xué)生類比舊知識,聯(lián)想新知識,但復(fù)習(xí)舊知識的時間應(yīng)該限定在三分鐘以內(nèi),復(fù)習(xí)時間長會導(dǎo)致鞏固練習(xí)的時間不足和問題展開不夠充分。
3、限時訓(xùn)練。限時訓(xùn)練的目的是為了讓學(xué)生更有效率地做題,限定時間過長或是過短都不利于學(xué)生提高數(shù)學(xué)能力,這點還有待研究。
直線與圓的位置關(guān)系聽課筆記篇十五
"思之不慎,行而失當”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
在《直線和圓的位置關(guān)系》一課教學(xué)后,感受頗多,現(xiàn)分享如下:
開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標準要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。 最后由學(xué)生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:
1、教師在課堂應(yīng)當以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達到精而準。
3、在處理課后練習(xí)時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)"授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認識。
直線與圓的位置關(guān)系聽課筆記篇十六
這是我第一次進入初三進行教學(xué),即緊張又興奮。經(jīng)過一個學(xué)期的歷練,在校領(lǐng)導(dǎo)和組內(nèi)老教師的無私幫助下我有了一些進步?,F(xiàn)以《直線和圓的位置關(guān)系》第一課時為例,反思如下。
在初三的教學(xué)過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關(guān)系》這節(jié)課中,我首先引導(dǎo)學(xué)生回憶了點與圓的位置關(guān)系及所對應(yīng)的點到圓心的距離與圓半徑的數(shù)量關(guān)系。從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進行應(yīng)用,最后去解決實際問題。通過本節(jié)課的教學(xué),我認為成功之處有以下幾點:
1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
2、新課標下的數(shù)學(xué)強調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了兩道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學(xué)校會不會受到噪聲的影響?”培養(yǎng)學(xué)生解決實際問題的能力。由于這兩題要學(xué)生回到生活中去運用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點:
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點,讓學(xué)生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。
3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學(xué)生在解決實際問題時思路不明確。并在進行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要歸納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,不能想當然,否則會影響學(xué)生對知識的消化吸收。
總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進步,真正成為一名合格的數(shù)學(xué)教師。
直線與圓的位置關(guān)系聽課筆記篇十七
并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結(jié)論及時。
(2)在教學(xué)中,以“觀察——猜想——證明——剖析——應(yīng)用——歸納”為主線,開展在教師組織下,以學(xué)生為主體,活動式教學(xué)。
新課程理念及新基礎(chǔ)教育理念都提倡“把課堂還給學(xué)生,讓課堂充滿生命活力”,讓學(xué)生真正“動起來”,動不應(yīng)當是表面的、外在的,而應(yīng)當使學(xué)生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動,更要落實,動靜結(jié)合,收放適度,動得有序,動而不亂。課堂教學(xué)要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設(shè)計好問題,針對不同意見和問題引導(dǎo)學(xué)生展開討論、辯論,抓住學(xué)生發(fā)言中的問題,及時給以矯正。當教師提出問題讓學(xué)生探索時,學(xué)生自己尋找答案時,要放手讓學(xué)生活動,但要避免學(xué)生興奮過度或活動過量。今后再教學(xué)本節(jié)課仍應(yīng)倡導(dǎo)提高學(xué)生的問題意識,以對問題的探究來構(gòu)筑本節(jié)課教學(xué)的主題。但是,教師待學(xué)生的問題提完后,與學(xué)生一道對問題進行歸類,找出學(xué)生思維和知識的核心問題,以此組織課堂教學(xué),并相機解決其他問題。仍應(yīng)放權(quán)給學(xué)生,給他們想、做、說的機會,讓他們討論、質(zhì)疑、交流,圍繞某一個問題展開辯論。教師應(yīng)當給學(xué)生時間和權(quán)利,讓學(xué)生充分進行思考,給學(xué)生充分表達自己思維的機會。但是,應(yīng)關(guān)注學(xué)生的參與程度,有的學(xué)生的參與只是一種表面上的行為參與。要看學(xué)生的思維是否活躍,關(guān)鍵是學(xué)生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學(xué)生的積極思考,還是學(xué)生的自我需要。也就是說我們要關(guān)注學(xué)生思維的狀態(tài)與學(xué)習(xí)互動的狀態(tài)。